A B C D E F G H I K L M N O P R S T U V W X Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
A
- absMax(float[], float[]) - Static method in class deepnetts.util.Tensors
-
Returns array with max values for each position in the given input vectors.
- absMax(Tensor, Tensor) - Static method in class deepnetts.util.Tensors
-
Returns tensors with max value for each component of input tensors.
- absMin(float[], float[]) - Static method in class deepnetts.util.Tensors
- absMin(Tensor, Tensor) - Static method in class deepnetts.util.Tensors
- AbstractLayer - Class in deepnetts.net.layers
-
Base class for different types of layers (except data/input layer) Provides common functionality for all type of layers
- AbstractLayer() - Constructor for class deepnetts.net.layers.AbstractLayer
- accuracy - Variable in class deepnetts.eval.ClassificationMetrics.Stats
- activation - Variable in class deepnetts.net.layers.AbstractLayer
- ActivationFunction - Interface in deepnetts.net.layers.activation
-
Common base interface for all activation functions used in layers.
- activationType - Variable in class deepnetts.net.layers.AbstractLayer
-
Activation function type for this layer.
- ActivationType - Enum in deepnetts.net.layers.activation
-
Supported types of activation functions.
- add(float[], float[]) - Method in class deepnetts.eval.MeanSquaredError
- add(float[], float[]) - Method in class deepnetts.eval.RootMeanSquaredError
- add(float[], float[]) - Static method in class deepnetts.util.Tensors
- add(int, float) - Method in class deepnetts.util.Tensor
- add(int, int, float) - Method in class deepnetts.util.Tensor
-
Adds specified value to matrix value at position x, y
- add(int, int, int, float) - Method in class deepnetts.util.Tensor
- add(int, int, int, int, float) - Method in class deepnetts.util.Tensor
- add(ExampleImage) - Method in class deepnetts.data.ImageSet
-
Adds image to this image set.
- add(Tensor) - Method in class deepnetts.data.DataSetStats
- add(Tensor) - Method in class deepnetts.util.Tensor
-
Adds specified tensor t to this tensor.
- addConvolutionalLayer(int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addConvolutionalLayer(int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addConvolutionalLayer(int, int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addConvolutionalLayer(int, int, int, int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addConvolutionalLayer(int, int, int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addConvolutionalLayer(int, int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addFullyConnectedLayer(int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addFullyConnectedLayer(int) - Method in class deepnetts.net.FeedForwardNetwork.Builder
-
Adds fully connected layer with specified width and Sigmoid activation function to the network.
- addFullyConnectedLayer(int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
-
Add dense layer with specified width and activation function.
- addFullyConnectedLayer(int, ActivationType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
-
Adds fully connected addLayer with specified width and activation function to the network.
- addFullyConnectedLayers(int...) - Method in class deepnetts.net.FeedForwardNetwork.Builder
- addFullyConnectedLayers(ActivationType, int...) - Method in class deepnetts.net.FeedForwardNetwork.Builder
- addInputLayer(int) - Method in class deepnetts.net.FeedForwardNetwork.Builder
-
Adds input addLayer with specified width to the network.
- addInputLayer(int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
-
Input layer with specified width and height, and 3 channels by default.
- addInputLayer(int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
-
Input layer with specified width, height and number of channels (depth).
- addLayer(AbstractLayer) - Method in class deepnetts.net.FeedForwardNetwork.Builder
-
Adds custom layer to this network (which inherits from AbstractLayer)
- addLayer(AbstractLayer) - Method in class deepnetts.net.NeuralNetwork
- addListener(TrainingListener) - Method in class deepnetts.net.train.BackpropagationTrainer
- addMaxPoolingLayer(int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addMaxPoolingLayer(int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addOutputLayer(int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addOutputLayer(int, ActivationType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
- addOutputLayer(int, Class<? extends OutputLayer>) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- addPatternError(float[], float[]) - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
-
Calculates pattern error to total error, and returns output error vector for specified actual and target outputs.
- addPatternError(float[], float[]) - Method in class deepnetts.net.loss.CrossEntropyLoss
-
Calculates and returns error vector for specified actual and target outputs.
- addPatternError(float[], float[]) - Method in interface deepnetts.net.loss.LossFunction
-
Calculates pattern error for singe pattern for the specified predicted and target outputs, adds the error to total error, and returns the pattern error.
- addPatternError(float[], float[]) - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
-
Adds output error vector for the given predicted and target output vectors to total error sum and returns and error vector.
- addRegularizationSum(float) - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
- addRegularizationSum(float) - Method in class deepnetts.net.loss.CrossEntropyLoss
- addRegularizationSum(float) - Method in interface deepnetts.net.loss.LossFunction
-
Adds regularization sum to loss function
- addRegularizationSum(float) - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
- apply(Function<Float, Float>) - Method in class deepnetts.util.Tensor
- apply(DataSet<MLDataItem>) - Method in class deepnetts.data.preprocessing.scale.DecimalScaler
-
Performs normalization on the given inputs.
- apply(DataSet<MLDataItem>) - Method in class deepnetts.data.preprocessing.scale.MaxScaler
-
Performs max scaling on all columns of the given data set.
- apply(DataSet<MLDataItem>) - Method in class deepnetts.data.preprocessing.scale.MinMaxScaler
-
Performs scaling on the given data set.
- apply(DataSet<MLDataItem>) - Method in class deepnetts.data.preprocessing.scale.RangeScaler
-
Performs normalization on the given inputs.
- apply(DataSet<MLDataItem>) - Method in class deepnetts.data.preprocessing.scale.Standardizer
- applyWeightChanges() - Method in class deepnetts.net.layers.AbstractLayer
-
Applies weight changes to current weights Must be diferent for convolutional does nothing for MaxPooling Same for FullyConnected and OutputLayer
- applyWeightChanges() - Method in class deepnetts.net.layers.ConvolutionalLayer
-
Apply weight changes calculated in backward pass
- applyWeightChanges() - Method in class deepnetts.net.layers.FullyConnectedLayer
- applyWeightChanges() - Method in class deepnetts.net.layers.InputLayer
-
This method does nothing in input layer
- applyWeightChanges() - Method in class deepnetts.net.layers.MaxPoolingLayer
-
Does nothing for pooling layer since it does not have weights It just propagates deltas from next layer to previous through connections that had max activation in forward pass
- applyWeightChanges() - Method in class deepnetts.net.layers.OutputLayer
-
Applies weight changes after one learning iteration or batch
- applyWeightChanges() - Method in class deepnetts.net.NeuralNetwork
-
Apply calculated weight changes to all layers.
- average(ClassificationMetrics[]) - Static method in class deepnetts.eval.ClassificationMetrics
- averagePerformance(List<EvaluationMetrics>) - Static method in class deepnetts.eval.ClassifierEvaluator
-
Calculates macro average for the given list of perfromance measures.
- averagePerformance(List<EvaluationMetrics>) - Static method in class deepnetts.eval.RegresionEvaluator
B
- BackpropagationTrainer - Class in deepnetts.net.train
-
Backpropagation training algorithm for Feed Forward and Convolutional Neural Networks.
- BackpropagationTrainer(NeuralNetwork) - Constructor for class deepnetts.net.train.BackpropagationTrainer
-
Creates and instance of Backpropagation Trainer for the specified neural network.
- BackpropagationTrainer(Properties) - Constructor for class deepnetts.net.train.BackpropagationTrainer
- backward() - Method in class deepnetts.net.layers.AbstractLayer
-
This method should implement backward pass in subclasses
- backward() - Method in class deepnetts.net.layers.ConvolutionalLayer
-
Backward pass for convolutional layer tweaks the weights in filters.
- backward() - Method in class deepnetts.net.layers.FullyConnectedLayer
- backward() - Method in class deepnetts.net.layers.InputLayer
-
This method does nothing in input layer
- backward() - Method in interface deepnetts.net.layers.Layer
-
Performs weight parameters adjustment in backward pass during training of a neural network.
- backward() - Method in class deepnetts.net.layers.MaxPoolingLayer
-
Backward pass for a max(x, y) operation has a simple interpretation as only routing the gradient to the input that had the highest value in the forward pass.
- backward() - Method in class deepnetts.net.layers.OutputLayer
-
This method implements backward pass for the output layer.
- backward() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
- backward() - Method in class deepnetts.net.NeuralNetwork
- batchMode - Variable in class deepnetts.net.layers.AbstractLayer
- batchSize - Variable in class deepnetts.net.layers.AbstractLayer
- biases - Variable in class deepnetts.net.layers.AbstractLayer
- BINARY - deepnetts.util.ColumnType
- BinaryCrossEntropyLoss - Class in deepnetts.net.loss
-
Cross Entropy Loss for binary(single output, two classes) classification.
- BinaryCrossEntropyLoss(NeuralNetwork) - Constructor for class deepnetts.net.loss.BinaryCrossEntropyLoss
- BoundingBox - Class in deepnetts.util
-
A rectangle to mark object in image including position, size, score and label.
