Packages

  • package root

    This is the documentation for Parsley.

    This is the documentation for Parsley.

    Package structure

    The parsley package contains the Parsley class, as well as the Result, Success, and Failure types. In addition to these, it also contains the following packages and "modules" (a module is defined as being an object which mocks a package):

    • parsley.Parsley contains the bulk of the core "function-style" combinators, as well as the implicit classes which enable the "method-style" combinators.
    • parsley.combinator contains many helpful combinators that simplify some common parser patterns.
    • parsley.character contains the combinators needed to read characters and strings, as well as combinators to match specific sub-sets of characters.
    • parsley.debug contains debugging combinators, helpful for identifying faults in parsers.
    • parsley.io contains extension methods to run parsers with input sourced from IO sources.
    • parsley.expr contains the following sub modules:
    • parsley.implicits contains several implicits to add syntactic sugar to the combinators. These are sub-categorised into the following sub modules:
      • parsley.implicits.character contains implicits to allow you to use character and string literals as parsers.
      • parsley.implicits.combinator contains implicits related to combinators, such as the ability to make any parser into a Parsley[Unit] automatically.
      • parsley.implicits.lift enables postfix application of the lift combinator onto a function (or value).
      • parsley.implicits.zipped enables boths a reversed form of lift where the function appears on the right and is applied on a tuple (useful when type inference has failed) as well as a .zipped method for building tuples out of several combinators.
    • parsley.errors contains modules to deal with error messages, their refinement and generation.
      • parsley.errors.combinator provides combinators that can be used to either produce more detailed errors as well as refine existing errors.
    • parsley.lift contains functions which lift functions that work on regular types to those which now combine the results of parsers returning those same types. these are ubiquitous.
    • parsley.registers contains combinators that interact with the context-sensitive functionality in the form of registers.
    • parsley.token contains the Lexer class that provides a host of helpful lexing combinators when provided with the description of a language.
    • parsley.unsafe contains unsafe (and not thread-safe) ways of speeding up the execution of a parser.
    Definition Classes
    root
  • package parsley
    Definition Classes
    root
  • package token
    Definition Classes
    parsley
  • BitGen
  • CharSet
  • Impl
  • LanguageDef
  • Lexer
  • NotRequired
  • Parser
  • Predicate

case class LanguageDef(commentStart: String, commentEnd: String, commentLine: String, nestedComments: Boolean, identStart: Impl, identLetter: Impl, opStart: Impl, opLetter: Impl, keywords: Set[String], operators: Set[String], caseSensitive: Boolean, space: Impl) extends Product with Serializable

This class is required to construct a TokenParser. It defines the various characteristics of the language to be tokenised. Where a parameter can be either a Set[Char] or a Parsley object, prefer the Set where possible. It will unlock a variety of faster intrinsic versions of the parsers, which will greatly improve tokenisation performance! In addition, the Sets are one time converted to heavily optimised BitSets, though that has up to 8KB memory usage associated but at least doubles the execution speed for that instruction. See parsley.Impl.

commentStart

For multi-line comments; how does the comment start? (If this or commentEnd is the empty string, multi-line comments are disabled)

commentEnd

For multi-line comments; how does the comment end? (If this or commentEnd is the empty string, multi-line comments are disabled)

commentLine

For single-line comments; how does the comment start? (This this is the empty string, single-line comments are disabled)

nestedComments

Are multi-line comments allowed to be nested inside each other? E.g. If {- and -} are opening and closing comments, is the following valid syntax: {-{-hello -}-}? Note in C this is not the case.

identStart

What characters can an identifier in the language start with?

identLetter

What characters can an identifier in the language consist of after the starting character?

opStart

What characters can an operator in the language start with?

opLetter

What characters can an operator in the language consist of after the starting character?

keywords

What keywords does the language contain?

operators

What operators does the language contain?

caseSensitive

Is the language case-sensitive. I.e. is IF equivalent to if?

space

What characters count as whitespace in the language?

Since

2.2.0

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LanguageDef
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LanguageDef(commentStart: String, commentEnd: String, commentLine: String, nestedComments: Boolean, identStart: Impl, identLetter: Impl, opStart: Impl, opLetter: Impl, keywords: Set[String], operators: Set[String], caseSensitive: Boolean, space: Impl)

    commentStart

    For multi-line comments; how does the comment start? (If this or commentEnd is the empty string, multi-line comments are disabled)

    commentEnd

    For multi-line comments; how does the comment end? (If this or commentEnd is the empty string, multi-line comments are disabled)

    commentLine

    For single-line comments; how does the comment start? (This this is the empty string, single-line comments are disabled)

    nestedComments

    Are multi-line comments allowed to be nested inside each other? E.g. If {- and -} are opening and closing comments, is the following valid syntax: {-{-hello -}-}? Note in C this is not the case.

    identStart

    What characters can an identifier in the language start with?

    identLetter

    What characters can an identifier in the language consist of after the starting character?

    opStart

    What characters can an operator in the language start with?

    opLetter

    What characters can an operator in the language consist of after the starting character?

    keywords

    What keywords does the language contain?

    operators

    What operators does the language contain?

    caseSensitive

    Is the language case-sensitive. I.e. is IF equivalent to if?

    space

    What characters count as whitespace in the language?

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. val caseSensitive: Boolean
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  7. val commentEnd: String
  8. val commentLine: String
  9. val commentStart: String
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. val identLetter: Impl
  14. val identStart: Impl
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. val keywords: Set[String]
  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. val nestedComments: Boolean
  19. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  21. val opLetter: Impl
  22. val opStart: Impl
  23. val operators: Set[String]
  24. val space: Impl
  25. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  26. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped