@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class InputConfig extends Object implements Serializable, Cloneable, StructuredPojo
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
Constructor and Description |
---|
InputConfig() |
Modifier and Type | Method and Description |
---|---|
InputConfig |
clone() |
boolean |
equals(Object obj) |
String |
getDataInputConfig()
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
|
String |
getFramework()
Identifies the framework in which the model was trained.
|
String |
getS3Uri()
The S3 path where the model artifacts, which result from model training, are stored.
|
int |
hashCode() |
void |
marshall(ProtocolMarshaller protocolMarshaller)
Marshalls this structured data using the given
ProtocolMarshaller . |
void |
setDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
|
void |
setFramework(String framework)
Identifies the framework in which the model was trained.
|
void |
setS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored.
|
String |
toString()
Returns a string representation of this object.
|
InputConfig |
withDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
|
InputConfig |
withFramework(Framework framework)
Identifies the framework in which the model was trained.
|
InputConfig |
withFramework(String framework)
Identifies the framework in which the model was trained.
|
InputConfig |
withS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored.
|
public void setS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
s3Uri
- The S3 path where the model artifacts, which result from model training, are stored. This path must point
to a single gzip compressed tar archive (.tar.gz suffix).public String getS3Uri()
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
public InputConfig withS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
s3Uri
- The S3 path where the model artifacts, which result from model training, are stored. This path must point
to a single gzip compressed tar archive (.tar.gz suffix).public void setDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in order
using a dictionary format for your trained model. The dictionary formats required for the console and CLI are
different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format. The
dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
dataInputConfig
- Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary
form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
(channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format.
The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in
order using a dictionary format for your trained model. The dictionary formats required for the console
and CLI are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a list
format. The dictionary formats required for the console and CLI are different. The list formats for the
console and CLI are the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
public String getDataInputConfig()
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in order
using a dictionary format for your trained model. The dictionary formats required for the console and CLI are
different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format. The
dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in
NHWC (channel-last) format, DataInputConfig
should be specified in NCHW (channel-first)
format. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in
order using a dictionary format for your trained model. The dictionary formats required for the console
and CLI are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a list
format. The dictionary formats required for the console and CLI are different. The list formats for the
console and CLI are the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
public InputConfig withDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in order
using a dictionary format for your trained model. The dictionary formats required for the console and CLI are
different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format. The
dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
dataInputConfig
- Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary
form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
(channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format.
The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in
order using a dictionary format for your trained model. The dictionary formats required for the console
and CLI are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a list
format. The dictionary formats required for the console and CLI are different. The list formats for the
console and CLI are the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
public void setFramework(String framework)
Identifies the framework in which the model was trained. For example: TENSORFLOW.
framework
- Identifies the framework in which the model was trained. For example: TENSORFLOW.Framework
public String getFramework()
Identifies the framework in which the model was trained. For example: TENSORFLOW.
Framework
public InputConfig withFramework(String framework)
Identifies the framework in which the model was trained. For example: TENSORFLOW.
framework
- Identifies the framework in which the model was trained. For example: TENSORFLOW.Framework
public InputConfig withFramework(Framework framework)
Identifies the framework in which the model was trained. For example: TENSORFLOW.
framework
- Identifies the framework in which the model was trained. For example: TENSORFLOW.Framework
public String toString()
toString
in class Object
Object.toString()
public InputConfig clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojo
ProtocolMarshaller
.marshall
in interface StructuredPojo
protocolMarshaller
- Implementation of ProtocolMarshaller
used to marshall this object's data.Copyright © 2013 Amazon Web Services, Inc. All Rights Reserved.