public interface AmazonMachineLearningAsync extends AmazonMachineLearning
AsyncHandler
can be
used to receive notification when an asynchronous operation completes.
Definition of the public APIs exposed by Amazon Machine Learning
Modifier and Type | Method and Description |
---|---|
Future<CreateBatchPredictionResult> |
createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest)
Generates predictions for a group of observations.
|
Future<CreateBatchPredictionResult> |
createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest,
AsyncHandler<CreateBatchPredictionRequest,CreateBatchPredictionResult> asyncHandler)
Generates predictions for a group of observations.
|
Future<CreateDataSourceFromRDSResult> |
createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest)
Creates a
DataSource object from an Amazon Relational Database Service
(Amazon RDS). |
Future<CreateDataSourceFromRDSResult> |
createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest,
AsyncHandler<CreateDataSourceFromRDSRequest,CreateDataSourceFromRDSResult> asyncHandler)
Creates a
DataSource object from an Amazon Relational Database Service
(Amazon RDS). |
Future<CreateDataSourceFromRedshiftResult> |
createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest)
Creates a
DataSource from Amazon Redshift. |
Future<CreateDataSourceFromRedshiftResult> |
createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest,
AsyncHandler<CreateDataSourceFromRedshiftRequest,CreateDataSourceFromRedshiftResult> asyncHandler)
Creates a
DataSource from Amazon Redshift. |
Future<CreateDataSourceFromS3Result> |
createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request)
Creates a
DataSource object. |
Future<CreateDataSourceFromS3Result> |
createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request,
AsyncHandler<CreateDataSourceFromS3Request,CreateDataSourceFromS3Result> asyncHandler)
Creates a
DataSource object. |
Future<CreateEvaluationResult> |
createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest)
Creates a new
Evaluation of an MLModel . |
Future<CreateEvaluationResult> |
createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest,
AsyncHandler<CreateEvaluationRequest,CreateEvaluationResult> asyncHandler)
Creates a new
Evaluation of an MLModel . |
Future<CreateMLModelResult> |
createMLModelAsync(CreateMLModelRequest createMLModelRequest)
Creates a new
MLModel using the data files and the recipe as
information sources. |
Future<CreateMLModelResult> |
createMLModelAsync(CreateMLModelRequest createMLModelRequest,
AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
Creates a new
MLModel using the data files and the recipe as
information sources. |
Future<CreateRealtimeEndpointResult> |
createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest)
Creates a real-time endpoint for the
MLModel . |
Future<CreateRealtimeEndpointResult> |
createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest,
AsyncHandler<CreateRealtimeEndpointRequest,CreateRealtimeEndpointResult> asyncHandler)
Creates a real-time endpoint for the
MLModel . |
Future<DeleteBatchPredictionResult> |
deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest)
Assigns the DELETED status to a
BatchPrediction , rendering
it unusable. |
Future<DeleteBatchPredictionResult> |
deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest,
AsyncHandler<DeleteBatchPredictionRequest,DeleteBatchPredictionResult> asyncHandler)
Assigns the DELETED status to a
BatchPrediction , rendering
it unusable. |
Future<DeleteDataSourceResult> |
deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest)
Assigns the DELETED status to a
DataSource , rendering it
unusable. |
Future<DeleteDataSourceResult> |
deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest,
AsyncHandler<DeleteDataSourceRequest,DeleteDataSourceResult> asyncHandler)
Assigns the DELETED status to a
DataSource , rendering it
unusable. |
Future<DeleteEvaluationResult> |
deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest)
Assigns the
DELETED status to an Evaluation ,
rendering it unusable. |
Future<DeleteEvaluationResult> |
deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest,
AsyncHandler<DeleteEvaluationRequest,DeleteEvaluationResult> asyncHandler)
Assigns the
DELETED status to an Evaluation ,
rendering it unusable. |
Future<DeleteMLModelResult> |
deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest)
Assigns the DELETED status to an
MLModel , rendering it
unusable. |
Future<DeleteMLModelResult> |
deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest,
AsyncHandler<DeleteMLModelRequest,DeleteMLModelResult> asyncHandler)
Assigns the DELETED status to an
MLModel , rendering it
unusable. |
Future<DeleteRealtimeEndpointResult> |
deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest)
Deletes a real time endpoint of an
MLModel . |
Future<DeleteRealtimeEndpointResult> |
deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest,
AsyncHandler<DeleteRealtimeEndpointRequest,DeleteRealtimeEndpointResult> asyncHandler)
Deletes a real time endpoint of an
MLModel . |
Future<DescribeBatchPredictionsResult> |
describeBatchPredictionsAsync()
Simplified method form for invoking the DescribeBatchPredictions
operation.