- BoundingBox(int, int, int, int) - Constructor for class deepnetts.util.BoundingBox
- BoundingBox(int, int, int, int, int) - Constructor for class deepnetts.util.BoundingBox
- BoundingBox(int, int, int, int, int, float) - Constructor for class deepnetts.util.BoundingBox
- BoundingBox(int, int, int, int, int, String, float) - Constructor for class deepnetts.util.BoundingBox
- build() - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- build() - Method in class deepnetts.net.FeedForwardNetwork.Builder
- build() - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
- builder() - Static method in class deepnetts.net.ConvolutionalNetwork
- builder() - Static method in class deepnetts.net.FeedForwardNetwork
-
Returns builder for Feed Forward Network
- builder() - Static method in class deepnetts.net.train.KFoldCrossValidation
- Builder() - Constructor for class deepnetts.net.ConvolutionalNetwork.Builder
- Builder() - Constructor for class deepnetts.net.FeedForwardNetwork.Builder
- Builder() - Constructor for class deepnetts.net.train.KFoldCrossValidation.Builder
C
- calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.MomentumOptimizer
- calculateDeltaBias(float, int) - Method in interface deepnetts.net.train.opt.Optimizer
- calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.SgdOptimizer
- calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.MomentumOptimizer
- calculateDeltaWeight(float, int...) - Method in interface deepnetts.net.train.opt.Optimizer
- calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.SgdOptimizer
- CenterOnWhiteBackground - Class in deepnetts.util
-
Center images on backgounds and save at target path.
- CenterOnWhiteBackground() - Constructor for class deepnetts.util.CenterOnWhiteBackground
- ClassificationMetrics - Class in deepnetts.eval
-
Container class for all metrics which use confusion matrix for their computation.
- ClassificationMetrics(int, int, int, int) - Constructor for class deepnetts.eval.ClassificationMetrics
-
Constructs a new measure using arguments
- ClassificationMetrics(ConfusionMatrix) - Constructor for class deepnetts.eval.ClassificationMetrics
- ClassificationMetrics.Stats - Class in deepnetts.eval
- ClassifierEvaluator - Class in deepnetts.eval
-
Evaluation method for binary and multi-class classifiers.
- ClassifierEvaluator() - Constructor for class deepnetts.eval.ClassifierEvaluator
- COL_IDX - Static variable in class deepnetts.net.train.opt.MomentumOptimizer
- columnNames - Variable in class deepnetts.data.TabularDataSet
- ColumnType - Enum in deepnetts.util
- ConfusionMatrix - Class in deepnetts.eval
-
Confusion matrix container, holds class labels and matrix values.
- ConfusionMatrix(String[]) - Constructor for class deepnetts.eval.ConfusionMatrix
-
Creates a new confusion matrix for specified class labels
- CONVOLUTIONAL - deepnetts.net.layers.LayerType
- CONVOLUTIONAL - deepnetts.net.NetworkType
- ConvolutionalLayer - Class in deepnetts.net.layers
-
Convolutional layer performs image convolution operation on outputs of a previous layer using filters.
- ConvolutionalLayer(int, int, int) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
-
Create a new instance of convolutional layer with specified filter.
- ConvolutionalLayer(int, int, int, int, ActivationType) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
- ConvolutionalLayer(int, int, int, ActivationType) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
- ConvolutionalNetwork - Class in deepnetts.net
-
Convolutional neural network is an extension of feed forward network, which can include 2D and 3D adaptive preprocessing layers (Convolutional and MaxPooling layer), which specialized to learn to recognize features in images.
- ConvolutionalNetwork.Builder - Class in deepnetts.net
- copy() - Method in class deepnetts.util.Tensor
- copy(float[], float[]) - Static method in class deepnetts.util.Tensor
- copy(Tensor, Tensor) - Static method in class deepnetts.util.Tensor
- copyFrom(float[]) - Method in class deepnetts.util.Tensor
- copyOf(float[]) - Static method in class deepnetts.util.Tensors
- correlationCoefficient - Variable in class deepnetts.eval.ClassificationMetrics.Stats
- countByClasses() - Method in class deepnetts.data.ImageSet
- create(int, int, float[]) - Static method in class deepnetts.util.Tensor
-
Factory method for creating tensor instance,
- create(int, int, int, float[]) - Static method in class deepnetts.util.Tensor
- create(int, int, int, int, float[]) - Static method in class deepnetts.util.Tensor
- create(ActivationType) - Static method in interface deepnetts.net.layers.activation.ActivationFunction
-
Creates and returns specified type of activation function.
- create(OptimizerType, AbstractLayer) - Static method in interface deepnetts.net.train.opt.Optimizer
- createConvolutionalNetworkFromJson(JSONObject) - Static method in class deepnetts.util.FileIO
- createDataSetFromRawImages(String, String, int, int, boolean) - Static method in class deepnetts.util.ImageSetUtils
-
Creates image data set from raw images by resizing and randomly croping to target dimensions.
- createFeedForwardNetworkFromJson(JSONObject) - Static method in class deepnetts.util.FileIO
- createFrom(ConfusionMatrix) - Static method in class deepnetts.eval.ClassificationMetrics
-
Creates classification metrics from the given confusion matrix.
- createFromFile(File) - Static method in class deepnetts.util.FileIO
- createFromFile(String, Class<T>) - Static method in class deepnetts.util.FileIO
- createFromJson(File) - Static method in class deepnetts.util.FileIO
- createFromJson(String) - Static method in class deepnetts.util.FileIO
- createFromJson(JSONObject) - Static method in class deepnetts.util.FileIO
- createImageIndex(String) - Static method in class deepnetts.util.ImageSetUtils
-
List all files in all subdirectories and write them into single index.txt file.index.txt is created in specifed path.
- CreateImageIndex - Class in deepnetts.util
- CreateImageIndex() - Constructor for class deepnetts.util.CreateImageIndex
- createIndexFile(HashMap<File, BufferedImage>, String, boolean) - Static method in class deepnetts.util.ImageUtils
- createLabelsIndex(String) - Static method in class deepnetts.util.ImageSetUtils
-
Creates a labels index file from subdirectories at the given path.
- CreateLabelsIndex - Class in deepnetts.util
- CreateLabelsIndex() - Constructor for class deepnetts.util.CreateLabelsIndex
- createRandomlyCroppedImages(String, String, int, int, int) - Static method in class deepnetts.util.ImageSetUtils
- createStats(TabularDataSet) - Static method in class deepnetts.data.DataSetStats
- createsTrainingSnaphots() - Method in class deepnetts.net.train.BackpropagationTrainer
- createSubSampledImageIndex(String, String, int, boolean) - Static method in class deepnetts.util.ImageSetUtils
-
Copies specified number of samples of each class from
- CROSS_ENTROPY - deepnetts.net.loss.LossType
-
Cross Entropy Loss, used for classificaton tasks, implemented by
CrossEntropyLoss
- CrossEntropyLoss - Class in deepnetts.net.loss
-
Represents Average Cross Entropy Loss function.
- CrossEntropyLoss(NeuralNetwork) - Constructor for class deepnetts.net.loss.CrossEntropyLoss
- CsvFormat - Class in deepnetts.util
- CsvFormat() - Constructor for class deepnetts.util.CsvFormat
D
- dataSet(DataSet) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
- DataSets - Class in deepnetts.data
-
Data set related utility methods.
- DataSets() - Constructor for class deepnetts.data.DataSets
- DataSetStats - Class in deepnetts.data
- DataSetStats(Tensor) - Constructor for class deepnetts.data.DataSetStats
- DECIMAL - deepnetts.util.ColumnType
- DecimalScaler - Class in deepnetts.data.preprocessing.scale
-
Decimal scale normalization for the given data set.
- DecimalScaler(DataSet<MLDataItem>) - Constructor for class deepnetts.data.preprocessing.scale.DecimalScaler
-
Creates a new instance of max normalizer initialized to max values in given data set.
- DeepNetts - Class in deepnetts.core
-
Global configuration and settings for Deep Netts Engine.
- deepnetts.android - package deepnetts.android
- deepnetts.core - package deepnetts.core
-
Core engine configuration and settings.
- deepnetts.data - package deepnetts.data
-
Data collections used to build machine learning models.
- deepnetts.data.preprocessing - package deepnetts.data.preprocessing
-
Data pre-processing techniques.
- deepnetts.data.preprocessing.scale - package deepnetts.data.preprocessing.scale
- deepnetts.eval - package deepnetts.eval
-
Evaluation for machine learning models, used to estimate how good they are performing for given data.
- deepnetts.net - package deepnetts.net
-
Neural network architectures with their corresponding builders.
- deepnetts.net.layers - package deepnetts.net.layers
-
Neural network layers, which are main building blocks of a neural network.
- deepnetts.net.layers.activation - package deepnetts.net.layers.activation
-
Activation functions for neural network layers.
- deepnetts.net.loss - package deepnetts.net.loss
-
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
- deepnetts.net.train - package deepnetts.net.train
-
Deep learning training algorithms and utilities.
- deepnetts.net.train.opt - package deepnetts.net.train.opt
-
Optimization methods used by training algorithm.
- deepnetts.net.weights - package deepnetts.net.weights
-
Weights randomization techniques.
- deepnetts.util - package deepnetts.util
-
Various utility classes including Tensor, image operations, exceptions etc.
- DeepNettsException - Exception in deepnetts.util
- DeepNettsException() - Constructor for exception deepnetts.util.DeepNettsException
-
Creates a new instance of
JDeepNettsException
without detail message. - DeepNettsException(String) - Constructor for exception deepnetts.util.DeepNettsException
-
Constructs an instance of
JDeepNettsException
with the specified detail message. - DeepNettsException(String, Throwable) - Constructor for exception deepnetts.util.DeepNettsException
- DeepNettsException(Throwable) - Constructor for exception deepnetts.util.DeepNettsException
- DELIMITER_COMMA - Static variable in class deepnetts.data.DataSets
- DELIMITER_SEMICOLON - Static variable in class deepnetts.data.DataSets
- DELIMITER_SPACE - Static variable in class deepnetts.data.DataSets
- DELIMITER_TAB - Static variable in class deepnetts.data.DataSets
- deltaBiases - Variable in class deepnetts.net.layers.AbstractLayer
- deltas - Variable in class deepnetts.net.layers.AbstractLayer
-
Deltas used for learning
- deltaWeights - Variable in class deepnetts.net.layers.AbstractLayer
-
Weight changes for current and previous iteration
- deNormalizeInputs(Tensor) - Method in class deepnetts.data.preprocessing.scale.MaxScaler
- deNormalizeOutputs(Tensor) - Method in class deepnetts.data.preprocessing.scale.MaxScaler
-
De-normalize given output vector in-place.
