@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class DescribePredictorResult extends AmazonWebServiceResult<ResponseMetadata> implements Serializable, Cloneable
Constructor and Description |
---|
DescribePredictorResult() |
Modifier and Type | Method and Description |
---|---|
DescribePredictorResult |
addTrainingParametersEntry(String key,
String value)
Add a single TrainingParameters entry
|
DescribePredictorResult |
clearTrainingParametersEntries()
Removes all the entries added into TrainingParameters.
|
DescribePredictorResult |
clone() |
boolean |
equals(Object obj) |
String |
getAlgorithmArn()
The Amazon Resource Name (ARN) of the algorithm used for model training.
|
List<String> |
getAutoMLAlgorithmArns()
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
Date |
getCreationTime()
When the model training task was created.
|
List<String> |
getDatasetImportJobArns()
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
EncryptionConfig |
getEncryptionConfig()
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.
|
EvaluationParameters |
getEvaluationParameters()
Used to override the default evaluation parameters of the specified algorithm.
|
FeaturizationConfig |
getFeaturizationConfig()
The featurization configuration.
|
Integer |
getForecastHorizon()
The number of time-steps of the forecast.
|
HyperParameterTuningJobConfig |
getHPOConfig()
The hyperparameter override values for the algorithm.
|
InputDataConfig |
getInputDataConfig()
Describes the dataset group that contains the data to use to train the predictor.
|
Date |
getLastModificationTime()
Initially, the same as
CreationTime (when the status is CREATE_PENDING ). |
String |
getMessage()
If an error occurred, an informational message about the error.
|
Boolean |
getPerformAutoML()
Whether the predictor is set to perform AutoML.
|
Boolean |
getPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
String |
getPredictorArn()
The ARN of the predictor.
|
PredictorExecutionDetails |
getPredictorExecutionDetails()
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor.
|
String |
getPredictorName()
The name of the predictor.
|
String |
getStatus()
The status of the predictor.
|
Map<String,String> |
getTrainingParameters()
The default training parameters or overrides selected during model training.
|
int |
hashCode() |
Boolean |
isPerformAutoML()
Whether the predictor is set to perform AutoML.
|
Boolean |
isPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
void |
setAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
|
void |
setAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
void |
setCreationTime(Date creationTime)
When the model training task was created.
|
void |
setDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
void |
setEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.
|
void |
setEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm.
|
void |
setFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
|
void |
setForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast.
|
void |
setHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
|
void |
setInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
|
void |
setLastModificationTime(Date lastModificationTime)
Initially, the same as
CreationTime (when the status is CREATE_PENDING ). |
void |
setMessage(String message)
If an error occurred, an informational message about the error.
|
void |
setPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
|
void |
setPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
void |
setPredictorArn(String predictorArn)
The ARN of the predictor.
|
void |
setPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor.
|
void |
setPredictorName(String predictorName)
The name of the predictor.
|
void |
setStatus(String status)
The status of the predictor.
|
void |
setTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training.
|
String |
toString()
Returns a string representation of this object.
|
DescribePredictorResult |
withAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
|
DescribePredictorResult |
withAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
DescribePredictorResult |
withAutoMLAlgorithmArns(String... autoMLAlgorithmArns)
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
DescribePredictorResult |
withCreationTime(Date creationTime)
When the model training task was created.
|
DescribePredictorResult |
withDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
DescribePredictorResult |
withDatasetImportJobArns(String... datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
DescribePredictorResult |
withEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.
|
DescribePredictorResult |
withEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm.
|
DescribePredictorResult |
withFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
|
DescribePredictorResult |
withForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast.
|
DescribePredictorResult |
withHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
|
DescribePredictorResult |
withInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
|
DescribePredictorResult |
withLastModificationTime(Date lastModificationTime)
Initially, the same as
CreationTime (when the status is CREATE_PENDING ). |
DescribePredictorResult |
withMessage(String message)
If an error occurred, an informational message about the error.
|
DescribePredictorResult |
withPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
|
DescribePredictorResult |
withPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
DescribePredictorResult |
withPredictorArn(String predictorArn)
The ARN of the predictor.
|
DescribePredictorResult |
withPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor.
|
DescribePredictorResult |
withPredictorName(String predictorName)
The name of the predictor.
|
DescribePredictorResult |
withStatus(String status)
The status of the predictor.
|
DescribePredictorResult |
withTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training.
|
getSdkHttpMetadata, getSdkResponseMetadata, setSdkHttpMetadata, setSdkResponseMetadata
public void setPredictorArn(String predictorArn)
The ARN of the predictor.
predictorArn
- The ARN of the predictor.public String getPredictorArn()
The ARN of the predictor.