|
Future<DescribeBatchPredictionsResult> |
describeBatchPredictionsAsync(AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
Simplified method form for invoking the DescribeBatchPredictions
operation with an AsyncHandler.
|
Future<DescribeBatchPredictionsResult> |
describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest)
Returns a list of
BatchPrediction operations that match the
search criteria in the request. |
Future<DescribeBatchPredictionsResult> |
describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest,
AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
Returns a list of
BatchPrediction operations that match the
search criteria in the request. |
Future<DescribeDataSourcesResult> |
describeDataSourcesAsync()
Simplified method form for invoking the DescribeDataSources operation.
|
Future<DescribeDataSourcesResult> |
describeDataSourcesAsync(AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
Simplified method form for invoking the DescribeDataSources operation
with an AsyncHandler.
|
Future<DescribeDataSourcesResult> |
describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest)
Returns a list of
DataSource that match the search criteria
in the request. |
Future<DescribeDataSourcesResult> |
describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest,
AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
Returns a list of
DataSource that match the search criteria
in the request. |
Future<DescribeEvaluationsResult> |
describeEvaluationsAsync()
Simplified method form for invoking the DescribeEvaluations operation.
|
Future<DescribeEvaluationsResult> |
describeEvaluationsAsync(AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
Simplified method form for invoking the DescribeEvaluations operation
with an AsyncHandler.
|
Future<DescribeEvaluationsResult> |
describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest)
Returns a list of
DescribeEvaluations that match the search
criteria in the request. |
Future<DescribeEvaluationsResult> |
describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest,
AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
Returns a list of
DescribeEvaluations that match the search
criteria in the request. |
Future<DescribeMLModelsResult> |
describeMLModelsAsync()
Simplified method form for invoking the DescribeMLModels operation.
|
Future<DescribeMLModelsResult> |
describeMLModelsAsync(AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
Simplified method form for invoking the DescribeMLModels operation with
an AsyncHandler.
|
Future<DescribeMLModelsResult> |
describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest)
Returns a list of
MLModel that match the search criteria in
the request. |
Future<DescribeMLModelsResult> |
describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest,
AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
Returns a list of
MLModel that match the search criteria in
the request. |
Future<GetBatchPredictionResult> |
getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest)
Returns a
BatchPrediction that includes detailed metadata,
status, and data file information for a Batch Prediction
request. |
Future<GetBatchPredictionResult> |
getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest,
AsyncHandler<GetBatchPredictionRequest,GetBatchPredictionResult> asyncHandler)
Returns a
BatchPrediction that includes detailed metadata,
status, and data file information for a Batch Prediction
request. |
Future<GetDataSourceResult> |
getDataSourceAsync(GetDataSourceRequest getDataSourceRequest)
Returns a
DataSource that includes metadata and data file
information, as well as the current status of the DataSource
. |
Future<GetDataSourceResult> |
getDataSourceAsync(GetDataSourceRequest getDataSourceRequest,
AsyncHandler<GetDataSourceRequest,GetDataSourceResult> asyncHandler)
Returns a
DataSource that includes metadata and data file
information, as well as the current status of the DataSource
. |
Future<GetEvaluationResult> |
getEvaluationAsync(GetEvaluationRequest getEvaluationRequest)
Returns an
Evaluation that includes metadata as well as the
current status of the Evaluation . |
Future<GetEvaluationResult> |
getEvaluationAsync(GetEvaluationRequest getEvaluationRequest,
AsyncHandler<GetEvaluationRequest,GetEvaluationResult> asyncHandler)
Returns an
Evaluation that includes metadata as well as the
current status of the Evaluation . |
Future<GetMLModelResult> |
getMLModelAsync(GetMLModelRequest getMLModelRequest)
Returns an
MLModel that includes detailed metadata, and data
source information as well as the current status of the
MLModel . |
Future<GetMLModelResult> |
getMLModelAsync(GetMLModelRequest getMLModelRequest,
AsyncHandler<GetMLModelRequest,GetMLModelResult> asyncHandler)
Returns an
MLModel that includes detailed metadata, and data