- depth - Variable in class deepnetts.net.layers.AbstractLayer
- detectCsvFormat(String) - Static method in class deepnetts.data.DataSets
- div(float) - Method in class deepnetts.util.Tensor
-
Divide all values in this tensor with specified value.
- div(float[]) - Method in class deepnetts.util.Tensor
- div(float[], float) - Static method in class deepnetts.util.Tensors
- div(float[], float[]) - Static method in class deepnetts.util.Tensors
- div(Tensor) - Method in class deepnetts.util.Tensor
E
- EPOCH_FINISHED - deepnetts.net.train.TrainingEvent.Type
- equals(Tensor, float) - Method in class deepnetts.util.Tensor
- equals(Object) - Method in class deepnetts.util.Tensor
- equalsName(String) - Method in enum deepnetts.net.layers.LayerType
- equalsName(String) - Method in enum deepnetts.net.loss.LossType
- equalsName(String) - Method in enum deepnetts.net.NetworkType
- evaluate(NeuralNetwork, DataSet<? extends MLDataItem>) - Method in class deepnetts.eval.ClassifierEvaluator
-
Performs classifier evaluation and returns classification performance metrics.
- evaluate(NeuralNetwork, DataSet<MLDataItem>) - Method in class deepnetts.eval.RegresionEvaluator
- evaluateClassifier(NeuralNetwork<?>, DataSet<MLDataItem>) - Static method in class deepnetts.eval.Evaluators
- evaluateRegressor(NeuralNetwork<?>, DataSet<MLDataItem>) - Static method in class deepnetts.eval.Evaluators
- evaluator(Evaluator<NeuralNetwork, DataSet<? extends MLDataItem>>) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
- Evaluators - Class in deepnetts.eval
-
This class provides various utility methods for evaluating machine learning models.
- ExampleImage - Class in deepnetts.data
-
This class represents example image to train the network.
- ExampleImage(BufferedImage) - Constructor for class deepnetts.data.ExampleImage
- ExampleImage(BufferedImage, String) - Constructor for class deepnetts.data.ExampleImage
- ExampleImage(BufferedImage, String, int, int) - Constructor for class deepnetts.data.ExampleImage
- ExampleImage(File, String) - Constructor for class deepnetts.data.ExampleImage
-
Creates an instance of new example image with specified image and label Loads image from specified file and creates matrix structures with color information
F
- FALSE_NEGATIVE - Static variable in class deepnetts.eval.ConfusionMatrix
- FALSE_POSITIVE - Static variable in class deepnetts.eval.ConfusionMatrix
- FEEDFORWARD - deepnetts.net.NetworkType
- FeedForwardNetwork - Class in deepnetts.net
-
Feed forward neural network architecture, also known as Multi Layer Perceptron.
- FeedForwardNetwork.Builder - Class in deepnetts.net
-
Builder for FeedForwardNetwork
- FileIO - Class in deepnetts.util
-
File utilities for saving and loading neural networks.
- fill(float) - Method in class deepnetts.util.Tensor
-
Fills the entire tensor with specified value.
- fill(float[], float) - Static method in class deepnetts.util.Tensor
- forward() - Method in class deepnetts.net.layers.AbstractLayer
-
This method should implement forward pass in subclasses
- forward() - Method in class deepnetts.net.layers.ConvolutionalLayer
-
Forward pass for convolutional layer.
- forward() - Method in class deepnetts.net.layers.FullyConnectedLayer
- forward() - Method in class deepnetts.net.layers.InputLayer
-
This method does nothing in input layer
- forward() - Method in interface deepnetts.net.layers.Layer
-
Performs layer calculation in forward pass of a neural network.
- forward() - Method in class deepnetts.net.layers.MaxPoolingLayer
-
Max pooling forward pass outputs the max value for each filter position.
- forward() - Method in class deepnetts.net.layers.OutputLayer
-
This method implements forward pass for the output layer.
- forward() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
-
This method implements forward pass for the output layer.
- forward() - Method in class deepnetts.net.NeuralNetwork
- fScore - Variable in class deepnetts.eval.ClassificationMetrics.Stats
- FULLY_CONNECTED - deepnetts.net.layers.LayerType
- FullyConnectedLayer - Class in deepnetts.net.layers
-
Fully connected layer is used as hidden layer in the neural network, and it has a single row of units/nodes/neurons connected to all neurons in previous and next layer.
- FullyConnectedLayer(int) - Constructor for class deepnetts.net.layers.FullyConnectedLayer
-
Creates an instance of fully connected layer with specified width (number of neurons) and sigmoid activation function.
- FullyConnectedLayer(int, ActivationType) - Constructor for class deepnetts.net.layers.FullyConnectedLayer
-
Creates an instance of fully connected layer with specified width (number of neurons) and activation function type.
G
- gaussian(float[], float, float) - Static method in class deepnetts.net.weights.RandomWeights
- GAUSSIAN - deepnetts.net.weights.RandomWeightsType
- generateNoisyImage(int, int, int, String) - Static method in class deepnetts.util.ImageUtils
- generateRandomColoredImages(int, int, int, String) - Static method in class deepnetts.util.ImageUtils
-
Generates a specified number of randomly full colored images of a specified size.
- GenerateRandomNegative - Class in deepnetts.util
- GenerateRandomNegative() - Constructor for class deepnetts.util.GenerateRandomNegative
- get(int) - Method in class deepnetts.util.Tensor
-
Gets value at specified index position.
- get(int, int) - Method in class deepnetts.eval.ConfusionMatrix
-
Returns a value of confusion matrix at specified position.
- get(int, int) - Method in class deepnetts.util.Tensor
-
Returns matrix value at row, col
- get(int, int, int) - Method in class deepnetts.util.Tensor
-
Returns value at row, col, z
- get(int, int, int, int) - Method in class deepnetts.util.Tensor
- getAccuracy() - Method in class deepnetts.eval.ClassificationMetrics
-
A percent of correct classiifcations/predictions for both positive and negative classes.
- getActivation() - Method in class deepnetts.net.layers.AbstractLayer
- getActivationType() - Method in class deepnetts.net.layers.AbstractLayer
- getAllOutputs() - Method in class deepnetts.net.ConvolutionalNetwork
- getBalancedClassificationRate() - Method in class deepnetts.eval.ClassificationMetrics
- getBatchSize() - Method in class deepnetts.net.layers.AbstractLayer
- getBatchSize() - Method in class deepnetts.net.train.BackpropagationTrainer
- getBiases() - Method in class deepnetts.net.layers.AbstractLayer
- getCheckpointEpochs() - Method in class deepnetts.net.train.BackpropagationTrainer
- getClassCount() - Method in class deepnetts.eval.ConfusionMatrix
- getClassLabel() - Method in class deepnetts.eval.ClassificationMetrics
-
Returns class label for
- getClassLabels() - Method in class deepnetts.eval.ConfusionMatrix
- getCols() - Method in class deepnetts.util.Tensor
- getColumnNames() - Method in class deepnetts.data.TabularDataSet
- getColumnNames() - Method in class deepnetts.util.CsvFormat
- getColumnTypes() - Method in class deepnetts.util.CsvFormat
- getConfusionMatrix() - Method in class deepnetts.eval.ClassifierEvaluator
- getContext(String, ClassLoader, Object, boolean) - Method in class deepnetts.android.LoggerContextFactory_Dummy
-
Creates a
LoggerContext
. - getContext(String, ClassLoader, Object, boolean, URI, String) - Method in class deepnetts.android.LoggerContextFactory_Dummy
-
Creates a
LoggerContext
. - getCurrentEpoch() - Method in class deepnetts.net.train.BackpropagationTrainer
- getDefault() - Static method in class deepnetts.util.RandomGenerator
- getDelimiter() - Method in class deepnetts.data.ImageSet
- getDelimiter() - Method in class deepnetts.util.CsvFormat
- getDeltaBiases() - Method in class deepnetts.net.layers.AbstractLayer
- getDeltas() - Method in class deepnetts.net.layers.AbstractLayer
- getDeltas() - Method in interface deepnetts.net.layers.Layer
-
Returns layer deltas (as a tensor).
- getDeltaWeights() - Method in class deepnetts.net.ConvolutionalNetwork
- getDeltaWeights() - Method in class deepnetts.net.layers.AbstractLayer
- getDepth() - Method in class deepnetts.net.layers.AbstractLayer
- getDepth() - Method in class deepnetts.util.Tensor
- getDimensions() - Method in class deepnetts.util.Tensor
- getEarlyStopping() - Method in class deepnetts.net.train.BackpropagationTrainer
- getEarlyStoppingMinDelta() - Method in class deepnetts.net.train.BackpropagationTrainer
- getEarlyStoppingPatience() - Method in class deepnetts.net.train.BackpropagationTrainer
- getErrorRate() - Method in class deepnetts.eval.ClassificationMetrics
-
A percent of wrong classifications/predictions made.