public DescribePredictorResult withPredictorArn(String predictorArn)
The ARN of the predictor.
predictorArn
- The ARN of the predictor.public void setPredictorName(String predictorName)
The name of the predictor.
predictorName
- The name of the predictor.public String getPredictorName()
The name of the predictor.
public DescribePredictorResult withPredictorName(String predictorName)
The name of the predictor.
predictorName
- The name of the predictor.public void setAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
algorithmArn
- The Amazon Resource Name (ARN) of the algorithm used for model training.public String getAlgorithmArn()
The Amazon Resource Name (ARN) of the algorithm used for model training.
public DescribePredictorResult withAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
algorithmArn
- The Amazon Resource Name (ARN) of the algorithm used for model training.public void setForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
forecastHorizon
- The number of time-steps of the forecast. The forecast horizon is also called the prediction length.public Integer getForecastHorizon()
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
public DescribePredictorResult withForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
forecastHorizon
- The number of time-steps of the forecast. The forecast horizon is also called the prediction length.public void setPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
performAutoML
- Whether the predictor is set to perform AutoML.public Boolean getPerformAutoML()
Whether the predictor is set to perform AutoML.
public DescribePredictorResult withPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
performAutoML
- Whether the predictor is set to perform AutoML.public Boolean isPerformAutoML()
Whether the predictor is set to perform AutoML.
public void setPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
performHPO
- Whether the predictor is set to perform hyperparameter optimization (HPO).public Boolean getPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
public DescribePredictorResult withPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
performHPO
- Whether the predictor is set to perform hyperparameter optimization (HPO).public Boolean isPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
public Map<String,String> getTrainingParameters()
The default training parameters or overrides selected during model training. If using the AutoML algorithm or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
public void setTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training. If using the AutoML algorithm or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
trainingParameters
- The default training parameters or overrides selected during model training. If using the AutoML algorithm
or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen
hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.public DescribePredictorResult withTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training. If using the AutoML algorithm or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
trainingParameters
- The default training parameters or overrides selected during model training. If using the AutoML algorithm
or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen
hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.public DescribePredictorResult addTrainingParametersEntry(String key, String value)
public DescribePredictorResult clearTrainingParametersEntries()
public void setEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
evaluationParameters
- Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a
predictor by splitting a dataset into training data and testing data. The evaluation parameters define how
to perform the split and the number of iterations.public EvaluationParameters getEvaluationParameters()
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
public DescribePredictorResult withEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
evaluationParameters
- Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a
predictor by splitting a dataset into training data and testing data. The evaluation parameters define how
to perform the split and the number of iterations.public void setHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
hPOConfig
- The hyperparameter override values for the algorithm.public HyperParameterTuningJobConfig getHPOConfig()
The hyperparameter override values for the algorithm.
public DescribePredictorResult withHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
hPOConfig
- The hyperparameter override values for the algorithm.public void setInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
inputDataConfig
- Describes the dataset group that contains the data to use to train the predictor.public InputDataConfig getInputDataConfig()
Describes the dataset group that contains the data to use to train the predictor.
public DescribePredictorResult withInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
inputDataConfig
- Describes the dataset group that contains the data to use to train the predictor.public void setFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
featurizationConfig
- The featurization configuration.public FeaturizationConfig getFeaturizationConfig()
The featurization configuration.
public DescribePredictorResult withFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
featurizationConfig
- The featurization configuration.public void setEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
encryptionConfig
- An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.public EncryptionConfig getEncryptionConfig()
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
public DescribePredictorResult withEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
encryptionConfig
- An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.public void setPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
predictorExecutionDetails
- Details on the the status and results of the backtests performed to evaluate the accuracy of the
predictor. You specify the number of backtests to perform when you call the operation.public PredictorExecutionDetails getPredictorExecutionDetails()
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
public DescribePredictorResult withPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
predictorExecutionDetails
- Details on the the status and results of the backtests performed to evaluate the accuracy of the
predictor. You specify the number of backtests to perform when you call the operation.public List<String> getDatasetImportJobArns()
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
public void setDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
datasetImportJobArns
- An array of the ARNs of the dataset import jobs used to import training data for the predictor.public DescribePredictorResult withDatasetImportJobArns(String... datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
NOTE: This method appends the values to the existing list (if any). Use
setDatasetImportJobArns(java.util.Collection)
or withDatasetImportJobArns(java.util.Collection)
if you want to override the existing values.
datasetImportJobArns
- An array of the ARNs of the dataset import jobs used to import training data for the predictor.public DescribePredictorResult withDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
datasetImportJobArns
- An array of the ARNs of the dataset import jobs used to import training data for the predictor.public List<String> getAutoMLAlgorithmArns()
When PerformAutoML
is specified, the ARN of the chosen algorithm.