source information as well as the current status of the
MLModel . |
Future<PredictResult> |
predictAsync(PredictRequest predictRequest)
Generates a prediction for the observation using the specified
ML Model . |
Future<PredictResult> |
predictAsync(PredictRequest predictRequest,
AsyncHandler<PredictRequest,PredictResult> asyncHandler)
Generates a prediction for the observation using the specified
ML Model . |
Future<UpdateBatchPredictionResult> |
updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest)
Updates the
BatchPredictionName of a
BatchPrediction . |
Future<UpdateBatchPredictionResult> |
updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest,
AsyncHandler<UpdateBatchPredictionRequest,UpdateBatchPredictionResult> asyncHandler)
Updates the
BatchPredictionName of a
BatchPrediction . |
Future<UpdateDataSourceResult> |
updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest)
Updates the
DataSourceName of a DataSource . |
Future<UpdateDataSourceResult> |
updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest,
AsyncHandler<UpdateDataSourceRequest,UpdateDataSourceResult> asyncHandler)
Updates the
DataSourceName of a DataSource . |
Future<UpdateEvaluationResult> |
updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest)
Updates the
EvaluationName of an Evaluation . |
Future<UpdateEvaluationResult> |
updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest,
AsyncHandler<UpdateEvaluationRequest,UpdateEvaluationResult> asyncHandler)
Updates the
EvaluationName of an Evaluation . |
Future<UpdateMLModelResult> |
updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest)
Updates the
MLModelName and the ScoreThreshold
of an MLModel . |
Future<UpdateMLModelResult> |
updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest,
AsyncHandler<UpdateMLModelRequest,UpdateMLModelResult> asyncHandler)
Updates the
MLModelName and the ScoreThreshold
of an MLModel . |
createBatchPrediction, createDataSourceFromRDS, createDataSourceFromRedshift, createDataSourceFromS3, createEvaluation, createMLModel, createRealtimeEndpoint, deleteBatchPrediction, deleteDataSource, deleteEvaluation, deleteMLModel, deleteRealtimeEndpoint, describeBatchPredictions, describeBatchPredictions, describeDataSources, describeDataSources, describeEvaluations, describeEvaluations, describeMLModels, describeMLModels, getBatchPrediction, getCachedResponseMetadata, getDataSource, getEvaluation, getMLModel, predict, setEndpoint, setRegion, shutdown, updateBatchPrediction, updateDataSource, updateEvaluation, updateMLModel
Future<CreateBatchPredictionResult> createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest)
Generates predictions for a group of observations. The observations to
process exist in one or more data files referenced by a
DataSource
. This operation creates a new
BatchPrediction
, and uses an MLModel
and the
data files referenced by the DataSource
as information
sources.
CreateBatchPrediction
is an asynchronous operation. In
response to CreateBatchPrediction
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the BatchPrediction
status to PENDING
. After the BatchPrediction
completes, Amazon ML sets the status to COMPLETED
.
You can poll for status updates by using the GetBatchPrediction
operation and checking the Status
parameter of the result.
After the COMPLETED
status appears, the results are
available in the location specified by the OutputUri
parameter.
createBatchPredictionRequest
- Future<CreateBatchPredictionResult> createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest, AsyncHandler<CreateBatchPredictionRequest,CreateBatchPredictionResult> asyncHandler)
Generates predictions for a group of observations. The observations to
process exist in one or more data files referenced by a
DataSource
. This operation creates a new
BatchPrediction
, and uses an MLModel
and the
data files referenced by the DataSource
as information
sources.
CreateBatchPrediction
is an asynchronous operation. In
response to CreateBatchPrediction
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the BatchPrediction
status to PENDING
. After the BatchPrediction
completes, Amazon ML sets the status to COMPLETED
.
You can poll for status updates by using the GetBatchPrediction
operation and checking the Status
parameter of the result.
After the COMPLETED
status appears, the results are
available in the location specified by the OutputUri
parameter.
createBatchPredictionRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<CreateDataSourceFromRDSResult> createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest)
Creates a DataSource
object from an Amazon Relational Database Service
(Amazon RDS). A DataSource
references data that can be used
to perform CreateMLModel, CreateEvaluation, or
CreateBatchPrediction operations.