- getF1Score() - Method in class deepnetts.eval.ClassificationMetrics
-
Calculates and returns F1 score - harmonic mean of recall and precision f1 = 2 * ( (precision*recall) / (precision+recall)) https://en.wikipedia.org/wiki/F1_score
- getFalseDiscoveryRate() - Method in class deepnetts.eval.ClassificationMetrics
-
When its actauly no, how often it is classified as yes
- getFalseNegative() - Method in class deepnetts.eval.ConfusionMatrix
-
How many positive items has been (falsely) classified as negative.
- getFalseNegative(int) - Method in class deepnetts.eval.ConfusionMatrix
- getFalseNegativeRate() - Method in class deepnetts.eval.ClassificationMetrics
-
When its actually yes, how often does it predicts no
- getFalsePositive() - Method in class deepnetts.eval.ConfusionMatrix
-
Returns number of false positive classifications.
- getFalsePositive(int) - Method in class deepnetts.eval.ConfusionMatrix
- getFalsePositiveRate() - Method in class deepnetts.eval.ClassificationMetrics
-
When it's actually no, how often does it predict yes? FP/actual no
- getFile() - Method in class deepnetts.data.ExampleImage
- getFilterDeltaWeights() - Method in class deepnetts.net.layers.ConvolutionalLayer
- getFilterDepth() - Method in class deepnetts.net.layers.ConvolutionalLayer
- getFilterHeight() - Method in class deepnetts.net.layers.ConvolutionalLayer
- getFilterHeight() - Method in class deepnetts.net.layers.MaxPoolingLayer
- getFilters() - Method in class deepnetts.net.layers.ConvolutionalLayer
- getFilterWidth() - Method in class deepnetts.net.layers.ConvolutionalLayer
- getFilterWidth() - Method in class deepnetts.net.layers.MaxPoolingLayer
- getFloat(String) - Method in class deepnetts.util.TypedProperties
- getFourthDim() - Method in class deepnetts.util.Tensor
- getFScore(int) - Method in class deepnetts.eval.ClassificationMetrics
-
Returns the F-score.
- getGradients() - Method in class deepnetts.net.layers.AbstractLayer
- getHeight() - Method in class deepnetts.data.ExampleImage
- getHeight() - Method in class deepnetts.net.layers.AbstractLayer
- getHeight() - Method in class deepnetts.util.BoundingBox
- getId() - Method in class deepnetts.util.BoundingBox
- getImageType(File) - Static method in class deepnetts.util.ImageUtils
- getInput() - Method in class deepnetts.data.ExampleImage
- getInput() - Method in interface deepnetts.data.MLDataItem
- getInput() - Method in class deepnetts.data.TabularDataSet.Item
- getInputLayer() - Method in class deepnetts.net.NeuralNetwork
- getInstance() - Static method in class deepnetts.core.DeepNetts
- getInt(String) - Method in class deepnetts.util.TypedProperties
- getInvertImages() - Method in class deepnetts.data.ImageSet
- getL1() - Method in class deepnetts.net.layers.AbstractLayer
- getL1Reg() - Method in class deepnetts.net.NeuralNetwork
- getL2() - Method in class deepnetts.net.layers.AbstractLayer
- getL2Reg() - Method in class deepnetts.net.NeuralNetwork
- getLabel() - Method in class deepnetts.data.ExampleImage
- getLabel() - Method in class deepnetts.net.NeuralNetwork
- getLabel() - Method in class deepnetts.util.BoundingBox
- getLabelsCount() - Method in class deepnetts.data.ImageSet
- getLayers() - Method in class deepnetts.net.NeuralNetwork
- getLearningRate() - Method in class deepnetts.net.layers.AbstractLayer
- getLearningRate() - Method in class deepnetts.net.train.BackpropagationTrainer
- getLossFunction() - Method in class deepnetts.net.NeuralNetwork
- getLossType() - Method in class deepnetts.net.layers.OutputLayer
- getMatthewsCorrelationCoefficient() - Method in class deepnetts.eval.ClassificationMetrics
- getMax() - Method in class deepnetts.data.DataSetStats
- getMaxEpochs() - Method in class deepnetts.net.train.BackpropagationTrainer
- getMaxError() - Method in class deepnetts.net.train.BackpropagationTrainer
- getMaxInputs() - Method in class deepnetts.data.preprocessing.scale.MaxScaler
- getMaxOutputs() - Method in class deepnetts.data.preprocessing.scale.MaxScaler
- getMean() - Method in class deepnetts.data.DataSetStats
- getMeanSquaredSum() - Method in class deepnetts.eval.MeanSquaredError
-
Returns mean squared error
- getMin() - Method in class deepnetts.data.DataSetStats
- getMomentum() - Method in class deepnetts.net.layers.AbstractLayer
- getMomentum() - Method in class deepnetts.net.train.BackpropagationTrainer
- getNextLayer() - Method in class deepnetts.net.layers.AbstractLayer
- getNumColumns() - Method in class deepnetts.util.CsvFormat
- getNumInputs() - Method in class deepnetts.data.TabularDataSet
- getNumOutputs() - Method in class deepnetts.data.TabularDataSet
- getOptimizer() - Method in class deepnetts.net.train.BackpropagationTrainer
- getOptimizerType() - Method in class deepnetts.net.layers.AbstractLayer
- getOutput() - Method in class deepnetts.net.NeuralNetwork
-
Returns network's output.
- getOutputErrors() - Method in class deepnetts.net.layers.OutputLayer
- getOutputLabel(int) - Method in class deepnetts.net.NeuralNetwork
- getOutputLabels() - Method in class deepnetts.net.NeuralNetwork
- getOutputLayer() - Method in class deepnetts.net.NeuralNetwork
- getOutputs() - Method in class deepnetts.net.layers.AbstractLayer
- getOutputs() - Method in interface deepnetts.net.layers.Layer
-
Returns layer outputs (as a tensor).
- getPerformanceByClass() - Method in class deepnetts.eval.ClassifierEvaluator
- getPrecision() - Method in class deepnetts.eval.ClassificationMetrics
-
What percent of those predicted as positive are really positive.
- getPrevDeltaBiases() - Method in class deepnetts.net.layers.AbstractLayer
- getPrevDeltaWeights() - Method in class deepnetts.net.layers.AbstractLayer
- getPrevlayer() - Method in class deepnetts.net.layers.AbstractLayer
- getPrime(float) - Method in interface deepnetts.net.layers.activation.ActivationFunction
-
Returns the first derivative of activation function for specified output y
- getPrime(float) - Method in class deepnetts.net.layers.activation.Linear
- getPrime(float) - Method in class deepnetts.net.layers.activation.Relu
- getPrime(float) - Method in class deepnetts.net.layers.activation.Sigmoid
- getPrime(float) - Method in class deepnetts.net.layers.activation.Tanh
- getProperties() - Method in class deepnetts.core.DeepNetts
- getProperty(String) - Method in class deepnetts.core.DeepNetts
- getRandom() - Method in class deepnetts.util.RandomGenerator
- getRecall() - Method in class deepnetts.eval.ClassificationMetrics
-
Ratio between those classified as positive compared to those that are actually positive, When ACTUAL class is YES, how often classifier predicts YES? Recall, sensitivity, or true positive rate.
- getRgbVector() - Method in class deepnetts.data.ExampleImage
- getRootMeanSquaredSum() - Method in class deepnetts.eval.MeanSquaredError
- getRows() - Method in class deepnetts.util.Tensor
- getScaleImages() - Method in class deepnetts.data.ImageSet
-
Returns flag that indicates wheather images should be scaled to specified dimensions while creating image set.
- getScore() - Method in class deepnetts.util.BoundingBox
- getShuffle() - Method in class deepnetts.net.train.BackpropagationTrainer
- getSnapshotEpochs() - Method in class deepnetts.net.train.BackpropagationTrainer
- getSnapshotPath() - Method in class deepnetts.net.train.BackpropagationTrainer
- getSource() - Method in class deepnetts.net.train.TrainingEvent
- getSpecificity() - Method in class deepnetts.eval.ClassificationMetrics
-
Specificity or true negative rate.
- getSquaredSum() - Method in class deepnetts.eval.MeanSquaredError
-
Returns squared error sum (RSS, or residual square sum)
- getStd() - Method in class deepnetts.data.DataSetStats
- getStride() - Method in class deepnetts.net.layers.ConvolutionalLayer
- getStride() - Method in class deepnetts.net.layers.MaxPoolingLayer
- getString(String) - Method in class deepnetts.util.TypedProperties
- getTargetOutput() - Method in class deepnetts.data.ExampleImage
- getTargetOutput() - Method in interface deepnetts.data.MLDataItem
- getTargetOutput() - Method in class deepnetts.data.TabularDataSet.Item
- getTestSet() - Method in class deepnetts.net.train.BackpropagationTrainer
- getThreshold() - Method in class deepnetts.eval.ClassifierEvaluator
- getTotal() - Method in class deepnetts.eval.ClassificationMetrics
-
Returns total number of classifications.
- getTotal() - Method in class deepnetts.eval.RootMeanSquaredError
- getTotal() - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
- getTotal() - Method in class deepnetts.net.loss.CrossEntropyLoss
- getTotal() - Method in interface deepnetts.net.loss.LossFunction
-
Returns the total error calculated by this loss function.
- getTotal() - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
- getTotalAverage() - Method in class deepnetts.eval.ClassifierEvaluator
- getTotalItems() - Method in class deepnetts.eval.ConfusionMatrix
- getTrainedNetworks() - Method in class deepnetts.net.train.KFoldCrossValidation
- getTrainer() - Method in class deepnetts.net.NeuralNetwork
- getTrainer() - Method in interface deepnetts.net.train.TrainerProvider
- getTrainingAccuracy() - Method in class deepnetts.net.train.BackpropagationTrainer
- getTrainingLoss() - Method in class deepnetts.net.train.BackpropagationTrainer
- getTrueNegative() - Method in class deepnetts.eval.ConfusionMatrix
- getTrueNegative(int) - Method in class deepnetts.eval.ConfusionMatrix
- getTruePositive() - Method in class deepnetts.eval.ConfusionMatrix
-
Return true positive for binary classification.
