@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class DescribePredictorResult extends AmazonWebServiceResult<ResponseMetadata> implements Serializable, Cloneable
Constructor and Description |
---|
DescribePredictorResult() |
Modifier and Type | Method and Description |
---|---|
DescribePredictorResult |
addTrainingParametersEntry(String key,
String value)
Add a single TrainingParameters entry
|
DescribePredictorResult |
clearTrainingParametersEntries()
Removes all the entries added into TrainingParameters.
|
DescribePredictorResult |
clone() |
boolean |
equals(Object obj) |
String |
getAlgorithmArn()
The Amazon Resource Name (ARN) of the algorithm used for model training.
|
List<String> |
getAutoMLAlgorithmArns()
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
String |
getAutoMLOverrideStrategy()
|
Date |
getCreationTime()
When the model training task was created.
|
List<String> |
getDatasetImportJobArns()
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
EncryptionConfig |
getEncryptionConfig()
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.
|
Long |
getEstimatedTimeRemainingInMinutes()
The estimated time remaining in minutes for the predictor training job to complete.
|
EvaluationParameters |
getEvaluationParameters()
Used to override the default evaluation parameters of the specified algorithm.
|
FeaturizationConfig |
getFeaturizationConfig()
The featurization configuration.
|
Integer |
getForecastHorizon()
The number of time-steps of the forecast.
|
List<String> |
getForecastTypes()
The forecast types used during predictor training.
|
HyperParameterTuningJobConfig |
getHPOConfig()
The hyperparameter override values for the algorithm.
|
InputDataConfig |
getInputDataConfig()
Describes the dataset group that contains the data to use to train the predictor.
|
Boolean |
getIsAutoPredictor()
Whether the predictor was created with CreateAutoPredictor.
|
Date |
getLastModificationTime()
The last time the resource was modified.
|
String |
getMessage()
If an error occurred, an informational message about the error.
|
String |
getOptimizationMetric()
The accuracy metric used to optimize the predictor.
|
Boolean |
getPerformAutoML()
Whether the predictor is set to perform AutoML.
|
Boolean |
getPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
String |
getPredictorArn()
The ARN of the predictor.
|
PredictorExecutionDetails |
getPredictorExecutionDetails()
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor.
|
String |
getPredictorName()
The name of the predictor.
|
String |
getStatus()
The status of the predictor.
|
Map<String,String> |
getTrainingParameters()
The default training parameters or overrides selected during model training.
|
int |
hashCode() |
Boolean |
isAutoPredictor()
Whether the predictor was created with CreateAutoPredictor.
|
Boolean |
isPerformAutoML()
Whether the predictor is set to perform AutoML.
|
Boolean |
isPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
void |
setAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
|
void |
setAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
void |
setAutoMLOverrideStrategy(String autoMLOverrideStrategy)
|
void |
setCreationTime(Date creationTime)
When the model training task was created.
|
void |
setDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
void |
setEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.
|
void |
setEstimatedTimeRemainingInMinutes(Long estimatedTimeRemainingInMinutes)
The estimated time remaining in minutes for the predictor training job to complete.
|
void |
setEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm.
|
void |
setFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
|
void |
setForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast.
|
void |
setForecastTypes(Collection<String> forecastTypes)
The forecast types used during predictor training.
|
void |
setHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
|
void |
setInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
|
void |
setIsAutoPredictor(Boolean isAutoPredictor)
Whether the predictor was created with CreateAutoPredictor.
|
void |
setLastModificationTime(Date lastModificationTime)
The last time the resource was modified.
|
void |
setMessage(String message)
If an error occurred, an informational message about the error.
|
void |
setOptimizationMetric(String optimizationMetric)
The accuracy metric used to optimize the predictor.
|
void |
setPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
|
void |
setPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
void |
setPredictorArn(String predictorArn)
The ARN of the predictor.
|
void |
setPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor.
|
void |
setPredictorName(String predictorName)
The name of the predictor.
|
void |
setStatus(String status)
The status of the predictor.
|
void |
setTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training.
|
String |
toString()
Returns a string representation of this object.