CreateDataSourceFromRDS
is an asynchronous operation. In
response to CreateDataSourceFromRDS
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is
created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in
COMPLETED
or PENDING
status can only be used to
perform CreateMLModel, CreateEvaluation, or
CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
Status
parameter to FAILED
and includes an
error message in the Message
attribute of the
GetDataSource operation response.
createDataSourceFromRDSRequest
- Future<CreateDataSourceFromRDSResult> createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest, AsyncHandler<CreateDataSourceFromRDSRequest,CreateDataSourceFromRDSResult> asyncHandler)
Creates a DataSource
object from an Amazon Relational Database Service
(Amazon RDS). A DataSource
references data that can be used
to perform CreateMLModel, CreateEvaluation, or
CreateBatchPrediction operations.
CreateDataSourceFromRDS
is an asynchronous operation. In
response to CreateDataSourceFromRDS
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is
created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in
COMPLETED
or PENDING
status can only be used to
perform CreateMLModel, CreateEvaluation, or
CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
Status
parameter to FAILED
and includes an
error message in the Message
attribute of the
GetDataSource operation response.
createDataSourceFromRDSRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<CreateDataSourceFromRedshiftResult> createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest)
Creates a DataSource
from Amazon Redshift. A
DataSource
references data that can be used to perform
either CreateMLModel, CreateEvaluation or
CreateBatchPrediction operations.
CreateDataSourceFromRedshift
is an asynchronous operation.
In response to CreateDataSourceFromRedshift
, Amazon Machine
Learning (Amazon ML) immediately returns and sets the
DataSource
status to PENDING
. After the
DataSource
is created and ready for use, Amazon ML sets the
Status
parameter to COMPLETED
.
DataSource
in COMPLETED
or PENDING
status can only be used to perform CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
Status
parameter to FAILED
and includes an
error message in the Message
attribute of the
GetDataSource operation response.
The observations should exist in the database hosted on an Amazon
Redshift cluster and should be specified by a SelectSqlQuery
. Amazon ML executes
Unload command in Amazon Redshift to transfer the result set of
SelectSqlQuery
to S3StagingLocation.
After the DataSource
is created, it's ready for use in
evaluations and batch predictions. If you plan to use the
DataSource
to train an MLModel
, the
DataSource
requires another item -- a recipe. A recipe
describes the observation variables that participate in training an
MLModel
. A recipe describes how each input variable will be
used in training. Will the variable be included or excluded from
training? Will the variable be manipulated, for example, combined with
another variable or split apart into word combinations? The recipe
provides answers to these questions. For more information, see the Amazon
Machine Learning Developer Guide.
createDataSourceFromRedshiftRequest
- Future<CreateDataSourceFromRedshiftResult> createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest, AsyncHandler<CreateDataSourceFromRedshiftRequest,CreateDataSourceFromRedshiftResult> asyncHandler)
Creates a DataSource
from Amazon Redshift. A
DataSource
references data that can be used to perform
either CreateMLModel, CreateEvaluation or
CreateBatchPrediction operations.
CreateDataSourceFromRedshift
is an asynchronous operation.
In response to CreateDataSourceFromRedshift
, Amazon Machine
Learning (Amazon ML) immediately returns and sets the
DataSource
status to PENDING
. After the
DataSource
is created and ready for use, Amazon ML sets the
Status
parameter to COMPLETED
.
DataSource
in COMPLETED
or PENDING
status can only be used to perform CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
Status
parameter to FAILED
and includes an
error message in the Message
attribute of the
GetDataSource operation response.
The observations should exist in the database hosted on an Amazon
Redshift cluster and should be specified by a SelectSqlQuery
. Amazon ML executes
Unload command in Amazon Redshift to transfer the result set of
SelectSqlQuery
to S3StagingLocation.
