@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class CreateAutoMLJobRequest extends AmazonWebServiceRequest implements Serializable, Cloneable
NOOP
Constructor and Description |
---|
CreateAutoMLJobRequest() |
Modifier and Type | Method and Description |
---|---|
CreateAutoMLJobRequest |
clone()
Creates a shallow clone of this object for all fields except the handler context.
|
boolean |
equals(Object obj) |
AutoMLJobConfig |
getAutoMLJobConfig()
Contains CompletionCriteria and SecurityConfig.
|
String |
getAutoMLJobName()
Identifies an AutoPilot job.
|
AutoMLJobObjective |
getAutoMLJobObjective()
Defines the job's objective.
|
Boolean |
getGenerateCandidateDefinitionsOnly()
This will generate possible candidates without training a model.
|
List<AutoMLChannel> |
getInputDataConfig()
Similar to InputDataConfig supported by Tuning.
|
AutoMLOutputDataConfig |
getOutputDataConfig()
Similar to OutputDataConfig supported by Tuning.
|
String |
getProblemType()
Defines the kind of preprocessing and algorithms intended for the candidates.
|
String |
getRoleArn()
The ARN of the role that will be used to access the data.
|
List<Tag> |
getTags()
Each tag consists of a key and an optional value.
|
int |
hashCode() |
Boolean |
isGenerateCandidateDefinitionsOnly()
This will generate possible candidates without training a model.
|
void |
setAutoMLJobConfig(AutoMLJobConfig autoMLJobConfig)
Contains CompletionCriteria and SecurityConfig.
|
void |
setAutoMLJobName(String autoMLJobName)
Identifies an AutoPilot job.
|
void |
setAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
Defines the job's objective.
|
void |
setGenerateCandidateDefinitionsOnly(Boolean generateCandidateDefinitionsOnly)
This will generate possible candidates without training a model.
|
void |
setInputDataConfig(Collection<AutoMLChannel> inputDataConfig)
Similar to InputDataConfig supported by Tuning.
|
void |
setOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Similar to OutputDataConfig supported by Tuning.
|
void |
setProblemType(String problemType)
Defines the kind of preprocessing and algorithms intended for the candidates.
|
void |
setRoleArn(String roleArn)
The ARN of the role that will be used to access the data.
|
void |
setTags(Collection<Tag> tags)
Each tag consists of a key and an optional value.
|
String |
toString()
Returns a string representation of this object.
|
CreateAutoMLJobRequest |
withAutoMLJobConfig(AutoMLJobConfig autoMLJobConfig)
Contains CompletionCriteria and SecurityConfig.
|
CreateAutoMLJobRequest |
withAutoMLJobName(String autoMLJobName)
Identifies an AutoPilot job.
|
CreateAutoMLJobRequest |
withAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
Defines the job's objective.
|
CreateAutoMLJobRequest |
withGenerateCandidateDefinitionsOnly(Boolean generateCandidateDefinitionsOnly)
This will generate possible candidates without training a model.
|
CreateAutoMLJobRequest |
withInputDataConfig(AutoMLChannel... inputDataConfig)
Similar to InputDataConfig supported by Tuning.
|
CreateAutoMLJobRequest |
withInputDataConfig(Collection<AutoMLChannel> inputDataConfig)
Similar to InputDataConfig supported by Tuning.
|
CreateAutoMLJobRequest |
withOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Similar to OutputDataConfig supported by Tuning.
|
CreateAutoMLJobRequest |
withProblemType(ProblemType problemType)
Defines the kind of preprocessing and algorithms intended for the candidates.
|
CreateAutoMLJobRequest |
withProblemType(String problemType)
Defines the kind of preprocessing and algorithms intended for the candidates.
|
CreateAutoMLJobRequest |
withRoleArn(String roleArn)
The ARN of the role that will be used to access the data.
|
CreateAutoMLJobRequest |
withTags(Collection<Tag> tags)
Each tag consists of a key and an optional value.
|
CreateAutoMLJobRequest |
withTags(Tag... tags)
Each tag consists of a key and an optional value.
|
addHandlerContext, getCloneRoot, getCloneSource, getCustomQueryParameters, getCustomRequestHeaders, getGeneralProgressListener, getHandlerContext, getReadLimit, getRequestClientOptions, getRequestCredentials, getRequestCredentialsProvider, getRequestMetricCollector, getSdkClientExecutionTimeout, getSdkRequestTimeout, putCustomQueryParameter, putCustomRequestHeader, setGeneralProgressListener, setRequestCredentials, setRequestCredentialsProvider, setRequestMetricCollector, setSdkClientExecutionTimeout, setSdkRequestTimeout, withGeneralProgressListener, withRequestCredentialsProvider, withRequestMetricCollector, withSdkClientExecutionTimeout, withSdkRequestTimeout
public void setAutoMLJobName(String autoMLJobName)
Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.
autoMLJobName
- Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.public String getAutoMLJobName()
Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.
public CreateAutoMLJobRequest withAutoMLJobName(String autoMLJobName)
Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.
autoMLJobName
- Identifies an AutoPilot job. Must be unique to your account and is case-insensitive.public List<AutoMLChannel> getInputDataConfig()
Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.
public void setInputDataConfig(Collection<AutoMLChannel> inputDataConfig)
Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.
inputDataConfig
- Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.public CreateAutoMLJobRequest withInputDataConfig(AutoMLChannel... inputDataConfig)
Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.