|
DescribePredictorResult |
withAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
|
DescribePredictorResult |
withAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
DescribePredictorResult |
withAutoMLAlgorithmArns(String... autoMLAlgorithmArns)
When
PerformAutoML is specified, the ARN of the chosen algorithm. |
DescribePredictorResult |
withAutoMLOverrideStrategy(AutoMLOverrideStrategy autoMLOverrideStrategy)
|
DescribePredictorResult |
withAutoMLOverrideStrategy(String autoMLOverrideStrategy)
|
DescribePredictorResult |
withCreationTime(Date creationTime)
When the model training task was created.
|
DescribePredictorResult |
withDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
DescribePredictorResult |
withDatasetImportJobArns(String... datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
|
DescribePredictorResult |
withEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.
|
DescribePredictorResult |
withEstimatedTimeRemainingInMinutes(Long estimatedTimeRemainingInMinutes)
The estimated time remaining in minutes for the predictor training job to complete.
|
DescribePredictorResult |
withEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm.
|
DescribePredictorResult |
withFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
|
DescribePredictorResult |
withForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast.
|
DescribePredictorResult |
withForecastTypes(Collection<String> forecastTypes)
The forecast types used during predictor training.
|
DescribePredictorResult |
withForecastTypes(String... forecastTypes)
The forecast types used during predictor training.
|
DescribePredictorResult |
withHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
|
DescribePredictorResult |
withInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
|
DescribePredictorResult |
withIsAutoPredictor(Boolean isAutoPredictor)
Whether the predictor was created with CreateAutoPredictor.
|
DescribePredictorResult |
withLastModificationTime(Date lastModificationTime)
The last time the resource was modified.
|
DescribePredictorResult |
withMessage(String message)
If an error occurred, an informational message about the error.
|
DescribePredictorResult |
withOptimizationMetric(OptimizationMetric optimizationMetric)
The accuracy metric used to optimize the predictor.
|
DescribePredictorResult |
withOptimizationMetric(String optimizationMetric)
The accuracy metric used to optimize the predictor.
|
DescribePredictorResult |
withPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
|
DescribePredictorResult |
withPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
|
DescribePredictorResult |
withPredictorArn(String predictorArn)
The ARN of the predictor.
|
DescribePredictorResult |
withPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor.
|
DescribePredictorResult |
withPredictorName(String predictorName)
The name of the predictor.
|
DescribePredictorResult |
withStatus(String status)
The status of the predictor.
|
DescribePredictorResult |
withTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training.
|
getSdkHttpMetadata, getSdkResponseMetadata, setSdkHttpMetadata, setSdkResponseMetadata
public void setPredictorArn(String predictorArn)
The ARN of the predictor.
predictorArn
- The ARN of the predictor.public String getPredictorArn()
The ARN of the predictor.
public DescribePredictorResult withPredictorArn(String predictorArn)
The ARN of the predictor.
predictorArn
- The ARN of the predictor.public void setPredictorName(String predictorName)
The name of the predictor.
predictorName
- The name of the predictor.public String getPredictorName()
The name of the predictor.
public DescribePredictorResult withPredictorName(String predictorName)
The name of the predictor.
predictorName
- The name of the predictor.public void setAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
algorithmArn
- The Amazon Resource Name (ARN) of the algorithm used for model training.public String getAlgorithmArn()
The Amazon Resource Name (ARN) of the algorithm used for model training.
public DescribePredictorResult withAlgorithmArn(String algorithmArn)
The Amazon Resource Name (ARN) of the algorithm used for model training.
algorithmArn
- The Amazon Resource Name (ARN) of the algorithm used for model training.public List<String> getAutoMLAlgorithmArns()
When PerformAutoML
is specified, the ARN of the chosen algorithm.
PerformAutoML
is specified, the ARN of the chosen algorithm.public void setAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When PerformAutoML
is specified, the ARN of the chosen algorithm.
autoMLAlgorithmArns
- When PerformAutoML
is specified, the ARN of the chosen algorithm.public DescribePredictorResult withAutoMLAlgorithmArns(String... autoMLAlgorithmArns)
When PerformAutoML
is specified, the ARN of the chosen algorithm.