After the DataSource
is created, it's ready for use in
evaluations and batch predictions. If you plan to use the
DataSource
to train an MLModel
, the
DataSource
requires another item -- a recipe. A recipe
describes the observation variables that participate in training an
MLModel
. A recipe describes how each input variable will be
used in training. Will the variable be included or excluded from
training? Will the variable be manipulated, for example, combined with
another variable or split apart into word combinations? The recipe
provides answers to these questions. For more information, see the Amazon
Machine Learning Developer Guide.
createDataSourceFromRedshiftRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<CreateDataSourceFromS3Result> createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request)
Creates a DataSource
object. A DataSource
references data that can be used to perform CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
CreateDataSourceFromS3
is an asynchronous operation. In
response to CreateDataSourceFromS3
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is
created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in
COMPLETED
or PENDING
status can only be used to
perform CreateMLModel, CreateEvaluation or
CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
Status
parameter to FAILED
and includes an
error message in the Message
attribute of the
GetDataSource operation response.
The observation data used in a DataSource
should be ready to
use; that is, it should have a consistent structure, and missing data
values should be kept to a minimum. The observation data must reside in
one or more CSV files in an Amazon Simple Storage Service (Amazon S3)
bucket, along with a schema that describes the data items by name and
type. The same schema must be used for all of the data files referenced
by the DataSource
.
After the DataSource
has been created, it's ready to use in
evaluations and batch predictions. If you plan to use the
DataSource
to train an MLModel
, the
DataSource
requires another item: a recipe. A recipe
describes the observation variables that participate in training an
MLModel
. A recipe describes how each input variable will be
used in training. Will the variable be included or excluded from
training? Will the variable be manipulated, for example, combined with
another variable, or split apart into word combinations? The recipe
provides answers to these questions. For more information, see the Amazon
Machine Learning Developer Guide.
createDataSourceFromS3Request
- Future<CreateDataSourceFromS3Result> createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request, AsyncHandler<CreateDataSourceFromS3Request,CreateDataSourceFromS3Result> asyncHandler)
Creates a DataSource
object. A DataSource
references data that can be used to perform CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
CreateDataSourceFromS3
is an asynchronous operation. In
response to CreateDataSourceFromS3
, Amazon Machine Learning
(Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is
created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in
COMPLETED
or PENDING
status can only be used to
perform CreateMLModel, CreateEvaluation or
CreateBatchPrediction operations.
If Amazon ML cannot accept the input source, it sets the
Status
parameter to FAILED
and includes an
error message in the Message
attribute of the
GetDataSource operation response.
The observation data used in a DataSource
should be ready to
use; that is, it should have a consistent structure, and missing data
values should be kept to a minimum. The observation data must reside in
one or more CSV files in an Amazon Simple Storage Service (Amazon S3)
bucket, along with a schema that describes the data items by name and
type. The same schema must be used for all of the data files referenced
by the DataSource
.
After the DataSource
has been created, it's ready to use in
evaluations and batch predictions. If you plan to use the
DataSource
to train an MLModel
, the
DataSource
requires another item: a recipe. A recipe
describes the observation variables that participate in training an
MLModel
. A recipe describes how each input variable will be
used in training. Will the variable be included or excluded from
training? Will the variable be manipulated, for example, combined with
another variable, or split apart into word combinations? The recipe
provides answers to these questions. For more information, see the Amazon
Machine Learning Developer Guide.
createDataSourceFromS3Request
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<CreateEvaluationResult> createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest)
Creates a new Evaluation
of an MLModel
. An
MLModel
is evaluated on a set of observations associated to
a DataSource
. Like a DataSource
for an
MLModel
, the DataSource
for an
Evaluation
contains values for the Target Variable. The
Evaluation
compares the predicted result for each
observation to the actual outcome and provides a summary so that you know
how effective the MLModel
functions on the test data.
Evaluation generates a relevant performance metric such as BinaryAUC,
RegressionRMSE or MulticlassAvgFScore based on the corresponding
MLModelType
: BINARY
, REGRESSION
or
MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In response
to CreateEvaluation
, Amazon Machine Learning (Amazon ML)
immediately returns and sets the evaluation status to
PENDING
. After the Evaluation
is created and
ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation operation to check progress of the evaluation during the creation operation.
createEvaluationRequest
- Future<CreateEvaluationResult> createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest, AsyncHandler<CreateEvaluationRequest,CreateEvaluationResult> asyncHandler)
Creates a new Evaluation
of an MLModel
. An
MLModel
is evaluated on a set of observations associated to
a DataSource
. Like a DataSource
for an
MLModel
, the DataSource
for an
Evaluation
contains values for the Target Variable. The
Evaluation
compares the predicted result for each
observation to the actual outcome and provides a summary so that you know
how effective the MLModel
functions on the test data.