NOTE: This method appends the values to the existing list (if any). Use
setInputDataConfig(java.util.Collection)
or withInputDataConfig(java.util.Collection)
if you
want to override the existing values.
inputDataConfig
- Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.public CreateAutoMLJobRequest withInputDataConfig(Collection<AutoMLChannel> inputDataConfig)
Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.
inputDataConfig
- Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV.public void setOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.
outputDataConfig
- Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.public AutoMLOutputDataConfig getOutputDataConfig()
Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.
public CreateAutoMLJobRequest withOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.
outputDataConfig
- Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.public void setProblemType(String problemType)
Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.
problemType
- Defines the kind of preprocessing and algorithms intended for the candidates. Options include:
BinaryClassification, MulticlassClassification, and Regression.ProblemType
public String getProblemType()
Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.
ProblemType
public CreateAutoMLJobRequest withProblemType(String problemType)
Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.
problemType
- Defines the kind of preprocessing and algorithms intended for the candidates. Options include:
BinaryClassification, MulticlassClassification, and Regression.ProblemType
public CreateAutoMLJobRequest withProblemType(ProblemType problemType)
Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.
problemType
- Defines the kind of preprocessing and algorithms intended for the candidates. Options include:
BinaryClassification, MulticlassClassification, and Regression.ProblemType
public void setAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
Defines the job's objective. You provide a MetricName and AutoML will infer minimize or maximize. If this is not provided, the most commonly used ObjectiveMetric for problem type will be selected.
autoMLJobObjective
- Defines the job's objective. You provide a MetricName and AutoML will infer minimize or maximize. If this
is not provided, the most commonly used ObjectiveMetric for problem type will be selected.public AutoMLJobObjective getAutoMLJobObjective()
Defines the job's objective. You provide a MetricName and AutoML will infer minimize or maximize. If this is not provided, the most commonly used ObjectiveMetric for problem type will be selected.
public CreateAutoMLJobRequest withAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
Defines the job's objective. You provide a MetricName and AutoML will infer minimize or maximize. If this is not provided, the most commonly used ObjectiveMetric for problem type will be selected.
autoMLJobObjective
- Defines the job's objective. You provide a MetricName and AutoML will infer minimize or maximize. If this
is not provided, the most commonly used ObjectiveMetric for problem type will be selected.public void setAutoMLJobConfig(AutoMLJobConfig autoMLJobConfig)
Contains CompletionCriteria and SecurityConfig.
autoMLJobConfig
- Contains CompletionCriteria and SecurityConfig.public AutoMLJobConfig getAutoMLJobConfig()
Contains CompletionCriteria and SecurityConfig.
public CreateAutoMLJobRequest withAutoMLJobConfig(AutoMLJobConfig autoMLJobConfig)
Contains CompletionCriteria and SecurityConfig.
autoMLJobConfig
- Contains CompletionCriteria and SecurityConfig.public void setRoleArn(String roleArn)
The ARN of the role that will be used to access the data.
roleArn
- The ARN of the role that will be used to access the data.public String getRoleArn()
The ARN of the role that will be used to access the data.
public CreateAutoMLJobRequest withRoleArn(String roleArn)
The ARN of the role that will be used to access the data.
roleArn
- The ARN of the role that will be used to access the data.public void setGenerateCandidateDefinitionsOnly(Boolean generateCandidateDefinitionsOnly)
This will generate possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
generateCandidateDefinitionsOnly
- This will generate possible candidates without training a model. A candidate is a combination of data
preprocessors, algorithms, and algorithm parameter settings.public Boolean getGenerateCandidateDefinitionsOnly()
This will generate possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
public CreateAutoMLJobRequest withGenerateCandidateDefinitionsOnly(Boolean generateCandidateDefinitionsOnly)
This will generate possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
generateCandidateDefinitionsOnly
- This will generate possible candidates without training a model. A candidate is a combination of data
preprocessors, algorithms, and algorithm parameter settings.public Boolean isGenerateCandidateDefinitionsOnly()
This will generate possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
public List<Tag> getTags()
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
public void setTags(Collection<Tag> tags)
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
tags
- Each tag consists of a key and an optional value. Tag keys must be unique per resource.public CreateAutoMLJobRequest withTags(Tag... tags)
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
NOTE: This method appends the values to the existing list (if any). Use
setTags(java.util.Collection)
or withTags(java.util.Collection)
if you want to override the
existing values.
tags
- Each tag consists of a key and an optional value. Tag keys must be unique per resource.public CreateAutoMLJobRequest withTags(Collection<Tag> tags)
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
tags
- Each tag consists of a key and an optional value. Tag keys must be unique per resource.public String toString()
toString
in class Object
Object.toString()
public CreateAutoMLJobRequest clone()
AmazonWebServiceRequest
clone
in class AmazonWebServiceRequest
Object.clone()
Copyright © 2013 Amazon Web Services, Inc. All Rights Reserved.