- getTruePositive(int) - Method in class deepnetts.eval.ConfusionMatrix
-
Returns true positive for specified class idx for multiclass classification
- getType() - Method in class deepnetts.net.train.TrainingEvent
- getValidationAccuracy() - Method in class deepnetts.net.train.BackpropagationTrainer
- getValidationLoss() - Method in class deepnetts.net.train.BackpropagationTrainer
- getValue(float) - Method in interface deepnetts.net.layers.activation.ActivationFunction
-
Returns the value of activation function for specified input x
- getValue(float) - Method in class deepnetts.net.layers.activation.Linear
- getValue(float) - Method in class deepnetts.net.layers.activation.Relu
- getValue(float) - Method in class deepnetts.net.layers.activation.Sigmoid
- getValue(float) - Method in class deepnetts.net.layers.activation.Tanh
- getValues() - Method in class deepnetts.util.Tensor
- getVar() - Method in class deepnetts.data.DataSetStats
- getWeights() - Method in class deepnetts.net.ConvolutionalNetwork
-
Returns all weights from this network as list of strings.
- getWeights() - Method in class deepnetts.net.layers.AbstractLayer
- getWidth() - Method in class deepnetts.data.ExampleImage
- getWidth() - Method in class deepnetts.net.layers.AbstractLayer
- getWidth() - Method in class deepnetts.util.BoundingBox
- getWithStride(int[]) - Method in class deepnetts.util.Tensor
- getX() - Method in class deepnetts.util.BoundingBox
- getY() - Method in class deepnetts.util.BoundingBox
- gradients - Variable in class deepnetts.net.layers.AbstractLayer
H
- handleEvent(TrainingEvent) - Method in interface deepnetts.net.train.TrainingListener
- hashCode() - Method in class deepnetts.util.Tensor
- he(float[], int) - Static method in class deepnetts.net.weights.RandomWeights
- HE - deepnetts.net.weights.RandomWeightsType
- height - Variable in class deepnetts.net.layers.AbstractLayer
- hiddenActivationFunction(ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- hiddenActivationFunction(ActivationType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
I
- IMAGE_IDX_FILE - Static variable in class deepnetts.util.ImageSetUtils
- ImageSet - Class in deepnetts.data
-
Data set with images that will be used to train convolutional neural network.
- ImageSet(int, int) - Constructor for class deepnetts.data.ImageSet
- ImageSet(int, int, String) - Constructor for class deepnetts.data.ImageSet
- ImageSetUtils - Class in deepnetts.util
- ImageSetUtils() - Constructor for class deepnetts.util.ImageSetUtils
- ImageUtils - Class in deepnetts.util
-
Utility methods to work with images.
- inc(int, int) - Method in class deepnetts.eval.ConfusionMatrix
-
Increments matrix value at specified position.
- init() - Method in class deepnetts.net.layers.AbstractLayer
-
This method should implement layer initialization when layer is added to network (create weights, outputs, deltas, randomization etc.) The code is called in 2 scenarios: 1.
- init() - Method in class deepnetts.net.layers.ConvolutionalLayer
-
Init dimensions, create matrices, filters, weights, biases and all internal structures etc.
- init() - Method in class deepnetts.net.layers.FullyConnectedLayer
-
Creates all internal data structures: inputs, weights, biases, outputs, deltas, deltaWeights, deltaBiases prevDeltaWeights, prevDeltaBiases.
- init() - Method in class deepnetts.net.layers.InputLayer
-
Initialize this layer in network.
- init() - Method in class deepnetts.net.layers.MaxPoolingLayer
- init() - Method in class deepnetts.net.layers.OutputLayer
- init() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
- initSeed(long) - Static method in class deepnetts.net.weights.RandomWeights
- initSeed(long) - Method in class deepnetts.util.RandomGenerator
- INPUT - deepnetts.net.layers.LayerType
- InputLayer - Class in deepnetts.net.layers
-
Input layer in neural network, which accepts external input, and sends it to next layer in a network.
- InputLayer(int) - Constructor for class deepnetts.net.layers.InputLayer
-
Creates input layer with specified width, and with height and depth equals to one.
- InputLayer(int, int) - Constructor for class deepnetts.net.layers.InputLayer
-
Creates input layer with specified width and height, with depth=1 (single channel).
- InputLayer(int, int, int) - Constructor for class deepnetts.net.layers.InputLayer
-
Creates input layer with specified width, height, and depth (number of channels).
- inputs - Variable in class deepnetts.net.layers.AbstractLayer
-
Inputs to this layer (a reference to outputs matrix in prev layer, or external input in input layer)
- INTEGER - deepnetts.util.ColumnType
- invert() - Method in class deepnetts.data.ExampleImage
- invert() - Method in class deepnetts.data.ImageSet
- isBatchMode() - Method in class deepnetts.net.layers.AbstractLayer
- isBatchMode() - Method in class deepnetts.net.train.BackpropagationTrainer
- isHasHeader() - Method in class deepnetts.util.CsvFormat
- isImageFile(File) - Method in class deepnetts.util.RandomlyTranslateImages
- Item(float[], float[]) - Constructor for class deepnetts.data.TabularDataSet.Item
- Item(Tensor, Tensor) - Constructor for class deepnetts.data.TabularDataSet.Item
- ITERATION_FINISHED - deepnetts.net.train.TrainingEvent.Type
K
- KFoldCrossValidation - Class in deepnetts.net.train
-
Split data set into k parts of equal sizes (folds) Train with data from k-1 folds(parts), and test with 1 fold, repeat k times each with different test fold.
- KFoldCrossValidation() - Constructor for class deepnetts.net.train.KFoldCrossValidation
- KFoldCrossValidation.Builder - Class in deepnetts.net.train
L
- labels - Variable in class deepnetts.net.layers.OutputLayer
- LABELS_FILE - Static variable in class deepnetts.util.ImageSetUtils
- labelsFromSubDirectories(String) - Static method in class deepnetts.util.ImageSetUtils
-
Returns a list of category/class labels from the names of subdirectories for the given path.
- Layer - Interface in deepnetts.net.layers
-
Common base interface for all types of neural network layers.
- LayerType - Enum in deepnetts.net.layers
-
Supported types of layers.
- LEAKY_RELU - deepnetts.net.layers.activation.ActivationType
- learningRate - Variable in class deepnetts.net.layers.AbstractLayer
-
Learning rate for this layer
- Linear - Class in deepnetts.net.layers.activation
-
Linear activation function and its derivative y = x y' = 1
- Linear() - Constructor for class deepnetts.net.layers.activation.Linear
- LINEAR - deepnetts.net.layers.activation.ActivationType
- loadFileImageMapFromDirectory(File) - Static method in class deepnetts.util.ImageUtils
-
Loads images (jpg, jpeg, png) from specificed directory and returns them as a map with File object as a key and BufferedImage object as a value.
- loadImages(File) - Method in class deepnetts.data.ImageSet
-
Loads example images with corresponding labels from the specified file.
- loadImages(File, int) - Method in class deepnetts.data.ImageSet
-
Loads specified number of example images with corresponding labels from the specified file.
- loadImages(String) - Method in class deepnetts.data.ImageSet
- loadImagesFromDirectory(File) - Static method in class deepnetts.util.ImageUtils
-
Loads all images from the specified directory, and returns them as a list.
- loadLabels(File) - Method in class deepnetts.data.ImageSet
-
Loads and returns image labels to train neural network from the specified file.These labels will be used to label network's outputs.
- loadLabels(String) - Method in class deepnetts.data.ImageSet
-
Loads and returns image labels to train neural network from the specified file.
- LoggerContextFactory_Dummy - Class in deepnetts.android
- LoggerContextFactory_Dummy() - Constructor for class deepnetts.android.LoggerContextFactory_Dummy
- lossFunction(LossType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- lossFunction(LossType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
- lossFunction(Class<? extends LossFunction>) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- LossFunction - Interface in deepnetts.net.loss
-
Base Interface for all loss functions.
- lossType - Variable in class deepnetts.net.layers.OutputLayer
- LossType - Enum in deepnetts.net.loss
-
Supported types of Loss Functions in Deep Netts engine.
M
- main(String[]) - Static method in class deepnetts.util.CenterOnWhiteBackground
- main(String[]) - Static method in class deepnetts.util.CreateImageIndex
- main(String[]) - Static method in class deepnetts.util.CreateLabelsIndex
- main(String[]) - Static method in class deepnetts.util.GenerateRandomNegative
- main(String[]) - Static method in class deepnetts.util.ImageSetUtils
- main(String[]) - Static method in class deepnetts.util.ObjectsOnBackgrounds
- main(String[]) - Static method in class deepnetts.util.RandomlyTranslateImages
- main(String[]) - Static method in class deepnetts.util.ScaleImages
- main(String[]) - Static method in class deepnetts.util.Serialization
- MAXPOOLING - deepnetts.net.layers.LayerType
- MaxPoolingLayer - Class in deepnetts.net.layers
-
This layer performs max pooling operation in convolutional neural network, which scales down output from previous layer by taking max outputs from small predefined filter areas.
- MaxPoolingLayer(int, int, int) - Constructor for class deepnetts.net.layers.MaxPoolingLayer
-
Creates a new max pooling layer with specified filter dimensions and stride.
