@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class CreateAutoMLJobV2Request extends AmazonWebServiceRequest implements Serializable, Cloneable
NOOP| Constructor and Description | 
|---|
CreateAutoMLJobV2Request()  | 
| Modifier and Type | Method and Description | 
|---|---|
CreateAutoMLJobV2Request | 
clone()
Creates a shallow clone of this object for all fields except the handler context. 
 | 
boolean | 
equals(Object obj)  | 
List<AutoMLJobChannel> | 
getAutoMLJobInputDataConfig()
 An array of channel objects describing the input data and their location. 
 | 
String | 
getAutoMLJobName()
 Identifies an Autopilot job. 
 | 
AutoMLJobObjective | 
getAutoMLJobObjective()
 Specifies a metric to minimize or maximize as the objective of a job. 
 | 
AutoMLProblemTypeConfig | 
getAutoMLProblemTypeConfig()
 Defines the configuration settings of one of the supported problem types. 
 | 
AutoMLDataSplitConfig | 
getDataSplitConfig()
 This structure specifies how to split the data into train and validation datasets. 
 | 
ModelDeployConfig | 
getModelDeployConfig()
 Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. 
 | 
AutoMLOutputDataConfig | 
getOutputDataConfig()
 Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. 
 | 
String | 
getRoleArn()
 The ARN of the role that is used to access the data. 
 | 
AutoMLSecurityConfig | 
getSecurityConfig()
 The security configuration for traffic encryption or Amazon VPC settings. 
 | 
List<Tag> | 
getTags()
 An array of key-value pairs. 
 | 
int | 
hashCode()  | 
void | 
setAutoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig)
 An array of channel objects describing the input data and their location. 
 | 
void | 
setAutoMLJobName(String autoMLJobName)
 Identifies an Autopilot job. 
 | 
void | 
setAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
 Specifies a metric to minimize or maximize as the objective of a job. 
 | 
void | 
setAutoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig)
 Defines the configuration settings of one of the supported problem types. 
 | 
void | 
setDataSplitConfig(AutoMLDataSplitConfig dataSplitConfig)
 This structure specifies how to split the data into train and validation datasets. 
 | 
void | 
setModelDeployConfig(ModelDeployConfig modelDeployConfig)
 Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. 
 | 
void | 
setOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
 Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. 
 | 
void | 
setRoleArn(String roleArn)
 The ARN of the role that is used to access the data. 
 | 
void | 
setSecurityConfig(AutoMLSecurityConfig securityConfig)
 The security configuration for traffic encryption or Amazon VPC settings. 
 | 
void | 
setTags(Collection<Tag> tags)
 An array of key-value pairs. 
 | 
String | 
toString()
Returns a string representation of this object. 
 | 
CreateAutoMLJobV2Request | 
withAutoMLJobInputDataConfig(AutoMLJobChannel... autoMLJobInputDataConfig)
 An array of channel objects describing the input data and their location. 
 | 
CreateAutoMLJobV2Request | 
withAutoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig)
 An array of channel objects describing the input data and their location. 
 | 
CreateAutoMLJobV2Request | 
withAutoMLJobName(String autoMLJobName)
 Identifies an Autopilot job. 
 | 
CreateAutoMLJobV2Request | 
withAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
 Specifies a metric to minimize or maximize as the objective of a job. 
 | 
CreateAutoMLJobV2Request | 
withAutoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig)
 Defines the configuration settings of one of the supported problem types. 
 | 
CreateAutoMLJobV2Request | 
withDataSplitConfig(AutoMLDataSplitConfig dataSplitConfig)
 This structure specifies how to split the data into train and validation datasets. 
 | 
CreateAutoMLJobV2Request | 
withModelDeployConfig(ModelDeployConfig modelDeployConfig)
 Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment. 
 | 
CreateAutoMLJobV2Request | 
withOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
 Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. 
 | 
CreateAutoMLJobV2Request | 
withRoleArn(String roleArn)
 The ARN of the role that is used to access the data. 
 | 
CreateAutoMLJobV2Request | 
withSecurityConfig(AutoMLSecurityConfig securityConfig)
 The security configuration for traffic encryption or Amazon VPC settings. 
 | 
CreateAutoMLJobV2Request | 
withTags(Collection<Tag> tags)
 An array of key-value pairs. 
 | 
CreateAutoMLJobV2Request | 
withTags(Tag... tags)
 An array of key-value pairs. 
 | 
addHandlerContext, getCloneRoot, getCloneSource, getCustomQueryParameters, getCustomRequestHeaders, getGeneralProgressListener, getHandlerContext, getReadLimit, getRequestClientOptions, getRequestCredentials, getRequestCredentialsProvider, getRequestMetricCollector, getSdkClientExecutionTimeout, getSdkRequestTimeout, putCustomQueryParameter, putCustomRequestHeader, setGeneralProgressListener, setRequestCredentials, setRequestCredentialsProvider, setRequestMetricCollector, setSdkClientExecutionTimeout, setSdkRequestTimeout, withGeneralProgressListener, withRequestCredentialsProvider, withRequestMetricCollector, withSdkClientExecutionTimeout, withSdkRequestTimeoutpublic void setAutoMLJobName(String autoMLJobName)
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
autoMLJobName - Identifies an Autopilot job. The name must be unique to your account and is case insensitive.public String getAutoMLJobName()
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
public CreateAutoMLJobV2Request withAutoMLJobName(String autoMLJobName)
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
autoMLJobName - Identifies an Autopilot job. The name must be unique to your account and is case insensitive.public List<AutoMLJobChannel> getAutoMLJobInputDataConfig()
 An array of channel objects describing the input data and their location. Each channel is a named input source.
 Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type:
 
 ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
 
TextClassification: S3Prefix
CreateAutoMLJob. The supported formats depend on the
         problem type:
         
         ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
         
TextClassification: S3Prefix
public void setAutoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig)
 An array of channel objects describing the input data and their location. Each channel is a named input source.
 Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type:
 
 ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
 
TextClassification: S3Prefix
autoMLJobInputDataConfig - An array of channel objects describing the input data and their location. Each channel is a named input
        source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the
        problem type:
        
        ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
        
TextClassification: S3Prefix
public CreateAutoMLJobV2Request withAutoMLJobInputDataConfig(AutoMLJobChannel... autoMLJobInputDataConfig)
 An array of channel objects describing the input data and their location. Each channel is a named input source.
 Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type:
 
 ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
 
TextClassification: S3Prefix
 NOTE: This method appends the values to the existing list (if any). Use
 setAutoMLJobInputDataConfig(java.util.Collection) or
 withAutoMLJobInputDataConfig(java.util.Collection) if you want to override the existing values.
 
autoMLJobInputDataConfig - An array of channel objects describing the input data and their location. Each channel is a named input
        source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the
        problem type:
        
        ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
        
TextClassification: S3Prefix
public CreateAutoMLJobV2Request withAutoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig)
 An array of channel objects describing the input data and their location. Each channel is a named input source.
 Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type:
 
 ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
 
TextClassification: S3Prefix
autoMLJobInputDataConfig - An array of channel objects describing the input data and their location. Each channel is a named input
        source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the
        problem type:
        
        ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
        
TextClassification: S3Prefix
public void setOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
outputDataConfig - Provides information about encryption and the Amazon S3 output path needed to store artifacts from an
        AutoML job.public AutoMLOutputDataConfig getOutputDataConfig()
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
public CreateAutoMLJobV2Request withOutputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
outputDataConfig - Provides information about encryption and the Amazon S3 output path needed to store artifacts from an
        AutoML job.public void setAutoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig)
Defines the configuration settings of one of the supported problem types.
autoMLProblemTypeConfig - Defines the configuration settings of one of the supported problem types.public AutoMLProblemTypeConfig getAutoMLProblemTypeConfig()
Defines the configuration settings of one of the supported problem types.
public CreateAutoMLJobV2Request withAutoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig)
Defines the configuration settings of one of the supported problem types.
autoMLProblemTypeConfig - Defines the configuration settings of one of the supported problem types.public void setRoleArn(String roleArn)
The ARN of the role that is used to access the data.
roleArn - The ARN of the role that is used to access the data.public String getRoleArn()
The ARN of the role that is used to access the data.
public CreateAutoMLJobV2Request withRoleArn(String roleArn)
The ARN of the role that is used to access the data.
roleArn - The ARN of the role that is used to access the data.public List<Tag> getTags()
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
public void setTags(Collection<Tag> tags)
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
tags - An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in
        different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web
        ServicesResources. Tag keys must be unique per resource.public CreateAutoMLJobV2Request withTags(Tag... tags)
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
 NOTE: This method appends the values to the existing list (if any). Use
 setTags(java.util.Collection) or withTags(java.util.Collection) if you want to override the
 existing values.
 