Evaluation generates a relevant performance metric such as BinaryAUC,
RegressionRMSE or MulticlassAvgFScore based on the corresponding
MLModelType
: BINARY
, REGRESSION
or
MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In response
to CreateEvaluation
, Amazon Machine Learning (Amazon ML)
immediately returns and sets the evaluation status to
PENDING
. After the Evaluation
is created and
ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation operation to check progress of the evaluation during the creation operation.
createEvaluationRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<CreateMLModelResult> createMLModelAsync(CreateMLModelRequest createMLModelRequest)
Creates a new MLModel
using the data files and the recipe as
information sources.
An MLModel
is nearly immutable. Users can only update the
MLModelName
and the ScoreThreshold
in an
MLModel
without creating a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to
CreateMLModel
, Amazon Machine Learning (Amazon ML)
immediately returns and sets the MLModel
status to
PENDING
. After the MLModel
is created and ready
for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel operation to check progress of the
MLModel
during the creation operation.
CreateMLModel requires a DataSource
with computed
statistics, which can be created by setting
ComputeStatistics
to true
in
CreateDataSourceFromRDS, CreateDataSourceFromS3, or
CreateDataSourceFromRedshift operations.
createMLModelRequest
- Future<CreateMLModelResult> createMLModelAsync(CreateMLModelRequest createMLModelRequest, AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
Creates a new MLModel
using the data files and the recipe as
information sources.
An MLModel
is nearly immutable. Users can only update the
MLModelName
and the ScoreThreshold
in an
MLModel
without creating a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to
CreateMLModel
, Amazon Machine Learning (Amazon ML)
immediately returns and sets the MLModel
status to
PENDING
. After the MLModel
is created and ready
for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel operation to check progress of the
MLModel
during the creation operation.
CreateMLModel requires a DataSource
with computed
statistics, which can be created by setting
ComputeStatistics
to true
in
CreateDataSourceFromRDS, CreateDataSourceFromS3, or
CreateDataSourceFromRedshift operations.
createMLModelRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<CreateRealtimeEndpointResult> createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest)
Creates a real-time endpoint for the MLModel
. The endpoint
contains the URI of the MLModel
; that is, the location to
send real-time prediction requests for the specified MLModel
.
createRealtimeEndpointRequest
- Future<CreateRealtimeEndpointResult> createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest, AsyncHandler<CreateRealtimeEndpointRequest,CreateRealtimeEndpointResult> asyncHandler)
Creates a real-time endpoint for the MLModel
. The endpoint
contains the URI of the MLModel
; that is, the location to
send real-time prediction requests for the specified MLModel
.
createRealtimeEndpointRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DeleteBatchPredictionResult> deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest)
Assigns the DELETED status to a BatchPrediction
, rendering
it unusable.
After using the DeleteBatchPrediction
operation, you can use
the GetBatchPrediction operation to verify that the status of the
BatchPrediction
changed to DELETED.
Caution: The result of the DeleteBatchPrediction
operation is irreversible.
deleteBatchPredictionRequest
- Future<DeleteBatchPredictionResult> deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest, AsyncHandler<DeleteBatchPredictionRequest,DeleteBatchPredictionResult> asyncHandler)
Assigns the DELETED status to a BatchPrediction
, rendering
it unusable.
After using the DeleteBatchPrediction
operation, you can use
the GetBatchPrediction operation to verify that the status of the
BatchPrediction
changed to DELETED.
Caution: The result of the DeleteBatchPrediction
operation is irreversible.
deleteBatchPredictionRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DeleteDataSourceResult> deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest)
Assigns the DELETED status to a DataSource
, rendering it
unusable.
After using the DeleteDataSource
operation, you can use the
GetDataSource operation to verify that the status of the
DataSource
changed to DELETED.
Caution: The results of the DeleteDataSource
operation are irreversible.
deleteDataSourceRequest
- Future<DeleteDataSourceResult> deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest, AsyncHandler<DeleteDataSourceRequest,DeleteDataSourceResult> asyncHandler)
Assigns the DELETED status to a DataSource
, rendering it
unusable.
After using the DeleteDataSource
operation, you can use the
GetDataSource operation to verify that the status of the
DataSource
changed to DELETED.
