public class ElasticNet
extends java.lang.Object
The elastic net problem can be reduced to a lasso problem on modified data and response. And note that the penalty function of Elastic Net is strictly convex so there is a unique global minimum, even if input data matrix is not full rank.
Constructor and Description |
---|
ElasticNet() |
Modifier and Type | Method and Description |
---|---|
static LinearModel |
fit(smile.data.formula.Formula formula,
smile.data.DataFrame data,
double lambda1,
double lambda2)
Fit an Elastic Net model.
|
static LinearModel |
fit(smile.data.formula.Formula formula,
smile.data.DataFrame data,
double lambda1,
double lambda2,
double tol,
int maxIter)
Fit an Elastic Net model.
|
static LinearModel |
fit(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.Properties prop)
Fit an Elastic Net model.
|
public static LinearModel fit(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.Properties prop)
formula
- a symbolic description of the model to be fitted.data
- the data frame of the explanatory and response variables.
NO NEED to include a constant column of 1s for bias.prop
- Training algorithm hyper-parameters and properties.public static LinearModel fit(smile.data.formula.Formula formula, smile.data.DataFrame data, double lambda1, double lambda2)
prop
include
lambda1
is the shrinkage/regularization parameter for L1
lambda2
is the shrinkage/regularization parameter for L2
tolerance
is the tolerance for stopping iterations (relative target duality gap).
max.iterations
is the maximum number of IPM (Newton) iterations.
formula
- a symbolic description of the model to be fitted.data
- the data frame of the explanatory and response variables.
NO NEED to include a constant column of 1s for bias.lambda1
- the shrinkage/regularization parameter for L1lambda2
- the shrinkage/regularization parameter for L2public static LinearModel fit(smile.data.formula.Formula formula, smile.data.DataFrame data, double lambda1, double lambda2, double tol, int maxIter)
prop
include
lambda1
is the shrinkage/regularization parameter for L1
lambda2
is the shrinkage/regularization parameter for L2
tolerance
is the tolerance for stopping iterations (relative target duality gap).
max.iterations
is the maximum number of IPM (Newton) iterations.
formula
- a symbolic description of the model to be fitted.data
- the data frame of the explanatory and response variables.
NO NEED to include a constant column of 1s for bias.lambda1
- the shrinkage/regularization parameter for L1lambda2
- the shrinkage/regularization parameter for L2tol
- the tolerance for stopping iterations (relative target duality gap).maxIter
- the maximum number of IPM (Newton) iterations.