@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class EvaluationParameters extends Object implements Serializable, Cloneable, StructuredPojo
Parameters that define how to split a dataset into training data and testing data, and the number of iterations to perform. These parameters are specified in the predefined algorithms but you can override them in the CreatePredictor request.
Constructor and Description |
---|
EvaluationParameters() |
Modifier and Type | Method and Description |
---|---|
EvaluationParameters |
clone() |
boolean |
equals(Object obj) |
Integer |
getBackTestWindowOffset()
The point from the end of the dataset where you want to split the data for model training and testing
(evaluation).
|
Integer |
getNumberOfBacktestWindows()
The number of times to split the input data.
|
int |
hashCode() |
void |
marshall(ProtocolMarshaller protocolMarshaller)
Marshalls this structured data using the given
ProtocolMarshaller . |
void |
setBackTestWindowOffset(Integer backTestWindowOffset)
The point from the end of the dataset where you want to split the data for model training and testing
(evaluation).
|
void |
setNumberOfBacktestWindows(Integer numberOfBacktestWindows)
The number of times to split the input data.
|
String |
toString()
Returns a string representation of this object.
|
EvaluationParameters |
withBackTestWindowOffset(Integer backTestWindowOffset)
The point from the end of the dataset where you want to split the data for model training and testing
(evaluation).
|
EvaluationParameters |
withNumberOfBacktestWindows(Integer numberOfBacktestWindows)
The number of times to split the input data.
|
public void setNumberOfBacktestWindows(Integer numberOfBacktestWindows)
The number of times to split the input data. The default is 1. Valid values are 1 through 5.
numberOfBacktestWindows
- The number of times to split the input data. The default is 1. Valid values are 1 through 5.public Integer getNumberOfBacktestWindows()
The number of times to split the input data. The default is 1. Valid values are 1 through 5.
public EvaluationParameters withNumberOfBacktestWindows(Integer numberOfBacktestWindows)
The number of times to split the input data. The default is 1. Valid values are 1 through 5.
numberOfBacktestWindows
- The number of times to split the input data. The default is 1. Valid values are 1 through 5.public void setBackTestWindowOffset(Integer backTestWindowOffset)
The point from the end of the dataset where you want to split the data for model training and testing
(evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon.
BackTestWindowOffset
can be used to mimic a past virtual forecast start date. This value must be
greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.
ForecastHorizon
<= BackTestWindowOffset
< 1/2 * TARGET_TIME_SERIES dataset length
backTestWindowOffset
- The point from the end of the dataset where you want to split the data for model training and testing
(evaluation). Specify the value as the number of data points. The default is the value of the forecast
horizon. BackTestWindowOffset
can be used to mimic a past virtual forecast start date. This
value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES
dataset length.
ForecastHorizon
<= BackTestWindowOffset
< 1/2 * TARGET_TIME_SERIES dataset
length
public Integer getBackTestWindowOffset()
The point from the end of the dataset where you want to split the data for model training and testing
(evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon.
BackTestWindowOffset
can be used to mimic a past virtual forecast start date. This value must be
greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.
ForecastHorizon
<= BackTestWindowOffset
< 1/2 * TARGET_TIME_SERIES dataset length
BackTestWindowOffset
can be used to mimic a past virtual forecast start date. This
value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES
dataset length.
ForecastHorizon
<= BackTestWindowOffset
< 1/2 * TARGET_TIME_SERIES
dataset length
public EvaluationParameters withBackTestWindowOffset(Integer backTestWindowOffset)
The point from the end of the dataset where you want to split the data for model training and testing
(evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon.
BackTestWindowOffset
can be used to mimic a past virtual forecast start date. This value must be
greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.
ForecastHorizon
<= BackTestWindowOffset
< 1/2 * TARGET_TIME_SERIES dataset length
backTestWindowOffset
- The point from the end of the dataset where you want to split the data for model training and testing
(evaluation). Specify the value as the number of data points. The default is the value of the forecast
horizon. BackTestWindowOffset
can be used to mimic a past virtual forecast start date. This
value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES
dataset length.
ForecastHorizon
<= BackTestWindowOffset
< 1/2 * TARGET_TIME_SERIES dataset
length
public String toString()
toString
in class Object
Object.toString()
public EvaluationParameters clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojo
ProtocolMarshaller
.marshall
in interface StructuredPojo
protocolMarshaller
- Implementation of ProtocolMarshaller
used to marshall this object's data.Copyright © 2013 Amazon Web Services, Inc. All Rights Reserved.