Caution: The results of the DeleteDataSource
operation are irreversible.
deleteDataSourceRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DeleteEvaluationResult> deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest)
Assigns the DELETED
status to an Evaluation
,
rendering it unusable.
After invoking the DeleteEvaluation
operation, you can use
the GetEvaluation operation to verify that the status of the
Evaluation
changed to DELETED
.
Caution: The results of the DeleteEvaluation
operation are irreversible.
deleteEvaluationRequest
- Future<DeleteEvaluationResult> deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest, AsyncHandler<DeleteEvaluationRequest,DeleteEvaluationResult> asyncHandler)
Assigns the DELETED
status to an Evaluation
,
rendering it unusable.
After invoking the DeleteEvaluation
operation, you can use
the GetEvaluation operation to verify that the status of the
Evaluation
changed to DELETED
.
Caution: The results of the DeleteEvaluation
operation are irreversible.
deleteEvaluationRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DeleteMLModelResult> deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest)
Assigns the DELETED status to an MLModel
, rendering it
unusable.
After using the DeleteMLModel
operation, you can use the
GetMLModel operation to verify that the status of the
MLModel
changed to DELETED.
Caution: The result of the DeleteMLModel
operation is
irreversible.
deleteMLModelRequest
- Future<DeleteMLModelResult> deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest, AsyncHandler<DeleteMLModelRequest,DeleteMLModelResult> asyncHandler)
Assigns the DELETED status to an MLModel
, rendering it
unusable.
After using the DeleteMLModel
operation, you can use the
GetMLModel operation to verify that the status of the
MLModel
changed to DELETED.
Caution: The result of the DeleteMLModel
operation is
irreversible.
deleteMLModelRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DeleteRealtimeEndpointResult> deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest)
Deletes a real time endpoint of an MLModel
.
deleteRealtimeEndpointRequest
- Future<DeleteRealtimeEndpointResult> deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest, AsyncHandler<DeleteRealtimeEndpointRequest,DeleteRealtimeEndpointResult> asyncHandler)
Deletes a real time endpoint of an MLModel
.
deleteRealtimeEndpointRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest)
Returns a list of BatchPrediction
operations that match the
search criteria in the request.
describeBatchPredictionsRequest
- Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest, AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
Returns a list of BatchPrediction
operations that match the
search criteria in the request.
describeBatchPredictionsRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync()
Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
Future<DescribeDataSourcesResult> describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest)
Returns a list of DataSource
that match the search criteria
in the request.
describeDataSourcesRequest
- Future<DescribeDataSourcesResult> describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest, AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
Returns a list of DataSource
that match the search criteria
in the request.
describeDataSourcesRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DescribeDataSourcesResult> describeDataSourcesAsync()
Future<DescribeDataSourcesResult> describeDataSourcesAsync(AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
Future<DescribeEvaluationsResult> describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest)
Returns a list of DescribeEvaluations
that match the search
criteria in the request.
describeEvaluationsRequest
- Future<DescribeEvaluationsResult> describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest, AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
Returns a list of DescribeEvaluations
that match the search
criteria in the request.
describeEvaluationsRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DescribeEvaluationsResult> describeEvaluationsAsync()
Future<DescribeEvaluationsResult> describeEvaluationsAsync(AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
Future<DescribeMLModelsResult> describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest)
Returns a list of MLModel
that match the search criteria in
the request.
describeMLModelsRequest
- Future<DescribeMLModelsResult> describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest, AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
Returns a list of MLModel
that match the search criteria in
the request.
describeMLModelsRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<DescribeMLModelsResult> describeMLModelsAsync()
Future<DescribeMLModelsResult> describeMLModelsAsync(AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
Future<GetBatchPredictionResult> getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest)
Returns a BatchPrediction
that includes detailed metadata,
status, and data file information for a Batch Prediction
request.
getBatchPredictionRequest
- Future<GetBatchPredictionResult> getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest, AsyncHandler<GetBatchPredictionRequest,GetBatchPredictionResult> asyncHandler)
Returns a BatchPrediction
that includes detailed metadata,
status, and data file information for a Batch Prediction
request.
getBatchPredictionRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<GetDataSourceResult> getDataSourceAsync(GetDataSourceRequest getDataSourceRequest)
Returns a DataSource
that includes metadata and data file
information, as well as the current status of the DataSource
.
GetDataSource
provides results in normal or verbose format.
