@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class InputConfig extends Object implements Serializable, Cloneable, StructuredPojo
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
Constructor and Description |
---|
InputConfig() |
Modifier and Type | Method and Description |
---|---|
InputConfig |
clone() |
boolean |
equals(Object obj) |
String |
getDataInputConfig()
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
|
String |
getFramework()
Identifies the framework in which the model was trained.
|
String |
getFrameworkVersion()
Specifies the framework version to use.
|
String |
getS3Uri()
The S3 path where the model artifacts, which result from model training, are stored.
|
int |
hashCode() |
void |
marshall(ProtocolMarshaller protocolMarshaller)
Marshalls this structured data using the given
ProtocolMarshaller . |
void |
setDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
|
void |
setFramework(String framework)
Identifies the framework in which the model was trained.
|
void |
setFrameworkVersion(String frameworkVersion)
Specifies the framework version to use.
|
void |
setS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored.
|
String |
toString()
Returns a string representation of this object.
|
InputConfig |
withDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
|
InputConfig |
withFramework(Framework framework)
Identifies the framework in which the model was trained.
|
InputConfig |
withFramework(String framework)
Identifies the framework in which the model was trained.
|
InputConfig |
withFrameworkVersion(String frameworkVersion)
Specifies the framework version to use.
|
InputConfig |
withS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored.
|
public void setS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
s3Uri
- The S3 path where the model artifacts, which result from model training, are stored. This path must point
to a single gzip compressed tar archive (.tar.gz suffix).public String getS3Uri()
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
public InputConfig withS3Uri(String s3Uri)
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
s3Uri
- The S3 path where the model artifacts, which result from model training, are stored. This path must point
to a single gzip compressed tar archive (.tar.gz suffix).public void setDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format. The
dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
static input shapes, CoreML converter supports Flexible input shapes:
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both Range
Dimension and Enumerated Shapes. For example
{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default, the
converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
Image input type requires additional input parameters such as bias
and scale
.
bias
: If the input type is an Image, you need to provide the bias vector.
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using OutputConfig$CompilerOptions.
CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for
ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
key. For example:
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
dataInputConfig
- Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary
form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
(channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format.
The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data
inputs in order using a dictionary format for your trained model. The dictionary formats required for the
console and CLI are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a list
format. The dictionary formats required for the console and CLI are different. The list formats for the
console and CLI are the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In
addition to static input shapes, CoreML converter supports Flexible input shapes:
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some
specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can
enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both
Range Dimension and Enumerated Shapes. For example
{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default, the
converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be
Image. Image input type requires additional input parameters such as bias
and
scale
.
bias
: If the input type is an Image, you need to provide the bias vector.
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML
conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for
ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes for DataInputConfig
. Specify the
signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature
def key. For example:
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
public String getDataInputConfig()
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format. The
dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
static input shapes, CoreML converter supports Flexible input shapes:
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both Range
Dimension and Enumerated Shapes. For example
{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default, the
converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
Image input type requires additional input parameters such as bias
and scale
.
bias
: If the input type is an Image, you need to provide the bias vector.
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using OutputConfig$CompilerOptions.
CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for
ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
key. For example:
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in
NHWC (channel-last) format, DataInputConfig
should be specified in NCHW (channel-first)
format. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data
inputs in order using a dictionary format for your trained model. The dictionary formats required for the
console and CLI are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a list
format. The dictionary formats required for the console and CLI are different. The list formats for the
console and CLI are the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In
addition to static input shapes, CoreML converter supports Flexible input shapes:
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some
specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can
enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both
Range Dimension and Enumerated Shapes. For example
{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default,
the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to
be Image. Image input type requires additional input parameters such as bias
and
scale
.
bias
: If the input type is an Image, you need to provide the bias vector.