- MaxScaler - Class in deepnetts.data.preprocessing.scale
-
Performs max normalization, rescales data to corresponding max value in each column.
- MaxScaler(DataSet<MLDataItem>) - Constructor for class deepnetts.data.preprocessing.scale.MaxScaler
-
Creates a new instance of max normalizer initialized to max values in given data set.
- MEAN_SQUARED_ERROR - deepnetts.net.loss.LossType
-
Mean Squared Error loss, used for regression tasks, implemented by
MeanSquaredErrorLoss
- MeanSquaredError - Class in deepnetts.eval
-
This class calculates values used for evaluation metrics for regression problems.
- MeanSquaredError() - Constructor for class deepnetts.eval.MeanSquaredError
- MeanSquaredErrorLoss - Class in deepnetts.net.loss
-
Mean Squared Error Loss function.
- MeanSquaredErrorLoss(NeuralNetwork) - Constructor for class deepnetts.net.loss.MeanSquaredErrorLoss
-
Creates a new mean squared error loss for the given neural network.
- MINI_BATCH - deepnetts.net.train.TrainingEvent.Type
- MinMaxScaler - Class in deepnetts.data.preprocessing.scale
-
Performs Min Max scaling on the given data set.
- MinMaxScaler(DataSet<MLDataItem>) - Constructor for class deepnetts.data.preprocessing.scale.MinMaxScaler
-
Creates a new instance of max normalizer initialized to max values in given data set.
- MLDataItem - Interface in deepnetts.data
-
Single data item for machine learning algorithms.
- model(NeuralNetwork) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
- momentum - Variable in class deepnetts.net.layers.AbstractLayer
- MOMENTUM - deepnetts.net.train.opt.OptimizerType
- MomentumOptimizer - Class in deepnetts.net.train.opt
- MomentumOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.MomentumOptimizer
- mserror - Variable in class deepnetts.eval.ClassificationMetrics.Stats
- multiply(float) - Method in class deepnetts.util.Tensor
- multiply(float[], float[]) - Static method in class deepnetts.util.Tensors
- multiplyElementWise(Tensor) - Method in class deepnetts.util.Tensor
N
- negativeFreqency() - Method in class deepnetts.eval.ClassificationMetrics
- NETWORK_FILE_EXT - Static variable in class deepnetts.util.FileIO
- NetworkType - Enum in deepnetts.net
-
Neural network architecture types
- NeuralNetwork<T extends Trainer> - Class in deepnetts.net
-
Base class for all neural networks in DeepNetts.
- NeuralNetwork() - Constructor for class deepnetts.net.NeuralNetwork
- nextFloat() - Method in class deepnetts.util.RandomGenerator
- nextGaussian() - Method in class deepnetts.util.RandomGenerator
- nextInt() - Method in class deepnetts.util.RandomGenerator
- nextLayer - Variable in class deepnetts.net.layers.AbstractLayer
-
Next layer in network
- normal(float[]) - Static method in class deepnetts.net.weights.RandomWeights
O
- ObjectsOnBackgrounds - Class in deepnetts.util
-
Center images on backgounds and save at target path.
- ObjectsOnBackgrounds() - Constructor for class deepnetts.util.ObjectsOnBackgrounds
- of(Class) - Static method in enum deepnetts.net.loss.LossType
- Of(Class) - Static method in enum deepnetts.net.NetworkType
- oneHotEncode(String, String[]) - Static method in class deepnetts.data.DataSets
- ones(int) - Static method in class deepnetts.util.Tensors
- optim - Variable in class deepnetts.net.layers.AbstractLayer
- Optimizer - Interface in deepnetts.net.train.opt
- optimizerType - Variable in class deepnetts.net.layers.AbstractLayer
- OptimizerType - Enum in deepnetts.net.train.opt
-
Optimization methods used by back-propagation training algorithm.
- OUTPUT - deepnetts.net.layers.LayerType
- outputErrors - Variable in class deepnetts.net.layers.OutputLayer
- OutputLayer - Class in deepnetts.net.layers
-
Output layer of a neural network, which gives the final output of a network.
- OutputLayer(int) - Constructor for class deepnetts.net.layers.OutputLayer
-
Creates an instance of output layer with specified width (number of outputs) and sigmoid activation function by default.
- OutputLayer(int, ActivationType) - Constructor for class deepnetts.net.layers.OutputLayer
-
Creates an instance of output layer with specified width (number of outputs) and specified activation function.
- OutputLayer(String[]) - Constructor for class deepnetts.net.layers.OutputLayer
-
Creates an instance of output layer with specified width (number of outputs) which corresponds to number of labels and sigmoid activation function by default.
- OutputLayer(String[], ActivationType) - Constructor for class deepnetts.net.layers.OutputLayer
- outputs - Variable in class deepnetts.net.layers.AbstractLayer
-
Layer outputs
P
- positiveFreqency() - Method in class deepnetts.eval.ClassificationMetrics
- precision - Variable in class deepnetts.eval.ClassificationMetrics.Stats
- predict(float[]) - Method in class deepnetts.net.FeedForwardNetwork
-
Predict output for the given input
- prevBiasSqrSum - Variable in class deepnetts.net.layers.AbstractLayer
-
Previous delta sums used by AdaGrad and AdaDelta
- prevDeltaBiases - Variable in class deepnetts.net.layers.AbstractLayer
- prevDeltaBiasSqrSum - Variable in class deepnetts.net.layers.AbstractLayer
-
Previous delta sums used by AdaGrad and AdaDelta
- prevDeltaWeights - Variable in class deepnetts.net.layers.AbstractLayer
-
Weight changes for current and previous iteration
- prevDeltaWeightSqrSum - Variable in class deepnetts.net.layers.AbstractLayer
-
Previous delta sums used by AdaGrad and AdaDelta
- prevGradSqrSum - Variable in class deepnetts.net.layers.AbstractLayer
-
Previous delta sums used by AdaGrad and AdaDelta
- prevLayer - Variable in class deepnetts.net.layers.AbstractLayer
-
Previous layer in network
- PROP_BATCH_MODE - Static variable in class deepnetts.net.train.BackpropagationTrainer
- PROP_BATCH_SIZE - Static variable in class deepnetts.net.train.BackpropagationTrainer
- PROP_LEARNING_RATE - Static variable in class deepnetts.net.train.BackpropagationTrainer
- PROP_MAX_EPOCHS - Static variable in class deepnetts.net.train.BackpropagationTrainer
- PROP_MAX_ERROR - Static variable in class deepnetts.net.train.BackpropagationTrainer
- PROP_MOMENTUM - Static variable in class deepnetts.net.train.BackpropagationTrainer
- PROP_OPTIMIZER_TYPE - Static variable in class deepnetts.net.train.BackpropagationTrainer
R
- random(int, int) - Static method in class deepnetts.util.Tensors
- random(int, int, int) - Static method in class deepnetts.util.Tensors
- random(int, int, int, int) - Static method in class deepnetts.util.Tensors
- randomCrop(BufferedImage, int, int, int, Random) - Static method in class deepnetts.util.ImageUtils
-
Crops specified number of random subimages of specified dimensions.
- RandomGenerator - Class in deepnetts.util
-
Random number generator singleton.
- randomize() - Method in class deepnetts.util.Tensor
- randomize(float[]) - Static method in class deepnetts.net.weights.RandomWeights
-
Fills the specified array with random numbers in range [-0.5, 0.5] from the current random seed
- RandomlyTranslateImages - Class in deepnetts.util
-
just move 2(x) pix to left right up down
- RandomlyTranslateImages() - Constructor for class deepnetts.util.RandomlyTranslateImages
- randomSeed(long) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
- randomSeed(long) - Method in class deepnetts.net.FeedForwardNetwork.Builder
-
Initializes random number generator with specified seed in order to get same random number sequences (used for weights initialization).
- randomTintAndBrightness(BufferedImage, float, int, int, Random) - Static method in class deepnetts.util.ImageUtils
-
Still not working as it should
- randomTranslateImage(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
-
Returns an array of images created by translating specified input image by specified number of count with specified step size.
- RandomWeights - Class in deepnetts.net.weights
-
This class provides various randomization methods.
- RandomWeights() - Constructor for class deepnetts.net.weights.RandomWeights
- randomWeightsType - Variable in class deepnetts.net.layers.AbstractLayer
- RandomWeightsType - Enum in deepnetts.net.weights
- RangeScaler - Class in deepnetts.data.preprocessing.scale
-
Scale data set to specified range.
- RangeScaler(float, float) - Constructor for class deepnetts.data.preprocessing.scale.RangeScaler
-
Creates a new instance of range normalizer initialized to given min and max values.
- readCsv(File, int, int, boolean, String) - Static method in class deepnetts.data.DataSets
-
Creates and returns data set from specified CSV file.
- readCsv(String, int, int) - Static method in class deepnetts.data.DataSets
-
Create data set from CSV file, using coma (,) as default delimiter and no header (column names) in first row.
- readCsv(String, int, int, boolean) - Static method in class deepnetts.data.DataSets
- readCsv(String, int, int, boolean, String) - Static method in class deepnetts.data.DataSets
- readCsv(String, int, int, String) - Static method in class deepnetts.data.DataSets
- recall - Variable in class deepnetts.eval.ClassificationMetrics.Stats
- RegresionEvaluator - Class in deepnetts.eval
-
Evaluates regressor neural network for specified data set.
- RegresionEvaluator() - Constructor for class deepnetts.eval.RegresionEvaluator
- regularization - Variable in class deepnetts.net.layers.AbstractLayer
- Relu - Class in deepnetts.net.layers.activation
-
Rectified Linear Activation and its Derivative.
