object VecInit extends SourceInfoDoc
- Source
- Aggregate.scala
- Grouped
- Alphabetic
- By Inheritance
- VecInit
- SourceInfoDoc
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
macro
def
apply[T <: Data](elt0: T, elts: T*): Vec[T]
Creates a new Vec composed of the input Data nodes.
- Note
input elements should be of the same type (this is checked at the FIRRTL level, but not at the Scala / Chisel level)
,the width of all output elements is the width of the largest input element
,output elements are connected from the input elements
-
macro
def
apply[T <: Data](elts: Seq[T]): Vec[T]
Creates a new Vec composed of elements of the input Seq of Data nodes.
- Note
input elements should be of the same type (this is checked at the FIRRTL level, but not at the Scala / Chisel level)
,the width of all output elements is the width of the largest input element
,output elements are connected from the input elements
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
- def do_apply[T <: Data](elt0: T, elts: T*)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T]
- def do_apply[T <: Data](elts: Seq[T])(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T]
- def do_fill[T <: Data](n: Int, m: Int, p: Int)(gen: ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[Vec[Vec[T]]]
- def do_fill[T <: Data](n: Int, m: Int)(gen: ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[Vec[T]]
- def do_fill[T <: Data](n: Int)(gen: ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T]
- def do_iterate[T <: Data](start: T, len: Int)(f: (T) ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T]
- def do_tabulate[T <: Data](n: Int, m: Int, p: Int)(gen: (Int, Int, Int) ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[Vec[Vec[T]]]
- def do_tabulate[T <: Data](n: Int, m: Int)(gen: (Int, Int) ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[Vec[T]]
- def do_tabulate[T <: Data](n: Int)(gen: (Int) ⇒ T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): Vec[T]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
macro
def
fill[T <: Data](n: Int, m: Int, p: Int)(gen: ⇒ T): Vec[Vec[Vec[T]]]
Creates a new 3D Vec of length
n by m by p
composed of the result of the given function applied to an element of data type T.Creates a new 3D Vec of length
n by m by p
composed of the result of the given function applied to an element of data type T.- n
number of 2D vectors inside outer vector
- m
number of 1D vectors in each 2D vector
- p
number of elements in each 1D vector
- gen
function that takes in an element T and returns an output element of the same type
-
macro
def
fill[T <: Data](n: Int, m: Int)(gen: ⇒ T): Vec[Vec[T]]
Creates a new 2D Vec of length
n by m
composed of the result of the given function applied to an element of data type T.Creates a new 2D Vec of length
n by m
composed of the result of the given function applied to an element of data type T.- n
number of inner vectors (rows) in the outer vector
- m
number of elements in each inner vector (column)
- gen
function that takes in an element T and returns an output element of the same type
-
macro
def
fill[T <: Data](n: Int)(gen: ⇒ T): Vec[T]
Creates a new Vec of length
n
composed of the result of the given function applied to an element of data type T.Creates a new Vec of length
n
composed of the result of the given function applied to an element of data type T.- n
number of elements in the vector
- gen
function that takes in an element T and returns an output element of the same type
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
macro
def
iterate[T <: Data](start: T, len: Int)(f: (T) ⇒ T): Vec[T]
Creates a new Vec of length
n
composed of the result of the given function applied to an element of data type T.Creates a new Vec of length
n
composed of the result of the given function applied to an element of data type T.- start
First element in the Vec
- len
Lenth of elements in the Vec
- f
Function that applies the element T from previous index and returns the output element to the next index
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
macro
def
tabulate[T <: Data](n: Int, m: Int, p: Int)(gen: (Int, Int, Int) ⇒ T): Vec[Vec[Vec[T]]]
Creates a new 3D Vec of length
n by m by p
composed of the results of the given function applied over a range of integer values starting from 0.Creates a new 3D Vec of length
n by m by p
composed of the results of the given function applied over a range of integer values starting from 0.- n
number of 2D vectors inside outer vector
- m
number of 1D vectors in each 2D vector
- p
number of elements in each 1D vector
- gen
function that takes in an Int (the index) and returns a Data that becomes the output element
-
macro
def
tabulate[T <: Data](n: Int, m: Int)(gen: (Int, Int) ⇒ T): Vec[Vec[T]]
Creates a new 2D Vec of length
n by m
composed of the results of the given function applied over a range of integer values starting from 0.Creates a new 2D Vec of length
n by m
composed of the results of the given function applied over a range of integer values starting from 0.- n
number of 1D vectors inside outer vector
- m
number of elements in each 1D vector (the function is applied from 0 to
n-1
)- gen
function that takes in an Int (the index) and returns a Data that becomes the output element
-
macro
def
tabulate[T <: Data](n: Int)(gen: (Int) ⇒ T): Vec[T]
Creates a new Vec of length
n
composed of the results of the given function applied over a range of integer values starting from 0.Creates a new Vec of length
n
composed of the results of the given function applied over a range of integer values starting from 0.- n
number of elements in the vector (the function is applied from 0 to
n-1
)- gen
function that takes in an Int (the index) and returns a Data that becomes the output element
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
Ungrouped
SourceInfoTransformMacro
These internal methods are not part of the public-facing API!
The equivalent public-facing methods do not have the do_
prefix or have the same name. Use and look at the
documentation for those. If you want left shift, use <<
, not do_<<
. If you want conversion to a
Seq of Bools look at the asBools
above, not the one below. Users can safely ignore
every method in this group!
🐉🐉🐉 Here be dragons... 🐉🐉🐉
These do_X
methods are used to enable both implicit passing of SourceInfo and chisel3.CompileOptions
while also supporting chained apply methods. In effect all "normal" methods that you, as a user, will use in your
designs, are converted to their "hidden", do_*
, via macro transformations. Without using macros here, only one
of the above wanted behaviors is allowed (implicit passing and chained applies)---the compiler interprets a
chained apply as an explicit 'implicit' argument and will throw type errors.
The "normal", public-facing methods then take no SourceInfo. However, a macro transforms this public-facing method
into a call to an internal, hidden do_*
that takes an explicit SourceInfo by inserting an
implicitly[SourceInfo]
as the explicit argument.
This is the documentation for Chisel.
Package structure
The chisel3 package presents the public API of Chisel. It contains the concrete core types
UInt
,SInt
,Bool
,FixedPoint
,Clock
, andReg
, the abstract typesBits
,Aggregate
, andData
, and the aggregate typesBundle
andVec
.The Chisel package is a compatibility layer that attempts to provide chisel2 compatibility in chisel3.
Utility objects and methods are found in the
util
package.The
testers
package defines the basic interface for chisel testers.