The verbose format adds the schema description and the list of files
pointed to by the DataSource to the normal format.
getDataSourceRequest
- Future<GetDataSourceResult> getDataSourceAsync(GetDataSourceRequest getDataSourceRequest, AsyncHandler<GetDataSourceRequest,GetDataSourceResult> asyncHandler)
Returns a DataSource
that includes metadata and data file
information, as well as the current status of the DataSource
.
GetDataSource
provides results in normal or verbose format.
The verbose format adds the schema description and the list of files
pointed to by the DataSource to the normal format.
getDataSourceRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<GetEvaluationResult> getEvaluationAsync(GetEvaluationRequest getEvaluationRequest)
Returns an Evaluation
that includes metadata as well as the
current status of the Evaluation
.
getEvaluationRequest
- Future<GetEvaluationResult> getEvaluationAsync(GetEvaluationRequest getEvaluationRequest, AsyncHandler<GetEvaluationRequest,GetEvaluationResult> asyncHandler)
Returns an Evaluation
that includes metadata as well as the
current status of the Evaluation
.
getEvaluationRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<GetMLModelResult> getMLModelAsync(GetMLModelRequest getMLModelRequest)
Returns an MLModel
that includes detailed metadata, and data
source information as well as the current status of the
MLModel
.
GetMLModel
provides results in normal or verbose format.
getMLModelRequest
- Future<GetMLModelResult> getMLModelAsync(GetMLModelRequest getMLModelRequest, AsyncHandler<GetMLModelRequest,GetMLModelResult> asyncHandler)
Returns an MLModel
that includes detailed metadata, and data
source information as well as the current status of the
MLModel
.
GetMLModel
provides results in normal or verbose format.
getMLModelRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<PredictResult> predictAsync(PredictRequest predictRequest)
Generates a prediction for the observation using the specified
ML Model
.
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
predictRequest
- Future<PredictResult> predictAsync(PredictRequest predictRequest, AsyncHandler<PredictRequest,PredictResult> asyncHandler)
Generates a prediction for the observation using the specified
ML Model
.
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
predictRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<UpdateBatchPredictionResult> updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest)
Updates the BatchPredictionName
of a
BatchPrediction
.
You can use the GetBatchPrediction operation to view the contents of the updated data element.
updateBatchPredictionRequest
- Future<UpdateBatchPredictionResult> updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest, AsyncHandler<UpdateBatchPredictionRequest,UpdateBatchPredictionResult> asyncHandler)
Updates the BatchPredictionName
of a
BatchPrediction
.
You can use the GetBatchPrediction operation to view the contents of the updated data element.
updateBatchPredictionRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<UpdateDataSourceResult> updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest)
Updates the DataSourceName
of a DataSource
.
You can use the GetDataSource operation to view the contents of the updated data element.
updateDataSourceRequest
- Future<UpdateDataSourceResult> updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest, AsyncHandler<UpdateDataSourceRequest,UpdateDataSourceResult> asyncHandler)
Updates the DataSourceName
of a DataSource
.
You can use the GetDataSource operation to view the contents of the updated data element.
updateDataSourceRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<UpdateEvaluationResult> updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest)
Updates the EvaluationName
of an Evaluation
.
You can use the GetEvaluation operation to view the contents of the updated data element.
updateEvaluationRequest
- Future<UpdateEvaluationResult> updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest, AsyncHandler<UpdateEvaluationRequest,UpdateEvaluationResult> asyncHandler)
Updates the EvaluationName
of an Evaluation
.
You can use the GetEvaluation operation to view the contents of the updated data element.
updateEvaluationRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Future<UpdateMLModelResult> updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest)
Updates the MLModelName
and the ScoreThreshold
of an MLModel
.
You can use the GetMLModel operation to view the contents of the updated data element.
updateMLModelRequest
- Future<UpdateMLModelResult> updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest, AsyncHandler<UpdateMLModelRequest,UpdateMLModelResult> asyncHandler)
Updates the MLModelName
and the ScoreThreshold
of an MLModel
.
You can use the GetMLModel operation to view the contents of the updated data element.
updateMLModelRequest
- asyncHandler
- Asynchronous callback handler for events in the lifecycle of the
request. Users can provide an implementation of the callback
methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Copyright © 2013 Amazon Web Services, Inc. All Rights Reserved.