- Relu() - Constructor for class deepnetts.net.layers.activation.Relu
- RELU - deepnetts.net.layers.activation.ActivationType
- removeContext(LoggerContext) - Method in class deepnetts.android.LoggerContextFactory_Dummy
-
Removes knowledge of a LoggerContext.
- removeListener(TrainingListener) - Method in class deepnetts.net.train.BackpropagationTrainer
- renameFilesAsClasses(String, String) - Static method in class deepnetts.util.ImageSetUtils
-
Renames files in specified directory.
- reset() - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
- reset() - Method in class deepnetts.net.loss.CrossEntropyLoss
- reset() - Method in interface deepnetts.net.loss.LossFunction
-
Resets the total error and pattern counter.
- reset() - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
- RootMeanSquaredError - Class in deepnetts.eval
-
A measure of error for regression problems.
- RootMeanSquaredError() - Constructor for class deepnetts.eval.RootMeanSquaredError
- ROW_IDX - Static variable in class deepnetts.net.train.opt.MomentumOptimizer
- run() - Method in class deepnetts.util.RandomlyTranslateImages
- run() - Method in class deepnetts.util.ScaleImages
- runCrossValidation() - Method in class deepnetts.net.train.KFoldCrossValidation
S
- scaleAndCenter(BufferedImage, int, int, int, Color) - Static method in class deepnetts.util.ImageUtils
-
Scales input image to specified target width or height, centers and returns resulting image.Scaling factor is calculated using larger dimension (width or height).
- scaleBySmallerAndCrop(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
-
Scales input image to specified target width or height, crops and returns resulting image.
- scaleImage(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
-
Scales specified image and returns new image with specified dimensions.
- ScaleImages - Class in deepnetts.util
- ScaleImages() - Constructor for class deepnetts.util.ScaleImages
- scaleMax(DataSet) - Static method in class deepnetts.data.DataSets
-
Normalize specified data set and return used normalizer.
- Serialization - Class in deepnetts.util
- Serialization() - Constructor for class deepnetts.util.Serialization
- set(int, float) - Method in class deepnetts.util.Tensor
-
Sets value at specified index position.
- set(int, int, float) - Method in class deepnetts.util.Tensor
-
Sets matrix value at specified [row, col] position
- set(int, int, int, float) - Method in class deepnetts.util.Tensor
- set(int, int, int, int, float) - Method in class deepnetts.util.Tensor
- setActivation(ActivationFunction) - Method in class deepnetts.net.layers.AbstractLayer
- setActivationType(ActivationType) - Method in class deepnetts.net.layers.AbstractLayer
- setBatchMode(boolean) - Method in class deepnetts.net.layers.AbstractLayer
- setBatchMode(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
- setBatchSize(int) - Method in class deepnetts.net.layers.AbstractLayer
- setBatchSize(int) - Method in class deepnetts.net.train.BackpropagationTrainer
- setBiases(float[]) - Method in class deepnetts.net.layers.AbstractLayer
- setCheckpointEpochs(int) - Method in class deepnetts.net.train.BackpropagationTrainer
- setClassLabel(String) - Method in class deepnetts.eval.ClassificationMetrics
- setColumnNames(String[]) - Method in class deepnetts.data.TabularDataSet
- setColumnNames(String[]) - Method in class deepnetts.util.CsvFormat
- setColumnTypes(ColumnType[]) - Method in class deepnetts.util.CsvFormat
- setDelimiter(String) - Method in class deepnetts.data.ImageSet
- setDelimiter(String) - Method in class deepnetts.util.CsvFormat
- setDeltas(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
- setEarlyStopping(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
- setEarlyStoppingMinDelta(float) - Method in class deepnetts.net.train.BackpropagationTrainer
- setEarlyStoppingPatience(int) - Method in class deepnetts.net.train.BackpropagationTrainer
- setFilters(Tensor[]) - Method in class deepnetts.net.layers.ConvolutionalLayer
- setFilters(String) - Method in class deepnetts.net.layers.ConvolutionalLayer
- setHasHeader(boolean) - Method in class deepnetts.util.CsvFormat
- setId(int) - Method in class deepnetts.util.BoundingBox
- setInput(float[]) - Method in class deepnetts.net.FeedForwardNetwork
- setInput(Tensor) - Method in class deepnetts.net.layers.InputLayer
-
Sets network input
- setInput(Tensor) - Method in class deepnetts.net.NeuralNetwork
-
Sets network input vector and triggers forward pass.
- setInputLayer(InputLayer) - Method in class deepnetts.net.NeuralNetwork
- setInvertImages(boolean) - Method in class deepnetts.data.ImageSet
- setL1Regularization(float) - Method in class deepnetts.net.train.BackpropagationTrainer
- setL2Regularization(float) - Method in class deepnetts.net.train.BackpropagationTrainer
- setLabel(String) - Method in class deepnetts.net.NeuralNetwork
- setLabel(String) - Method in class deepnetts.util.BoundingBox
- setLearningRate(float) - Method in class deepnetts.net.layers.AbstractLayer
- setLearningRate(float) - Method in class deepnetts.net.train.BackpropagationTrainer
- setLossFunction(LossFunction) - Method in class deepnetts.net.NeuralNetwork
- setLossType(LossType) - Method in class deepnetts.net.layers.OutputLayer
- setMaxEpochs(long) - Method in class deepnetts.net.train.BackpropagationTrainer
- setMaxError(float) - Method in class deepnetts.net.train.BackpropagationTrainer
- setMaxInputs(Tensor) - Method in class deepnetts.data.preprocessing.scale.MaxScaler
- setMaxOutputs(Tensor) - Method in class deepnetts.data.preprocessing.scale.MaxScaler
- setMomentum(float) - Method in class deepnetts.net.layers.AbstractLayer
- setMomentum(float) - Method in class deepnetts.net.train.BackpropagationTrainer
- setNextlayer(AbstractLayer) - Method in class deepnetts.net.layers.AbstractLayer
- setOptimizer(OptimizerType) - Method in class deepnetts.net.train.BackpropagationTrainer
- setOptimizerType(OptimizerType) - Method in class deepnetts.net.layers.AbstractLayer
- setOutputError(float[]) - Method in class deepnetts.net.NeuralNetwork
- setOutputErrors(float[]) - Method in class deepnetts.net.layers.OutputLayer
- setOutputLabels(String...) - Method in class deepnetts.net.NeuralNetwork
- setOutputLayer(OutputLayer) - Method in class deepnetts.net.NeuralNetwork
- setOutputs(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
- setPrevDeltaWeights(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
- setPrevLayer(AbstractLayer) - Method in class deepnetts.net.layers.AbstractLayer
- setProperties(Properties) - Method in class deepnetts.net.train.BackpropagationTrainer
-
Sets properties from available keys in specified prop object.
- setRegularization(float) - Method in class deepnetts.net.layers.AbstractLayer
- setScaleImages(boolean) - Method in class deepnetts.data.ImageSet
- setScore(float) - Method in class deepnetts.util.BoundingBox
- setShuffle(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
- setSnapshotEpochs(int) - Method in class deepnetts.net.train.BackpropagationTrainer
- setSnapshotPath(String) - Method in class deepnetts.net.train.BackpropagationTrainer
- setTargetOutput(Tensor) - Method in class deepnetts.data.ExampleImage
- setTestSet(DataSet<MLDataItem>) - Method in class deepnetts.net.train.BackpropagationTrainer
- setThreshold(float) - Method in class deepnetts.eval.ClassifierEvaluator
- setTrainer(T) - Method in class deepnetts.net.NeuralNetwork
- setTrainer(T) - Method in interface deepnetts.net.train.TrainerProvider
- setTrainingSnapshots(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
- setValues(float...) - Method in class deepnetts.util.Tensor
- setValuesFromString(String) - Method in class deepnetts.util.Tensor
-
Sets tensor values from csv string.
- setWeights(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
- setWeights(String) - Method in class deepnetts.net.layers.AbstractLayer
- setWeights(List<String>) - Method in class deepnetts.net.ConvolutionalNetwork
- SGD - deepnetts.net.train.opt.OptimizerType
-
Stochastic Gradient Descent, a basic type of neural network optimization algorithm.
- SgdOptimizer - Class in deepnetts.net.train.opt
- SgdOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.SgdOptimizer
- shuffle() - Method in class deepnetts.data.TabularDataSet
-
Shuffles the data set items using the default random generator.
- shuffle(int) - Method in class deepnetts.data.TabularDataSet
-
Shuffles data set items using java random generator initializes with specified seed
- Sigmoid - Class in deepnetts.net.layers.activation
-
Sigmoid activation function TODO: slope, amplitude?, avoid NaN
- Sigmoid() - Constructor for class deepnetts.net.layers.activation.Sigmoid
- SIGMOID - deepnetts.net.layers.activation.ActivationType
- size() - Method in class deepnetts.data.TabularDataSet.Item
- size() - Method in class deepnetts.util.Tensor
- SOFTMAX - deepnetts.net.layers.activation.ActivationType
- SoftmaxOutputLayer - Class in deepnetts.net.layers
-
Output layer with softmax activation function.
- SoftmaxOutputLayer(int) - Constructor for class deepnetts.net.layers.SoftmaxOutputLayer
- SoftmaxOutputLayer(String[]) - Constructor for class deepnetts.net.layers.SoftmaxOutputLayer
- split(double...) - Method in class deepnetts.data.ImageSet
-
Splits data set into several parts specified by the input parameter partSizes.
- split(double...) - Method in class deepnetts.data.TabularDataSet
-
Splits data set into several parts specified by the input parameter partSizes.
