Packages

  • package root

    This is the documentation for Parsley.

    This is the documentation for Parsley.

    Package structure

    The parsley package contains the Parsley class, as well as the Result, Success, and Failure types. In addition to these, it also contains the following packages and "modules" (a module is defined as being an object which mocks a package):

    • parsley.Parsley contains the bulk of the core "function-style" combinators.
    • parsley.combinator contains many helpful combinators that simplify some common parser patterns.
    • parsley.character contains the combinators needed to read characters and strings, as well as combinators to match specific sub-sets of characters.
    • parsley.debug contains debugging combinators, helpful for identifying faults in parsers.
    • parsley.extension contains syntactic sugar combinators exposed as implicit classes.
    • parsley.io contains extension methods to run parsers with input sourced from IO sources.
    • parsley.expr contains the following sub modules:
      • parsley.expr.chain contains combinators used in expression parsing
      • parsley.expr.precedence is a builder for expression parsers built on a precedence table.
      • parsley.expr.infix contains combinators used in expression parsing, but with more permissive types than their equivalents in chain.
      • parsley.expr.mixed contains combinators that can be used for expression parsing, but where different fixities may be mixed on the same level: this is rare in practice.
    • parsley.implicits contains several implicits to add syntactic sugar to the combinators. These are sub-categorised into the following sub modules:
      • parsley.implicits.character contains implicits to allow you to use character and string literals as parsers.
      • parsley.implicits.combinator contains implicits related to combinators, such as the ability to make any parser into a Parsley[Unit] automatically.
      • parsley.implicits.lift enables postfix application of the lift combinator onto a function (or value).
      • parsley.implicits.zipped enables boths a reversed form of lift where the function appears on the right and is applied on a tuple (useful when type inference has failed) as well as a .zipped method for building tuples out of several combinators.
    • parsley.errors contains modules to deal with error messages, their refinement and generation.
    • parsley.lift contains functions which lift functions that work on regular types to those which now combine the results of parsers returning those same types. these are ubiquitous.
    • parsley.ap contains functions which allow for the application of a parser returning a function to several parsers returning each of the argument types.
    • parsley.registers contains combinators that interact with the context-sensitive functionality in the form of registers.
    • parsley.token contains the Lexer class that provides a host of helpful lexing combinators when provided with the description of a language.
    • parsley.position contains parsers for extracting position information.
    • parsley.genericbridges contains some basic implementations of the Parser Bridge pattern (see Design Patterns for Parser Combinators in Scala, or the parsley wiki): these can be used before more specialised generic bridge traits can be constructed.
    Definition Classes
    root
  • package parsley
    Definition Classes
    root
  • package expr

    This package contains various functionality relating to the parsing of expressions..

    This package contains various functionality relating to the parsing of expressions..

    This includes the "chain" combinators, which tackle the left-recursion problem and allow for the parsing and combining of operators with values. It also includes functionality for constructing larger precedence tables, which may even vary the type of each layer in the table, allowing for strongly-typed expression parsing.

    Definition Classes
    parsley
  • Atoms
  • Fixity
  • GOps
  • InfixL
  • InfixN
  • InfixR
  • Ops
  • Postfix
  • Prec
  • Prefix
  • SOps
  • chain
  • infix
  • mixed
  • precedence

object SOps

This helper object builds values of Ops[A, B] where A <: B, for subtyped heterogeneous precedence parsing.

Source
SmartOps.scala
Since

3.0.0

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SOps
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def apply[B, A <: B](fixity: Fixity)(ops: Parsley[Op[A, B]]*): Ops[A, B]

    This function builds an Ops object representing many operators found at the same precedence level, with a given fixity.

    This function builds an Ops object representing many operators found at the same precedence level, with a given fixity.

    The operators found on the level constructed by this function are heterogeneous: the type of the level below may vary from the types of the values produced at this level. It is constrained, however, such that values of the layer below must be upcastable into types generated by this layer: one layer must be a subtype of the other.

    Using path-dependent typing, the given fixity describes the shape of the operators expected. For more information see the Parsley wiki.

    B

    the type produced/consumed by the operators, must be a supertype of A.

    A

    the base type consumed by the operators.

    fixity

    the fixity of the operators described.

    ops

    the operators themselves, provided variadically.

    Since

    3.0.0

    Note

    currently a bug in scaladoc incorrect displays this functions type, it should be: fixity.Op[A, B], NOT Op[A, B].

    ,

    the order of types in this method is reversed compared with GOps.apply, this is due to a Scala typing issue.

    See also

    Fixity

  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  10. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  14. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  16. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  17. def toString(): String
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  19. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  20. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()

Inherited from AnyRef

Inherited from Any

Ungrouped