PerformAutoML
is specified, the ARN of the chosen algorithm.public void setAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When PerformAutoML
is specified, the ARN of the chosen algorithm.
autoMLAlgorithmArns
- When PerformAutoML
is specified, the ARN of the chosen algorithm.public DescribePredictorResult withAutoMLAlgorithmArns(String... autoMLAlgorithmArns)
When PerformAutoML
is specified, the ARN of the chosen algorithm.
NOTE: This method appends the values to the existing list (if any). Use
setAutoMLAlgorithmArns(java.util.Collection)
or withAutoMLAlgorithmArns(java.util.Collection)
if you want to override the existing values.
autoMLAlgorithmArns
- When PerformAutoML
is specified, the ARN of the chosen algorithm.public DescribePredictorResult withAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When PerformAutoML
is specified, the ARN of the chosen algorithm.
autoMLAlgorithmArns
- When PerformAutoML
is specified, the ARN of the chosen algorithm.public void setStatus(String status)
The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
UPDATE_PENDING
, UPDATE_IN_PROGRESS
, UPDATE_FAILED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a
forecast.
status
- The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
UPDATE_PENDING
, UPDATE_IN_PROGRESS
, UPDATE_FAILED
The Status
of the predictor must be ACTIVE
before you can use the predictor to
create a forecast.
public String getStatus()
The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
UPDATE_PENDING
, UPDATE_IN_PROGRESS
, UPDATE_FAILED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a
forecast.
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
UPDATE_PENDING
, UPDATE_IN_PROGRESS
, UPDATE_FAILED
The Status
of the predictor must be ACTIVE
before you can use the predictor to
create a forecast.
public DescribePredictorResult withStatus(String status)
The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
UPDATE_PENDING
, UPDATE_IN_PROGRESS
, UPDATE_FAILED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a
forecast.
status
- The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
UPDATE_PENDING
, UPDATE_IN_PROGRESS
, UPDATE_FAILED
The Status
of the predictor must be ACTIVE
before you can use the predictor to
create a forecast.
public void setMessage(String message)
If an error occurred, an informational message about the error.
message
- If an error occurred, an informational message about the error.public String getMessage()
If an error occurred, an informational message about the error.
public DescribePredictorResult withMessage(String message)
If an error occurred, an informational message about the error.
message
- If an error occurred, an informational message about the error.public void setCreationTime(Date creationTime)
When the model training task was created.
creationTime
- When the model training task was created.public Date getCreationTime()
When the model training task was created.
public DescribePredictorResult withCreationTime(Date creationTime)
When the model training task was created.
creationTime
- When the model training task was created.public void setLastModificationTime(Date lastModificationTime)
Initially, the same as CreationTime
(when the status is CREATE_PENDING
). This value is
updated when training starts (when the status changes to CREATE_IN_PROGRESS
), and when training has
completed (when the status changes to ACTIVE
) or fails (when the status changes to
CREATE_FAILED
).
lastModificationTime
- Initially, the same as CreationTime
(when the status is CREATE_PENDING
). This
value is updated when training starts (when the status changes to CREATE_IN_PROGRESS
), and
when training has completed (when the status changes to ACTIVE
) or fails (when the status
changes to CREATE_FAILED
).public Date getLastModificationTime()
Initially, the same as CreationTime
(when the status is CREATE_PENDING
). This value is
updated when training starts (when the status changes to CREATE_IN_PROGRESS
), and when training has
completed (when the status changes to ACTIVE
) or fails (when the status changes to
CREATE_FAILED
).
CreationTime
(when the status is CREATE_PENDING
). This
value is updated when training starts (when the status changes to CREATE_IN_PROGRESS
), and
when training has completed (when the status changes to ACTIVE
) or fails (when the status
changes to CREATE_FAILED
).public DescribePredictorResult withLastModificationTime(Date lastModificationTime)
Initially, the same as CreationTime
(when the status is CREATE_PENDING
). This value is
updated when training starts (when the status changes to CREATE_IN_PROGRESS
), and when training has
completed (when the status changes to ACTIVE
) or fails (when the status changes to
CREATE_FAILED
).
lastModificationTime
- Initially, the same as CreationTime
(when the status is CREATE_PENDING
). This
value is updated when training starts (when the status changes to CREATE_IN_PROGRESS
), and
when training has completed (when the status changes to ACTIVE
) or fails (when the status
changes to CREATE_FAILED
).public String toString()
toString
in class Object
Object.toString()
public DescribePredictorResult clone()
Copyright © 2013 Amazon Web Services, Inc. All Rights Reserved.