NOTE: This method appends the values to the existing list (if any). Use
setAutoMLAlgorithmArns(java.util.Collection)
or withAutoMLAlgorithmArns(java.util.Collection)
if you want to override the existing values.
autoMLAlgorithmArns
- When PerformAutoML
is specified, the ARN of the chosen algorithm.public DescribePredictorResult withAutoMLAlgorithmArns(Collection<String> autoMLAlgorithmArns)
When PerformAutoML
is specified, the ARN of the chosen algorithm.
autoMLAlgorithmArns
- When PerformAutoML
is specified, the ARN of the chosen algorithm.public void setForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
forecastHorizon
- The number of time-steps of the forecast. The forecast horizon is also called the prediction length.public Integer getForecastHorizon()
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
public DescribePredictorResult withForecastHorizon(Integer forecastHorizon)
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
forecastHorizon
- The number of time-steps of the forecast. The forecast horizon is also called the prediction length.public List<String> getForecastTypes()
The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
["0.1","0.5","0.9"]
public void setForecastTypes(Collection<String> forecastTypes)
The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
forecastTypes
- The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
public DescribePredictorResult withForecastTypes(String... forecastTypes)
The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
NOTE: This method appends the values to the existing list (if any). Use
setForecastTypes(java.util.Collection)
or withForecastTypes(java.util.Collection)
if you want
to override the existing values.
forecastTypes
- The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
public DescribePredictorResult withForecastTypes(Collection<String> forecastTypes)
The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
forecastTypes
- The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]
public void setPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
performAutoML
- Whether the predictor is set to perform AutoML.public Boolean getPerformAutoML()
Whether the predictor is set to perform AutoML.
public DescribePredictorResult withPerformAutoML(Boolean performAutoML)
Whether the predictor is set to perform AutoML.
performAutoML
- Whether the predictor is set to perform AutoML.public Boolean isPerformAutoML()
Whether the predictor is set to perform AutoML.
public void setAutoMLOverrideStrategy(String autoMLOverrideStrategy)
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS Support
or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML
strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
autoMLOverrideStrategy
-
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS
Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the
AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
AutoMLOverrideStrategy
public String getAutoMLOverrideStrategy()
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS Support
or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML
strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS
Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the
AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
AutoMLOverrideStrategy
public DescribePredictorResult withAutoMLOverrideStrategy(String autoMLOverrideStrategy)
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS Support
or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML
strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
autoMLOverrideStrategy
-
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS
Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the
AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
AutoMLOverrideStrategy
public DescribePredictorResult withAutoMLOverrideStrategy(AutoMLOverrideStrategy autoMLOverrideStrategy)
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS Support
or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML
strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
autoMLOverrideStrategy
-
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact AWS
Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the
AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
AutoMLOverrideStrategy
public void setPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
performHPO
- Whether the predictor is set to perform hyperparameter optimization (HPO).public Boolean getPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
public DescribePredictorResult withPerformHPO(Boolean performHPO)
Whether the predictor is set to perform hyperparameter optimization (HPO).
performHPO
- Whether the predictor is set to perform hyperparameter optimization (HPO).public Boolean isPerformHPO()
Whether the predictor is set to perform hyperparameter optimization (HPO).
public Map<String,String> getTrainingParameters()
The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
public void setTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
trainingParameters
- The default training parameters or overrides selected during model training. When running AutoML or
choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For
more information, see aws-forecast-choosing-recipes.public DescribePredictorResult withTrainingParameters(Map<String,String> trainingParameters)
The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
trainingParameters
- The default training parameters or overrides selected during model training. When running AutoML or
choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For
more information, see aws-forecast-choosing-recipes.public DescribePredictorResult addTrainingParametersEntry(String key, String value)
public DescribePredictorResult clearTrainingParametersEntries()
public void setEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
evaluationParameters
- Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a
predictor by splitting a dataset into training data and testing data. The evaluation parameters define how
to perform the split and the number of iterations.public EvaluationParameters getEvaluationParameters()
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
public DescribePredictorResult withEvaluationParameters(EvaluationParameters evaluationParameters)
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
evaluationParameters
- Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a
predictor by splitting a dataset into training data and testing data. The evaluation parameters define how
to perform the split and the number of iterations.public void setHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
hPOConfig
- The hyperparameter override values for the algorithm.public HyperParameterTuningJobConfig getHPOConfig()
The hyperparameter override values for the algorithm.
public DescribePredictorResult withHPOConfig(HyperParameterTuningJobConfig hPOConfig)
The hyperparameter override values for the algorithm.
hPOConfig
- The hyperparameter override values for the algorithm.public void setInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
inputDataConfig
- Describes the dataset group that contains the data to use to train the predictor.public InputDataConfig getInputDataConfig()
Describes the dataset group that contains the data to use to train the predictor.
public DescribePredictorResult withInputDataConfig(InputDataConfig inputDataConfig)
Describes the dataset group that contains the data to use to train the predictor.
inputDataConfig
- Describes the dataset group that contains the data to use to train the predictor.public void setFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
featurizationConfig
- The featurization configuration.public FeaturizationConfig getFeaturizationConfig()
The featurization configuration.
public DescribePredictorResult withFeaturizationConfig(FeaturizationConfig featurizationConfig)
The featurization configuration.
featurizationConfig
- The featurization configuration.public void setEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
encryptionConfig
- An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.public EncryptionConfig getEncryptionConfig()
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
public DescribePredictorResult withEncryptionConfig(EncryptionConfig encryptionConfig)
An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
encryptionConfig
- An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon
Forecast can assume to access the key.public void setPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
predictorExecutionDetails
- Details on the the status and results of the backtests performed to evaluate the accuracy of the
predictor. You specify the number of backtests to perform when you call the operation.public PredictorExecutionDetails getPredictorExecutionDetails()
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
public DescribePredictorResult withPredictorExecutionDetails(PredictorExecutionDetails predictorExecutionDetails)
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
predictorExecutionDetails
- Details on the the status and results of the backtests performed to evaluate the accuracy of the
predictor. You specify the number of backtests to perform when you call the operation.public void setEstimatedTimeRemainingInMinutes(Long estimatedTimeRemainingInMinutes)
The estimated time remaining in minutes for the predictor training job to complete.
estimatedTimeRemainingInMinutes
- The estimated time remaining in minutes for the predictor training job to complete.public Long getEstimatedTimeRemainingInMinutes()
The estimated time remaining in minutes for the predictor training job to complete.
public DescribePredictorResult withEstimatedTimeRemainingInMinutes(Long estimatedTimeRemainingInMinutes)
The estimated time remaining in minutes for the predictor training job to complete.
estimatedTimeRemainingInMinutes
- The estimated time remaining in minutes for the predictor training job to complete.public void setIsAutoPredictor(Boolean isAutoPredictor)
Whether the predictor was created with CreateAutoPredictor.
isAutoPredictor
- Whether the predictor was created with CreateAutoPredictor.public Boolean getIsAutoPredictor()
Whether the predictor was created with CreateAutoPredictor.
public DescribePredictorResult withIsAutoPredictor(Boolean isAutoPredictor)
Whether the predictor was created with CreateAutoPredictor.
isAutoPredictor
- Whether the predictor was created with CreateAutoPredictor.public Boolean isAutoPredictor()
Whether the predictor was created with CreateAutoPredictor.
public List<String> getDatasetImportJobArns()
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
public void setDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
datasetImportJobArns
- An array of the ARNs of the dataset import jobs used to import training data for the predictor.public DescribePredictorResult withDatasetImportJobArns(String... datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
NOTE: This method appends the values to the existing list (if any). Use
setDatasetImportJobArns(java.util.Collection)
or withDatasetImportJobArns(java.util.Collection)
if you want to override the existing values.
datasetImportJobArns
- An array of the ARNs of the dataset import jobs used to import training data for the predictor.public DescribePredictorResult withDatasetImportJobArns(Collection<String> datasetImportJobArns)
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
datasetImportJobArns
- An array of the ARNs of the dataset import jobs used to import training data for the predictor.public void setStatus(String status)
The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
CREATE_STOPPING
, CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a
forecast.
status
- The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
CREATE_STOPPING
, CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to
create a forecast.
public String getStatus()
The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
CREATE_STOPPING
, CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a
forecast.
