public final class TrainingOptions
extends com.google.api.client.json.GenericJson
This is the Java data model class that specifies how to parse/serialize into the JSON that is transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: https://developers.google.com/api-client-library/java/google-http-java-client/json
com.google.api.client.util.GenericData.Flags
Constructor and Description |
---|
TrainingOptions() |
Modifier and Type | Method and Description |
---|---|
TrainingOptions |
clone() |
java.lang.String |
getDataSplitColumn()
The column to split data with.
|
java.lang.Double |
getDataSplitEvalFraction()
The fraction of evaluation data over the whole input data.
|
java.lang.String |
getDataSplitMethod()
The data split type for training and evaluation, e.g.
|
java.lang.String |
getDistanceType()
Distance type for clustering models.
|
java.lang.Boolean |
getEarlyStop()
Whether to stop early when the loss doesn't improve significantly any more (compared to
min_relative_progress).
|
java.lang.Double |
getInitialLearnRate()
Specifies the initial learning rate for the line search learn rate strategy.
|
java.util.List<java.lang.String> |
getInputLabelColumns()
Name of input label columns in training data.
|
java.lang.String |
getKmeansInitializationColumn()
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
|
java.lang.String |
getKmeansInitializationMethod()
The method used to initialize the centroids for kmeans algorithm.
|
java.lang.Double |
getL1Regularization()
L1 regularization coefficient.
|
java.lang.Double |
getL2Regularization()
L2 regularization coefficient.
|
java.util.Map<java.lang.String,java.lang.Double> |
getLabelClassWeights()
Weights associated with each label class, for rebalancing the training data.
|
java.lang.Double |
getLearnRate()
Learning rate in training.
|
java.lang.String |
getLearnRateStrategy()
The strategy to determine learn rate for the current iteration.
|
java.lang.String |
getLossType()
Type of loss function used during training run.
|
java.lang.Long |
getMaxIterations()
The maximum number of iterations in training.
|
java.lang.Double |
getMinRelativeProgress()
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'.
|
java.lang.String |
getModelUri()
[Beta] Google Cloud Storage URI from which the model was imported.
|
java.lang.Long |
getNumClusters()
Number of clusters for clustering models.
|
java.lang.String |
getOptimizationStrategy()
Optimization strategy for training linear regression models.
|
java.lang.Boolean |
getWarmStart()
Whether to train a model from the last checkpoint.
|
TrainingOptions |
set(java.lang.String fieldName,
java.lang.Object value) |
TrainingOptions |
setDataSplitColumn(java.lang.String dataSplitColumn)
The column to split data with.
|
TrainingOptions |
setDataSplitEvalFraction(java.lang.Double dataSplitEvalFraction)
The fraction of evaluation data over the whole input data.
|
TrainingOptions |
setDataSplitMethod(java.lang.String dataSplitMethod)
The data split type for training and evaluation, e.g.
|
TrainingOptions |
setDistanceType(java.lang.String distanceType)
Distance type for clustering models.
|
TrainingOptions |
setEarlyStop(java.lang.Boolean earlyStop)
Whether to stop early when the loss doesn't improve significantly any more (compared to
min_relative_progress).
|
TrainingOptions |
setInitialLearnRate(java.lang.Double initialLearnRate)
Specifies the initial learning rate for the line search learn rate strategy.
|
TrainingOptions |
setInputLabelColumns(java.util.List<java.lang.String> inputLabelColumns)
Name of input label columns in training data.
|
TrainingOptions |
setKmeansInitializationColumn(java.lang.String kmeansInitializationColumn)
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
|
TrainingOptions |
setKmeansInitializationMethod(java.lang.String kmeansInitializationMethod)
The method used to initialize the centroids for kmeans algorithm.
|
TrainingOptions |
setL1Regularization(java.lang.Double l1Regularization)
L1 regularization coefficient.
|
TrainingOptions |
setL2Regularization(java.lang.Double l2Regularization)
L2 regularization coefficient.
|
TrainingOptions |
setLabelClassWeights(java.util.Map<java.lang.String,java.lang.Double> labelClassWeights)
Weights associated with each label class, for rebalancing the training data.
|
TrainingOptions |
setLearnRate(java.lang.Double learnRate)
Learning rate in training.
|
TrainingOptions |
setLearnRateStrategy(java.lang.String learnRateStrategy)
The strategy to determine learn rate for the current iteration.
|
TrainingOptions |
setLossType(java.lang.String lossType)
Type of loss function used during training run.
|
TrainingOptions |
setMaxIterations(java.lang.Long maxIterations)
The maximum number of iterations in training.
|
TrainingOptions |
setMinRelativeProgress(java.lang.Double minRelativeProgress)
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'.
|
TrainingOptions |
setModelUri(java.lang.String modelUri)
[Beta] Google Cloud Storage URI from which the model was imported.
|
TrainingOptions |
setNumClusters(java.lang.Long numClusters)
Number of clusters for clustering models.
|
TrainingOptions |
setOptimizationStrategy(java.lang.String optimizationStrategy)
Optimization strategy for training linear regression models.
