Packages

p

scalaz

package scalaz

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. scalaz
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type :<:[F[_], G[_]] = Inject[F, G]
  2. type :≺:[F[_], G[_]] = Inject[F, G]
  3. type <~[+F[_], -G[_]] = NaturalTransformation[G, F]
  4. type =?>[E, A] = Kleisli[Option, E, A]
  5. type @>[A, B] = LensFamily[A, A, B, B]
  6. type @?>[A, B] = PLensFamily[A, A, B, B]
  7. type @@[T, Tag] = [email protected]@[T, Tag]
  8. type Alternative[F[_]] = ApplicativePlus[F]
  9. type Cont[R, A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, R, A]
  10. type ContT[M[_], R, A] = IndexedContsT[scalaz.Id.Id, M, R, R, A]
  11. type Conts[W[_], R, A] = IndexedContsT[W, scalaz.Id.Id, R, R, A]
  12. type ContsT[W[_], M[_], R, A] = IndexedContsT[W, M, R, R, A]
  13. type DLeft[+A] = -\/[A]
  14. type DRight[+B] = \/-[B]
  15. type Disjunction[+A, +B] = \/[A, B]
  16. type DisjunctionT[F[_], A, B] = EitherT[F, A, B]
  17. type FirstMaybe[A] = [email protected]@[Maybe[A], First]
  18. type FirstOf[A] = [email protected]@[A, FirstVal]
  19. type FirstOption[A] = sca[email protected]@[Option[A], First]
  20. type GlorifiedTuple[+A, +B] = \/[A, B]
  21. type IMap[A, B] = ==>>[A, B]
  22. type IRWS[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]
  23. type IRWST[F[_], -R, W, -S1, S2, A] = IndexedReaderWriterStateT[F, R, W, S1, S2, A]
  24. type IndexedCont[R, O, A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, O, A]
  25. type IndexedContT[M[_], R, O, A] = IndexedContsT[scalaz.Id.Id, M, R, O, A]
  26. type IndexedConts[W[_], R, O, A] = IndexedContsT[W, scalaz.Id.Id, R, O, A]
  27. type IndexedReaderWriterState[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]
  28. type IndexedState[-S1, S2, A] = IndexedStateT[scalaz.Id.Id, S1, S2, A]
  29. type IndexedStore[I, A, B] = IndexedStoreT[scalaz.Id.Id, I, A, B]
  30. type LastMaybe[A] = [email protected]@[Maybe[A], Last]
  31. type LastOf[A] = [email protected]@[A, LastVal]
  32. type LastOption[A] = [email protected]@[Option[A], Last]
  33. type Lens[A, B] = LensFamily[A, A, B, B]
  34. type MaxMaybe[A] = [email protected]@[Maybe[A], Max]
  35. type MaxOf[A] = [email protected]@[A, MaxVal]
  36. type MaxOption[A] = [email protected]@[Option[A], Max]
  37. type MinMaybe[A] = [email protected]@[Maybe[A], Min]
  38. type MinOf[A] = [email protected]@[A, MinVal]
  39. type MinOption[A] = [email protected]@[Option[A], Min]
  40. type NonEmptyIList[A] = OneAnd[IList, A]
  41. type PIndexedState[-S1, S2, A] = IndexedStateT[scalaz.Id.Id, S1, S2, Option[A]]
  42. type PIndexedStateT[F[_], -S1, S2, A] = IndexedStateT[F, S1, S2, Option[A]]
  43. type PLens[A, B] = PLensFamily[A, A, B, B]
  44. type PState[S, A] = IndexedStateT[scalaz.Id.Id, S, S, Option[A]]
  45. type PStateT[F[_], S, A] = IndexedStateT[F, S, S, Option[A]]
  46. type RWS[-R, W, S, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]
  47. type RWST[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]
  48. type Reader[E, A] = Kleisli[scalaz.Id.Id, E, A]
  49. type ReaderT[F[_], E, A] = Kleisli[F, E, A]
  50. type ReaderWriterState[-R, W, S, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]
  51. type ReaderWriterStateT[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]
  52. type Select[R, A] = SelectT[R, scalaz.Id.Id, A]
  53. type State[S, A] = IndexedStateT[scalaz.Id.Id, S, S, A]
  54. type StateT[F[_], S, A] = IndexedStateT[F, S, S, A]
  55. type Store[A, B] = IndexedStoreT[scalaz.Id.Id, A, A, B]
  56. type StoreT[F[_], A, B] = IndexedStoreT[F, A, A, B]
  57. type Traced[A, B] = TracedT[scalaz.Id.Id, A, B]
  58. type Unwriter[W, A] = UnwriterT[scalaz.Id.Id, W, A]
  59. type ValidationNel[E, +X] = Validation[NonEmptyList[E], X]
  60. type Writer[W, A] = WriterT[scalaz.Id.Id, W, A]
  61. type |-->[A, B] = IndexedStoreT[scalaz.Id.Id, B, B, A]
  62. type |>=|[G[_], F[_]] = MonadPartialOrder[G, F]
  63. type ~>[-F[_], +G[_]] = NaturalTransformation[F, G]
  64. type ~~>[-F[_, _], +G[_, _]] = BiNaturalTransformation[F, G]
  65. type [A, B] = \/[A, B]
  66. type = Any
  67. type = Nothing

Value Members

  1. val DLeft: -\/.type
  2. val DRight: \/-.type
  3. val Disjunction: \/.type
  4. val DisjunctionT: EitherT.type
  5. val IMap: ==>>.type
  6. val IRWS: IndexedReaderWriterState.type
  7. val IRWST: IndexedReaderWriterStateT.type
  8. val RWS: ReaderWriterState.type
  9. val RWST: ReaderWriterStateT.type
  10. val ReaderT: Kleisli.type
  11. def Traced[A, B](f: (A) ⇒ B): Traced[A, B]
  12. implicit val idInstance: Traverse1[scalaz.Id.Id] with Monad[scalaz.Id.Id] with BindRec[scalaz.Id.Id] with Comonad[scalaz.Id.Id] with Distributive[scalaz.Id.Id] with Zip[scalaz.Id.Id] with Unzip[scalaz.Id.Id] with Align[scalaz.Id.Id] with Cozip[scalaz.Id.Id] with Optional[scalaz.Id.Id]

Inherited from AnyRef

Inherited from Any

Ungrouped