public static interface Api.ParametersOrBuilder
extends com.google.protobuf.MessageOrBuilder
限定符和类型 | 方法和说明 |
---|---|
boolean |
getDoSample()
Whether or not to use sampling, use greedy decoding otherwise.
|
float |
getFrequencyPenalty()
Number between -2.0 and 2.0.
|
long |
getLogprobs()
optional int64 logprobs = 12; |
long |
getMaxNewTokens()
The maximum number of tokens to generate, ignoring the number of tokens in
the prompt
optional int64 max_new_tokens = 6; |
long |
getMaxPromptTokens()
the maximum number of prompt tokens, if prompt tokens length over this
limit, it will be truncated as prompt[-max_prompt_tokens:]
optional int64 max_prompt_tokens = 11; |
long |
getMaxTokens()
The maximum number of tokens to generate in the char completion.
|
long |
getMinNewTokens()
the minimum number of tokens to generate
optional int64 min_new_tokens = 10; |
float |
getPresencePenalty()
Number between -2.0 and 2.0.
|
float |
getRepetitionPenalty()
The parameter for repetition penalty, from [1.0, 2.0]
optional float repetition_penalty = 7; |
String |
getStop(int index)
repeated string stop = 13; |
com.google.protobuf.ByteString |
getStopBytes(int index)
repeated string stop = 13; |
int |
getStopCount()
repeated string stop = 13; |
List<String> |
getStopList()
repeated string stop = 13; |
float |
getTemperature()
Exponential scaling output probability distribution
optional float temperature = 1; |
long |
getTopK()
The number of highest probability vocabulary tokens to keep for
top-k-filtering.
|
float |
getTopP()
An alternative to sampling with temperature, called nucleus sampling,
where the model considers the results of the tokens with top_p probability
mass
optional float top_p = 3; |
boolean |
hasDoSample()
Whether or not to use sampling, use greedy decoding otherwise.
|
boolean |
hasFrequencyPenalty()
Number between -2.0 and 2.0.
|
boolean |
hasLogprobs()
optional int64 logprobs = 12; |
boolean |
hasMaxNewTokens()
The maximum number of tokens to generate, ignoring the number of tokens in
the prompt
optional int64 max_new_tokens = 6; |
boolean |
hasMaxPromptTokens()
the maximum number of prompt tokens, if prompt tokens length over this
limit, it will be truncated as prompt[-max_prompt_tokens:]
optional int64 max_prompt_tokens = 11; |
boolean |
hasMaxTokens()
The maximum number of tokens to generate in the char completion.
|
boolean |
hasMinNewTokens()
the minimum number of tokens to generate
optional int64 min_new_tokens = 10; |
boolean |
hasPresencePenalty()
Number between -2.0 and 2.0.
|
boolean |
hasRepetitionPenalty()
The parameter for repetition penalty, from [1.0, 2.0]
optional float repetition_penalty = 7; |
boolean |
hasTemperature()
Exponential scaling output probability distribution
optional float temperature = 1; |
boolean |
hasTopK()
The number of highest probability vocabulary tokens to keep for
top-k-filtering.
|
boolean |
hasTopP()
An alternative to sampling with temperature, called nucleus sampling,
where the model considers the results of the tokens with top_p probability
mass
optional float top_p = 3; |
boolean hasTemperature()
Exponential scaling output probability distribution
optional float temperature = 1;
float getTemperature()
Exponential scaling output probability distribution
optional float temperature = 1;
boolean hasMaxTokens()
The maximum number of tokens to generate in the char completion.
optional int64 max_tokens = 2;
long getMaxTokens()
The maximum number of tokens to generate in the char completion.
optional int64 max_tokens = 2;
boolean hasTopP()
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass
optional float top_p = 3;
float getTopP()
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass
optional float top_p = 3;
boolean hasPresencePenalty()
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
optional float presence_penalty = 4;
float getPresencePenalty()
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
optional float presence_penalty = 4;
boolean hasFrequencyPenalty()
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
optional float frequency_penalty = 5;
float getFrequencyPenalty()
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
optional float frequency_penalty = 5;
boolean hasMaxNewTokens()
The maximum number of tokens to generate, ignoring the number of tokens in the prompt
optional int64 max_new_tokens = 6;
long getMaxNewTokens()
The maximum number of tokens to generate, ignoring the number of tokens in the prompt
optional int64 max_new_tokens = 6;
boolean hasRepetitionPenalty()
The parameter for repetition penalty, from [1.0, 2.0]
optional float repetition_penalty = 7;
float getRepetitionPenalty()
The parameter for repetition penalty, from [1.0, 2.0]
optional float repetition_penalty = 7;
boolean hasDoSample()
Whether or not to use sampling, use greedy decoding otherwise. Default to false
optional bool do_sample = 8;
boolean getDoSample()
Whether or not to use sampling, use greedy decoding otherwise. Default to false
optional bool do_sample = 8;
boolean hasTopK()
The number of highest probability vocabulary tokens to keep for top-k-filtering.
optional int64 top_k = 9;
long getTopK()
The number of highest probability vocabulary tokens to keep for top-k-filtering.
optional int64 top_k = 9;
boolean hasMinNewTokens()
the minimum number of tokens to generate
optional int64 min_new_tokens = 10;
long getMinNewTokens()
the minimum number of tokens to generate
optional int64 min_new_tokens = 10;
boolean hasMaxPromptTokens()
the maximum number of prompt tokens, if prompt tokens length over this limit, it will be truncated as prompt[-max_prompt_tokens:]
optional int64 max_prompt_tokens = 11;
long getMaxPromptTokens()
the maximum number of prompt tokens, if prompt tokens length over this limit, it will be truncated as prompt[-max_prompt_tokens:]
optional int64 max_prompt_tokens = 11;
boolean hasLogprobs()
optional int64 logprobs = 12;
long getLogprobs()
optional int64 logprobs = 12;
int getStopCount()
repeated string stop = 13;
String getStop(int index)
repeated string stop = 13;
index
- The index of the element to return.com.google.protobuf.ByteString getStopBytes(int index)
repeated string stop = 13;
index
- The index of the value to return.Copyright © 2024. All rights reserved.