- split(int) - Method in class deepnetts.data.TabularDataSet
-
Split data set into specified number of part of equal sizes.
- splitsNum(int) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
- sqrt() - Method in class deepnetts.util.Tensor
- standardize(DataSet) - Static method in class deepnetts.data.DataSets
- Standardizer - Class in deepnetts.data.preprocessing.scale
-
Performs standardization in order to get desired statistical properties of the data set.
- Standardizer(DataSet<MLDataItem>) - Constructor for class deepnetts.data.preprocessing.scale.Standardizer
- STARTED - deepnetts.net.train.TrainingEvent.Type
- Stats() - Constructor for class deepnetts.eval.ClassificationMetrics.Stats
- stop() - Method in class deepnetts.net.train.BackpropagationTrainer
- STOPPED - deepnetts.net.train.TrainingEvent.Type
- STRING - deepnetts.util.ColumnType
- sub(float) - Method in class deepnetts.util.Tensor
- sub(float[], float) - Static method in class deepnetts.util.Tensors
- sub(float[], float[]) - Static method in class deepnetts.util.Tensors
- sub(int, int, float) - Method in class deepnetts.util.Tensor
- sub(int, int, int, float) - Method in class deepnetts.util.Tensor
- sub(int, int, int, int, float) - Method in class deepnetts.util.Tensor
- sub(Tensor) - Method in class deepnetts.util.Tensor
-
Subtracts specified tensor t from this tensor.
- sub(Tensor, Tensor) - Static method in class deepnetts.util.Tensor
-
Subtracts tensor t2 from t1.
- sumAbs() - Method in class deepnetts.util.Tensor
-
Returns sum of abs values of this tensor - L1 norm
- sumSqr() - Method in class deepnetts.util.Tensor
-
Returns sum of sqr values of this tensor - L2 norm
T
- TabularDataSet<E extends MLDataItem> - Class in deepnetts.data
-
Basic data set used for training neural networks in deep netts.
- TabularDataSet() - Constructor for class deepnetts.data.TabularDataSet
- TabularDataSet(int, int) - Constructor for class deepnetts.data.TabularDataSet
-
Create a new instance of BasicDataSet with specified size of input and output.
- TabularDataSet.Item - Class in deepnetts.data
-
Represents a basic data set item (single row) with input tensor and target vector in a data set.
- Tanh - Class in deepnetts.net.layers.activation
-
Hyperbolic tangens activation function
- Tanh() - Constructor for class deepnetts.net.layers.activation.Tanh
- TANH - deepnetts.net.layers.activation.ActivationType
- Tensor - Class in deepnetts.util
-
This class represents multidimensional array/matrix (can be 1D, 2D, 3D or 4D).
- Tensor(float...) - Constructor for class deepnetts.util.Tensor
-
Creates a single row tensor with specified values.
- Tensor(float[][]) - Constructor for class deepnetts.util.Tensor
-
Creates a 2D tensor / matrix with specified values.
- Tensor(float[][][]) - Constructor for class deepnetts.util.Tensor
-
Creates a 3D tensor from specified 3D array
- Tensor(float[][][][]) - Constructor for class deepnetts.util.Tensor
- Tensor(int) - Constructor for class deepnetts.util.Tensor
-
Creates an empty single row tensor with specified number of columns.
- Tensor(int, float) - Constructor for class deepnetts.util.Tensor
- Tensor(int, int) - Constructor for class deepnetts.util.Tensor
-
Creates a tensor with specified number of rows and columns.
- Tensor(int, int, float[]) - Constructor for class deepnetts.util.Tensor
- Tensor(int, int, int) - Constructor for class deepnetts.util.Tensor
-
Creates a 3D tensor with specified number of rows, cols and depth.
- Tensor(int, int, int, float[]) - Constructor for class deepnetts.util.Tensor
- Tensor(int, int, int, int) - Constructor for class deepnetts.util.Tensor
- Tensor(int, int, int, int, float[]) - Constructor for class deepnetts.util.Tensor
- Tensors - Class in deepnetts.util
-
Static utility methods for tensors.
- test(DataSet<MLDataItem>) - Method in class deepnetts.net.NeuralNetwork
- TEST_FILE - Static variable in class deepnetts.util.ImageSetUtils
- toJson(NeuralNetwork<?>) - Static method in class deepnetts.util.FileIO
-
Returns JSON representation of specified neural network object.
- toString() - Method in class deepnetts.data.TabularDataSet.Item
- toString() - Method in class deepnetts.eval.ClassificationMetrics.Stats
- toString() - Method in class deepnetts.eval.ClassificationMetrics
- toString() - Method in class deepnetts.eval.ClassifierEvaluator
- toString() - Method in class deepnetts.eval.ConfusionMatrix
- toString() - Method in class deepnetts.net.layers.ConvolutionalLayer
- toString() - Method in class deepnetts.net.layers.FullyConnectedLayer
- toString() - Method in class deepnetts.net.layers.InputLayer
- toString() - Method in enum deepnetts.net.layers.LayerType
- toString() - Method in class deepnetts.net.layers.MaxPoolingLayer
- toString() - Method in class deepnetts.net.layers.OutputLayer
- toString() - Method in enum deepnetts.net.loss.LossType
- toString() - Method in enum deepnetts.net.NetworkType
- toString() - Method in class deepnetts.net.NeuralNetwork
- toString() - Method in class deepnetts.util.BoundingBox
- toString() - Method in class deepnetts.util.CsvFormat
- toString() - Method in class deepnetts.util.Tensor
- train(DataSet<?>, double) - Method in class deepnetts.net.train.BackpropagationTrainer
- train(DataSet<? extends MLDataItem>) - Method in class deepnetts.net.NeuralNetwork
- train(DataSet<? extends MLDataItem>) - Method in class deepnetts.net.train.BackpropagationTrainer
-
Run training using specified training set.
- train(DataSet<? extends MLDataItem>) - Method in interface deepnetts.net.train.Trainer
- train(DataSet<MLDataItem>, DataSet<MLDataItem>) - Method in class deepnetts.net.train.BackpropagationTrainer
-
Run training using specified training and validation sets.
- TRAIN_FILE - Static variable in class deepnetts.util.ImageSetUtils
- trainer(BackpropagationTrainer) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
- Trainer - Interface in deepnetts.net.train
- TrainerProvider<T> - Interface in deepnetts.net.train
- TrainingEvent - Class in deepnetts.net.train
-
This class holds source and type of training event.
- TrainingEvent(BackpropagationTrainer, TrainingEvent.Type) - Constructor for class deepnetts.net.train.TrainingEvent
- TrainingEvent.Type - Enum in deepnetts.net.train
- TrainingListener - Interface in deepnetts.net.train
- trainTestSplit(DataSet<?>, double) - Static method in class deepnetts.data.DataSets
- TRUE_NEGATIVE - Static variable in class deepnetts.eval.ConfusionMatrix
- TRUE_POSITIVE - Static variable in class deepnetts.eval.ConfusionMatrix
- TypedProperties - Class in deepnetts.util
- TypedProperties() - Constructor for class deepnetts.util.TypedProperties
U
- uniform(float[], float, float) - Static method in class deepnetts.net.weights.RandomWeights
- uniform(float[], int) - Static method in class deepnetts.net.weights.RandomWeights
-
Uniform U[-a,a] where a=1/sqrt(in).
- UNIFORM - deepnetts.net.weights.RandomWeightsType
V
- valueFor(NeuralNetwork, DataSet<? extends MLDataItem>) - Method in interface deepnetts.net.loss.LossFunction
-
Calculates and returns loss function value for the given neural network and test set.
- valueOf(String) - Static method in enum deepnetts.net.layers.activation.ActivationType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.net.layers.LayerType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.net.loss.LossType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.net.NetworkType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.net.train.opt.OptimizerType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.net.train.TrainingEvent.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.net.weights.RandomWeightsType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum deepnetts.util.ColumnType
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum deepnetts.net.layers.activation.ActivationType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.net.layers.LayerType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.net.loss.LossType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.net.NetworkType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.net.train.opt.OptimizerType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.net.train.TrainingEvent.Type
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.net.weights.RandomWeightsType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum deepnetts.util.ColumnType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- valuesAsString(Tensor[]) - Static method in class deepnetts.util.Tensor
- version() - Method in class deepnetts.core.DeepNetts
W
- weights - Variable in class deepnetts.net.layers.AbstractLayer
-
Input weight matrix / connectivity matrix for previous layer
- WIDDROW_HOFF - deepnetts.net.weights.RandomWeightsType
- widrowHoff(float[], float, float) - Static method in class deepnetts.net.weights.RandomWeights
- width - Variable in class deepnetts.net.layers.AbstractLayer
- writeImages(List<BufferedImage>, String, String, String) - Static method in class deepnetts.util.ImageUtils
-
Writes list of images to specified file path.
- writeToFile(NeuralNetwork, String) - Static method in class deepnetts.util.FileIO
-
Serializes specified neural network to file with specified file.
- writeToFile(List<String>, String) - Static method in class deepnetts.util.ImageSetUtils
-
Writes a specified list of strings to file.
- writeToFileAsJson(NeuralNetwork, String) - Static method in class deepnetts.util.FileIO
X
- xavier(float[], int, int) - Static method in class deepnetts.net.weights.RandomWeights
-
Normalized uniform initialization U[-a,a] with a = sqrt(6/(in + out)).
- XAVIER - deepnetts.net.weights.RandomWeightsType
Z
- zeroMean() - Method in class deepnetts.data.ImageSet
-
Applies zero mean normalization to entire dataset, and returns mean tensor.
- zeros(int) - Static method in class deepnetts.util.Tensors
All Classes All Packages