public class LOOCV
extends java.lang.Object
Modifier and Type | Field and Description |
---|---|
int[] |
test
The index of testing instances.
|
int[][] |
train
The index of training instances.
|
Constructor and Description |
---|
LOOCV(int n)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static int[] |
classification(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
Runs leave-one-out cross validation tests.
|
static <T> int[] |
classification(T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
Runs leave-one-out cross validation tests.
|
static double[] |
regression(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)
Runs leave-one-out cross validation tests.
|
static <T> double[] |
regression(T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
Runs leave-one-out cross validation tests.
|
public final int[][] train
public final int[] test
public static <T> int[] classification(T[] x, int[] y, java.util.function.BiFunction<T[],int[],Classifier<T>> trainer)
public static int[] classification(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
public static <T> double[] regression(T[] x, double[] y, java.util.function.BiFunction<T[],double[],Regression<T>> trainer)
public static double[] regression(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)