public class CreateEvaluationRequest extends AmazonWebServiceRequest implements Serializable, Cloneable
CreateEvaluation operation
.
Creates a new Evaluation
of an MLModel
. An
MLModel
is evaluated on a set of observations associated
to a DataSource
. Like a DataSource
for an
MLModel
, the DataSource
for an
Evaluation
contains values for the Target Variable. The
Evaluation
compares the predicted result for each
observation to the actual outcome and provides a summary so that you
know how effective the MLModel
functions on the test
data. Evaluation generates a relevant performance metric such as
BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the
corresponding MLModelType
:
BINARY
,
REGRESSION
or MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In
response to CreateEvaluation
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the evaluation status to
PENDING
. After the Evaluation
is created
and ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation operation to check progress of the evaluation during the creation operation.
NOOP
Constructor and Description |
---|
CreateEvaluationRequest() |
Modifier and Type | Method and Description |
---|---|
CreateEvaluationRequest |
clone()
Creates a shallow clone of this request.
|
boolean |
equals(Object obj) |
String |
getEvaluationDataSourceId()
The ID of the
DataSource for the evaluation. |
String |
getEvaluationId()
A user-supplied ID that uniquely identifies the
Evaluation . |
String |
getEvaluationName()
A user-supplied name or description of the
Evaluation . |
String |
getMLModelId()
The ID of the
MLModel to evaluate. |
int |
hashCode() |
void |
setEvaluationDataSourceId(String evaluationDataSourceId)
The ID of the
DataSource for the evaluation. |
void |
setEvaluationId(String evaluationId)
A user-supplied ID that uniquely identifies the
Evaluation . |
void |
setEvaluationName(String evaluationName)
A user-supplied name or description of the
Evaluation . |
void |
setMLModelId(String mLModelId)
The ID of the
MLModel to evaluate. |
String |
toString()
Returns a string representation of this object; useful for testing and
debugging.
|
CreateEvaluationRequest |
withEvaluationDataSourceId(String evaluationDataSourceId)
The ID of the
DataSource for the evaluation. |
CreateEvaluationRequest |
withEvaluationId(String evaluationId)
A user-supplied ID that uniquely identifies the
Evaluation . |
CreateEvaluationRequest |
withEvaluationName(String evaluationName)
A user-supplied name or description of the
Evaluation . |
CreateEvaluationRequest |
withMLModelId(String mLModelId)
The ID of the
MLModel to evaluate. |
copyBaseTo, getCustomRequestHeaders, getGeneralProgressListener, getReadLimit, getRequestClientOptions, getRequestCredentials, getRequestMetricCollector, putCustomRequestHeader, setGeneralProgressListener, setRequestCredentials, setRequestMetricCollector, withGeneralProgressListener, withRequestMetricCollector
public String getEvaluationId()
Evaluation
.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
Evaluation
.public void setEvaluationId(String evaluationId)
Evaluation
.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
evaluationId
- A user-supplied ID that uniquely identifies the
Evaluation
.public CreateEvaluationRequest withEvaluationId(String evaluationId)
Evaluation
.
Returns a reference to this object so that method calls can be chained together.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
evaluationId
- A user-supplied ID that uniquely identifies the
Evaluation
.public String getEvaluationName()
Evaluation
.
Constraints:
Length: 0 - 1024
Pattern: .*\S.*|^$
Evaluation
.public void setEvaluationName(String evaluationName)
Evaluation
.
Constraints:
Length: 0 - 1024
Pattern: .*\S.*|^$
evaluationName
- A user-supplied name or description of the Evaluation
.public CreateEvaluationRequest withEvaluationName(String evaluationName)
Evaluation
.
Returns a reference to this object so that method calls can be chained together.
Constraints:
Length: 0 - 1024
Pattern: .*\S.*|^$
evaluationName
- A user-supplied name or description of the Evaluation
.public String getMLModelId()
MLModel
to evaluate. The schema used in
creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
MLModel
to evaluate. The schema used in
creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
public void setMLModelId(String mLModelId)
MLModel
to evaluate. The schema used in
creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
mLModelId
- The ID of the MLModel
to evaluate. The schema used in
creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
public CreateEvaluationRequest withMLModelId(String mLModelId)
MLModel
to evaluate. The schema used in
creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
Returns a reference to this object so that method calls can be chained together.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
mLModelId
- The ID of the MLModel
to evaluate. The schema used in
creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
public String getEvaluationDataSourceId()
DataSource
for the evaluation. The schema
of the DataSource
must match the schema used to create
the MLModel
.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
DataSource
for the evaluation. The schema
of the DataSource
must match the schema used to create
the MLModel
.public void setEvaluationDataSourceId(String evaluationDataSourceId)
DataSource
for the evaluation. The schema
of the DataSource
must match the schema used to create
the MLModel
.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
evaluationDataSourceId
- The ID of the DataSource
for the evaluation. The schema
of the DataSource
must match the schema used to create
the MLModel
.public CreateEvaluationRequest withEvaluationDataSourceId(String evaluationDataSourceId)
DataSource
for the evaluation. The schema
of the DataSource
must match the schema used to create
the MLModel
.
Returns a reference to this object so that method calls can be chained together.
Constraints:
Length: 1 - 64
Pattern: [a-zA-Z0-9_.-]+
evaluationDataSourceId
- The ID of the DataSource
for the evaluation. The schema
of the DataSource
must match the schema used to create
the MLModel
.public String toString()
toString
in class Object
Object.toString()
public CreateEvaluationRequest clone()
AmazonWebServiceRequest
clone
in class AmazonWebServiceRequest
Object.clone()
Copyright © 2015. All rights reserved.