int k
DecisionTree[] trees
double[] alpha
double[] error
double[] importance
smile.data.Attribute[] attributes
double[] importance
smile.classification.DecisionTree.Node root
DecisionTree.SplitRule rule
int k
int nodeSize
int maxNodes
int mtry
int p
int k
double[] mean
double[][] mu
double[][] scaling
double[] smean
double[][] smu
int k
RegressionTree[] trees
RegressionTree[][] forest
double[] importance
double b
double shrinkage
int maxNodes
int ntrees
double subsample
int p
int k
double[] ct
double[] priori
double[][] mu
smile.math.matrix.DenseMatrix scaling
double[] eigen
int p
int k
double L
double[] w
double[][] W
int p
int k
double L
double[] w
double[][] W
NaiveBayes.Model model
int k
int p
double[] priori
smile.stat.distribution.Distribution[][] prob
double sigma
boolean predefinedPriori
int n
int[] nc
int[] nt
int[][] ntc
double[][] condprob
NeuralNetwork.ErrorFunction errorFunction
NeuralNetwork.ActivationFunction activationFunction
int p
int k
smile.classification.NeuralNetwork.Layer[] net
smile.classification.NeuralNetwork.Layer inputLayer
smile.classification.NeuralNetwork.Layer outputLayer
double eta
double alpha
double lambda
double[] target
double alpha
double beta
int p
int k
double[] ct
double[] priori
double[][] mu
smile.math.matrix.DenseMatrix[] scaling
double[][] ev
java.util.List<E> trees
int k
double error
double[] importance
int k
java.lang.Object[] centers
smile.math.matrix.DenseMatrix w
smile.math.distance.Metric<T> distance
smile.math.rbf.RadialBasisFunction[] rbf
boolean normalized
int p
int k
double[] ct
double[] priori
double[][] mu
smile.math.matrix.DenseMatrix[] scaling
double[][] ev
smile.classification.SVM.LASVM svm
java.util.List<E> svms
smile.math.kernel.MercerKernel<T> kernel
int p
int k
SVM.Multiclass strategy
double[] wi
double tol
int B
double T
int d
smile.clustering.BIRCH.Node root
double[][] centroids
double distortion
smile.math.distance.Distance<T> distance
int numLocal
int maxNeighbor
java.lang.Object[] medoids
double eps
double sigma
double gamma
double[][] attractors
double[] radius
double[][] samples
double alpha
int[][] merge
double[] height
double distortion
double[][] centroids
double distortion
double[][] centroids
int k
int[] y
int[] size
double sigma
double distortion
int p
int n
double r
double[][] projection
double[] y
double[] wy
int p
java.lang.Object[] data
smile.math.kernel.MercerKernel<T> kernel
double[] mean
double mu
double[] latent
double[][] projection
double[][] coordinates
int p
int n
double[] mu
double[] pmu
smile.math.matrix.DenseMatrix eigvectors
double[] eigvalues
double[] proportion
double[] cumulativeProportion
smile.math.matrix.DenseMatrix projection
double[] mu
double[] pmu
double noise
smile.math.matrix.DenseMatrix loading
smile.math.matrix.DenseMatrix projection
int p
int n
double[][] projection
java.lang.Object[] knots
double[] w
smile.math.kernel.MercerKernel<T> kernel
double lambda
RegressionTree[] trees
double b
double[] importance
GradientTreeBoost.Loss loss
double shrinkage
int maxNodes
int ntrees
double f
int p
double lambda
double b
double[] w
double ym
double[] center
double[] scale
double[] residuals
double RSS
double error
int df
double RSquared
In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
double adjustedRSquared
double F
double pvalue
int p
double b
double[] w
double[][] coefficients
double[] residuals
double RSS
double error
int df
double RSquared
In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
double adjustedRSquared
double F
double pvalue
java.util.List<E> trees
double error
double[] importance
java.lang.Object[] centers
double[] w
smile.math.distance.Metric<T> distance
smile.math.rbf.RadialBasisFunction[] rbf
boolean normalized
smile.data.Attribute[] attributes
double[] importance
smile.regression.RegressionTree.Node root
int nodeSize
int maxNodes
int mtry
int numFeatures
int p
double lambda
double b
double[] w
double ym
double[] center
double[] scale
double[][] coefficients
double[] residuals
double RSS
double error
int df
double RSquared
In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
double adjustedRSquared
double F
double pvalue
smile.math.kernel.MercerKernel<T> kernel
double C
double eps
double tol
java.util.List<E> sv
double b
int nsv
int nbsv