|
TrainingOptions |
setWarmStart(java.lang.Boolean warmStart)
Whether to train a model from the last checkpoint.
|
getFactory, setFactory, toPrettyString, toString
entrySet, get, getClassInfo, getUnknownKeys, put, putAll, remove, setUnknownKeys
clear, containsKey, containsValue, equals, hashCode, isEmpty, keySet, size, values
public java.lang.String getDataSplitColumn()
null
for nonepublic TrainingOptions setDataSplitColumn(java.lang.String dataSplitColumn)
dataSplitColumn
- dataSplitColumn or null
for nonepublic java.lang.Double getDataSplitEvalFraction()
null
for nonepublic TrainingOptions setDataSplitEvalFraction(java.lang.Double dataSplitEvalFraction)
dataSplitEvalFraction
- dataSplitEvalFraction or null
for nonepublic java.lang.String getDataSplitMethod()
null
for nonepublic TrainingOptions setDataSplitMethod(java.lang.String dataSplitMethod)
dataSplitMethod
- dataSplitMethod or null
for nonepublic java.lang.String getDistanceType()
null
for nonepublic TrainingOptions setDistanceType(java.lang.String distanceType)
distanceType
- distanceType or null
for nonepublic java.lang.Boolean getEarlyStop()
null
for nonepublic TrainingOptions setEarlyStop(java.lang.Boolean earlyStop)
earlyStop
- earlyStop or null
for nonepublic java.lang.Double getInitialLearnRate()
null
for nonepublic TrainingOptions setInitialLearnRate(java.lang.Double initialLearnRate)
initialLearnRate
- initialLearnRate or null
for nonepublic java.util.List<java.lang.String> getInputLabelColumns()
null
for nonepublic TrainingOptions setInputLabelColumns(java.util.List<java.lang.String> inputLabelColumns)
inputLabelColumns
- inputLabelColumns or null
for nonepublic java.lang.String getKmeansInitializationColumn()
null
for nonepublic TrainingOptions setKmeansInitializationColumn(java.lang.String kmeansInitializationColumn)
kmeansInitializationColumn
- kmeansInitializationColumn or null
for nonepublic java.lang.String getKmeansInitializationMethod()
null
for nonepublic TrainingOptions setKmeansInitializationMethod(java.lang.String kmeansInitializationMethod)
kmeansInitializationMethod
- kmeansInitializationMethod or null
for nonepublic java.lang.Double getL1Regularization()
null
for nonepublic TrainingOptions setL1Regularization(java.lang.Double l1Regularization)
l1Regularization
- l1Regularization or null
for nonepublic java.lang.Double getL2Regularization()
null
for nonepublic TrainingOptions setL2Regularization(java.lang.Double l2Regularization)
l2Regularization
- l2Regularization or null
for nonepublic java.util.Map<java.lang.String,java.lang.Double> getLabelClassWeights()
null
for nonepublic TrainingOptions setLabelClassWeights(java.util.Map<java.lang.String,java.lang.Double> labelClassWeights)
labelClassWeights
- labelClassWeights or null
for nonepublic java.lang.Double getLearnRate()
null
for nonepublic TrainingOptions setLearnRate(java.lang.Double learnRate)
learnRate
- learnRate or null
for nonepublic java.lang.String getLearnRateStrategy()
null
for nonepublic TrainingOptions setLearnRateStrategy(java.lang.String learnRateStrategy)
learnRateStrategy
- learnRateStrategy or null
for nonepublic java.lang.String getLossType()
null
for nonepublic TrainingOptions setLossType(java.lang.String lossType)
lossType
- lossType or null
for nonepublic java.lang.Long getMaxIterations()
null
for nonepublic TrainingOptions setMaxIterations(java.lang.Long maxIterations)
maxIterations
- maxIterations or null
for nonepublic java.lang.Double getMinRelativeProgress()
null
for nonepublic TrainingOptions setMinRelativeProgress(java.lang.Double minRelativeProgress)
minRelativeProgress
- minRelativeProgress or null
for nonepublic java.lang.String getModelUri()
null
for nonepublic TrainingOptions setModelUri(java.lang.String modelUri)
modelUri
- modelUri or null
for nonepublic java.lang.Long getNumClusters()
null
for nonepublic TrainingOptions setNumClusters(java.lang.Long numClusters)
numClusters
- numClusters or null
for nonepublic java.lang.String getOptimizationStrategy()
null
for nonepublic TrainingOptions setOptimizationStrategy(java.lang.String optimizationStrategy)
optimizationStrategy
- optimizationStrategy or null
for nonepublic java.lang.Boolean getWarmStart()
null
for nonepublic TrainingOptions setWarmStart(java.lang.Boolean warmStart)
warmStart
- warmStart or null
for nonepublic TrainingOptions set(java.lang.String fieldName, java.lang.Object value)
set
in class com.google.api.client.json.GenericJson
public TrainingOptions clone()
clone
in class com.google.api.client.json.GenericJson