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
CREATE_STOPPING
, CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to
create a forecast.
public DescribePredictorResult withStatus(String status)
The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
CREATE_STOPPING
, CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a
forecast.
status
- The status of the predictor. States include:
ACTIVE
CREATE_PENDING
, CREATE_IN_PROGRESS
, CREATE_FAILED
DELETE_PENDING
, DELETE_IN_PROGRESS
, DELETE_FAILED
CREATE_STOPPING
, CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to
create a forecast.
public void setMessage(String message)
If an error occurred, an informational message about the error.
message
- If an error occurred, an informational message about the error.public String getMessage()
If an error occurred, an informational message about the error.
public DescribePredictorResult withMessage(String message)
If an error occurred, an informational message about the error.
message
- If an error occurred, an informational message about the error.public void setCreationTime(Date creationTime)
When the model training task was created.
creationTime
- When the model training task was created.public Date getCreationTime()
When the model training task was created.
public DescribePredictorResult withCreationTime(Date creationTime)
When the model training task was created.
creationTime
- When the model training task was created.public void setLastModificationTime(Date lastModificationTime)
The last time the resource was modified. The timestamp depends on the status of the job:
CREATE_PENDING
- The CreationTime
.
CREATE_IN_PROGRESS
- The current timestamp.
CREATE_STOPPING
- The current timestamp.
CREATE_STOPPED
- When the job stopped.
ACTIVE
or CREATE_FAILED
- When the job finished or failed.
lastModificationTime
- The last time the resource was modified. The timestamp depends on the status of the job:
CREATE_PENDING
- The CreationTime
.
CREATE_IN_PROGRESS
- The current timestamp.
CREATE_STOPPING
- The current timestamp.
CREATE_STOPPED
- When the job stopped.
ACTIVE
or CREATE_FAILED
- When the job finished or failed.
public Date getLastModificationTime()
The last time the resource was modified. The timestamp depends on the status of the job:
CREATE_PENDING
- The CreationTime
.
CREATE_IN_PROGRESS
- The current timestamp.
CREATE_STOPPING
- The current timestamp.
CREATE_STOPPED
- When the job stopped.
ACTIVE
or CREATE_FAILED
- When the job finished or failed.
CREATE_PENDING
- The CreationTime
.
CREATE_IN_PROGRESS
- The current timestamp.
CREATE_STOPPING
- The current timestamp.
CREATE_STOPPED
- When the job stopped.
ACTIVE
or CREATE_FAILED
- When the job finished or failed.
public DescribePredictorResult withLastModificationTime(Date lastModificationTime)
The last time the resource was modified. The timestamp depends on the status of the job:
CREATE_PENDING
- The CreationTime
.
CREATE_IN_PROGRESS
- The current timestamp.
CREATE_STOPPING
- The current timestamp.
CREATE_STOPPED
- When the job stopped.
ACTIVE
or CREATE_FAILED
- When the job finished or failed.
lastModificationTime
- The last time the resource was modified. The timestamp depends on the status of the job:
CREATE_PENDING
- The CreationTime
.
CREATE_IN_PROGRESS
- The current timestamp.
CREATE_STOPPING
- The current timestamp.
CREATE_STOPPED
- When the job stopped.
ACTIVE
or CREATE_FAILED
- When the job finished or failed.
public void setOptimizationMetric(String optimizationMetric)
The accuracy metric used to optimize the predictor.
optimizationMetric
- The accuracy metric used to optimize the predictor.OptimizationMetric
public String getOptimizationMetric()
The accuracy metric used to optimize the predictor.
OptimizationMetric
public DescribePredictorResult withOptimizationMetric(String optimizationMetric)
The accuracy metric used to optimize the predictor.
optimizationMetric
- The accuracy metric used to optimize the predictor.OptimizationMetric
public DescribePredictorResult withOptimizationMetric(OptimizationMetric optimizationMetric)
The accuracy metric used to optimize the predictor.
optimizationMetric
- The accuracy metric used to optimize the predictor.OptimizationMetric
public String toString()
toString
in class Object
Object.toString()
public DescribePredictorResult clone()