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML
conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for
ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes for DataInputConfig
. Specify the
signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature
def key. For example:
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
public InputConfig withDataInputConfig(String dataInputConfig)
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a
dictionary format for your trained model. The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary
format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last)
format, DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats
required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in
order using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order
using a dictionary format for your trained model or you can specify the shape only using a list format. The
dictionary formats required for the console and CLI are different. The list formats for the console and CLI are
the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In addition to
static input shapes, CoreML converter supports Flexible input shapes:
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific
interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate
all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both Range
Dimension and Enumerated Shapes. For example
{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default, the
converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image.
Image input type requires additional input parameters such as bias
and scale
.
bias
: If the input type is an Image, you need to provide the bias vector.
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using OutputConfig$CompilerOptions.
CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for
ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key
and the input model shapes for DataInputConfig
. Specify the signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def
key. For example:
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
dataInputConfig
- Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary
form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs
using a dictionary format for your trained model. The dictionary formats required for the console and CLI
are different.
Examples for one input:
If using the console, {"input":[1,1024,1024,3]}
If using the CLI, {\"input\":[1,1024,1024,3]}
Examples for two inputs:
If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a
dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
(channel-last) format, DataInputConfig
should be specified in NCHW (channel-first) format.
The dictionary formats required for the console and CLI are different.
Examples for one input:
If using the console, {"input_1":[1,3,224,224]}
If using the CLI, {\"input_1\":[1,3,224,224]}
Examples for two inputs:
If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data
inputs in order using a dictionary format for your trained model. The dictionary formats required for the
console and CLI are different.
Examples for one input:
If using the console, {"data":[1,3,1024,1024]}
If using the CLI, {\"data\":[1,3,1024,1024]}
Examples for two inputs:
If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in
order using a dictionary format for your trained model or you can specify the shape only using a list
format. The dictionary formats required for the console and CLI are different. The list formats for the
console and CLI are the same.
Examples for one input in dictionary format:
If using the console, {"input0":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224]}
Example for one input in list format: [[1,3,224,224]]
Examples for two inputs in dictionary format:
If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}
. In
addition to static input shapes, CoreML converter supports Flexible input shapes:
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some
specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can
enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape
: Default input shape. You can set a default shape during conversion for both
Range Dimension and Enumerated Shapes. For example
{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values: Image
and Tensor
. By default, the
converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be
Image. Image input type requires additional input parameters such as bias
and
scale
.
bias
: If the input type is an Image, you need to provide the bias vector.
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML
conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following parameters for
ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes for DataInputConfig
. Specify the
signature_def_key
in OutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature
def key. For example:
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names for output_names
in OutputConfig:CompilerOptions
. For example:
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
public void setFramework(String framework)
Identifies the framework in which the model was trained. For example: TENSORFLOW.
framework
- Identifies the framework in which the model was trained. For example: TENSORFLOW.Framework
public String getFramework()
Identifies the framework in which the model was trained. For example: TENSORFLOW.
Framework
public InputConfig withFramework(String framework)
Identifies the framework in which the model was trained. For example: TENSORFLOW.
framework
- Identifies the framework in which the model was trained. For example: TENSORFLOW.Framework
public InputConfig withFramework(Framework framework)
Identifies the framework in which the model was trained. For example: TENSORFLOW.
framework
- Identifies the framework in which the model was trained. For example: TENSORFLOW.Framework
public void setFrameworkVersion(String frameworkVersion)
Specifies the framework version to use. This API field is only supported for the PyTorch and TensorFlow frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
frameworkVersion
- Specifies the framework version to use. This API field is only supported for the PyTorch and TensorFlow
frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
public String getFrameworkVersion()
Specifies the framework version to use. This API field is only supported for the PyTorch and TensorFlow frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
public InputConfig withFrameworkVersion(String frameworkVersion)
Specifies the framework version to use. This API field is only supported for the PyTorch and TensorFlow frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
frameworkVersion
- Specifies the framework version to use. This API field is only supported for the PyTorch and TensorFlow
frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
public String toString()
toString
in class Object
Object.toString()
public InputConfig clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojo
ProtocolMarshaller
.marshall
in interface StructuredPojo
protocolMarshaller
- Implementation of ProtocolMarshaller
used to marshall this object's data.