Package deepnetts.net.weights
Class RandomWeights
- java.lang.Object
-
- deepnetts.net.weights.RandomWeights
-
public class RandomWeights extends java.lang.Object
This class provides various randomization methods.- Author:
- Zoran Sevarac
-
-
Constructor Summary
Constructors Constructor Description RandomWeights()
-
Method Summary
Modifier and Type Method Description static void
gaussian(float[] weights, float mean, float std)
static void
he(float[] weights, int numInputs)
static void
initSeed(long seed)
static void
normal(float[] weights)
static void
randomize(float[] array)
Fills the specified array with random numbers in range [-0.5, 0.5] from the current random seedstatic void
uniform(float[] weights, float min, float max)
static void
uniform(float[] weights, int numInputs)
Uniform U[-a,a] where a=1/sqrt(in).static void
widrowHoff(float[] array, float input, float hidden)
static void
xavier(float[] weights, int numIn, int numOut)
Normalized uniform initialization U[-a,a] with a = sqrt(6/(in + out)).
-
-
-
Constructor Detail
-
RandomWeights
public RandomWeights()
-
-
Method Detail
-
initSeed
public static void initSeed(long seed)
-
randomize
public static void randomize(float[] array)
Fills the specified array with random numbers in range [-0.5, 0.5] from the current random seed- Parameters:
array
-
-
widrowHoff
public static void widrowHoff(float[] array, float input, float hidden)
-
uniform
public static void uniform(float[] weights, int numInputs)
Uniform U[-a,a] where a=1/sqrt(in).- Parameters:
weights
- an array of weightsnumInputs
- number of inputs, a size of the previous layer
-
uniform
public static void uniform(float[] weights, float min, float max)
-
he
public static void he(float[] weights, int numInputs)
-
gaussian
public static void gaussian(float[] weights, float mean, float std)
-
normal
public static void normal(float[] weights)
-
xavier
public static void xavier(float[] weights, int numIn, int numOut)
Normalized uniform initialization U[-a,a] with a = sqrt(6/(in + out)).- Parameters:
weights
-numIn
- size of the previous layer (number of inputs)numOut
- size of initialized layer (number of outputs)
-
-