tags - An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in
        different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web
        ServicesResources. Tag keys must be unique per resource.public CreateAutoMLJobV2Request withTags(Collection<Tag> tags)
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
tags - An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in
        different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web
        ServicesResources. Tag keys must be unique per resource.public void setSecurityConfig(AutoMLSecurityConfig securityConfig)
The security configuration for traffic encryption or Amazon VPC settings.
securityConfig - The security configuration for traffic encryption or Amazon VPC settings.public AutoMLSecurityConfig getSecurityConfig()
The security configuration for traffic encryption or Amazon VPC settings.
public CreateAutoMLJobV2Request withSecurityConfig(AutoMLSecurityConfig securityConfig)
The security configuration for traffic encryption or Amazon VPC settings.
securityConfig - The security configuration for traffic encryption or Amazon VPC settings.public void setAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
 Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2, only Accuracy is supported.
 
autoMLJobObjective - Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2, only Accuracy is supported.public AutoMLJobObjective getAutoMLJobObjective()
 Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2, only Accuracy is supported.
 
Accuracy is supported.public CreateAutoMLJobV2Request withAutoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
 Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2, only Accuracy is supported.
 
autoMLJobObjective - Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2, only Accuracy is supported.public void setModelDeployConfig(ModelDeployConfig modelDeployConfig)
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
modelDeployConfig - Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.public ModelDeployConfig getModelDeployConfig()
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
public CreateAutoMLJobV2Request withModelDeployConfig(ModelDeployConfig modelDeployConfig)
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
modelDeployConfig - Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.public void setDataSplitConfig(AutoMLDataSplitConfig dataSplitConfig)
This structure specifies how to split the data into train and validation datasets.
 If you are using the V1 API (for example CreateAutoMLJob) or the V2 API for Natural Language
 Processing problems (for example CreateAutoMLJobV2 with a TextClassificationJobConfig
 problem type), the validation and training datasets must contain the same headers. Also, for V1 API jobs, the
 validation dataset must be less than 2 GB in size.
 
dataSplitConfig - This structure specifies how to split the data into train and validation datasets.
        
        If you are using the V1 API (for example CreateAutoMLJob) or the V2 API for Natural Language
        Processing problems (for example CreateAutoMLJobV2 with a
        TextClassificationJobConfig problem type), the validation and training datasets must contain
        the same headers. Also, for V1 API jobs, the validation dataset must be less than 2 GB in size.
public AutoMLDataSplitConfig getDataSplitConfig()
This structure specifies how to split the data into train and validation datasets.
 If you are using the V1 API (for example CreateAutoMLJob) or the V2 API for Natural Language
 Processing problems (for example CreateAutoMLJobV2 with a TextClassificationJobConfig
 problem type), the validation and training datasets must contain the same headers. Also, for V1 API jobs, the
 validation dataset must be less than 2 GB in size.
 
         If you are using the V1 API (for example CreateAutoMLJob) or the V2 API for Natural Language
         Processing problems (for example CreateAutoMLJobV2 with a
         TextClassificationJobConfig problem type), the validation and training datasets must contain
         the same headers. Also, for V1 API jobs, the validation dataset must be less than 2 GB in size.
public CreateAutoMLJobV2Request withDataSplitConfig(AutoMLDataSplitConfig dataSplitConfig)
This structure specifies how to split the data into train and validation datasets.
 If you are using the V1 API (for example CreateAutoMLJob) or the V2 API for Natural Language
 Processing problems (for example CreateAutoMLJobV2 with a TextClassificationJobConfig
 problem type), the validation and training datasets must contain the same headers. Also, for V1 API jobs, the
 validation dataset must be less than 2 GB in size.
 
dataSplitConfig - This structure specifies how to split the data into train and validation datasets.
        
        If you are using the V1 API (for example CreateAutoMLJob) or the V2 API for Natural Language
        Processing problems (for example CreateAutoMLJobV2 with a
        TextClassificationJobConfig problem type), the validation and training datasets must contain
        the same headers. Also, for V1 API jobs, the validation dataset must be less than 2 GB in size.
public String toString()
toString in class ObjectObject.toString()public CreateAutoMLJobV2Request clone()
AmazonWebServiceRequestclone in class AmazonWebServiceRequestObject.clone()