com.google.type.quaternion

Members list

Concise view

Type members

Classlikes

final case class Quaternion(x: Double, y: Double, z: Double, w: Double, unknownFields: UnknownFieldSet) extends GeneratedMessage with Updatable[Quaternion]

A quaternion is defined as the quotient of two directed lines in a three-dimensional space or equivalently as the quotient of two Euclidean vectors (https://en.wikipedia.org/wiki/Quaternion).

A quaternion is defined as the quotient of two directed lines in a three-dimensional space or equivalently as the quotient of two Euclidean vectors (https://en.wikipedia.org/wiki/Quaternion).

Quaternions are often used in calculations involving three-dimensional rotations (https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation), as they provide greater mathematical robustness by avoiding the gimbal lock problems that can be encountered when using Euler angles (https://en.wikipedia.org/wiki/Gimbal_lock).

Quaternions are generally represented in this form:

w + xi + yj + zk

where x, y, z, and w are real numbers, and i, j, and k are three imaginary numbers.

Our naming choice (x, y, z, w) comes from the desire to avoid confusion for those interested in the geometric properties of the quaternion in the 3D Cartesian space. Other texts often use alternative names or subscripts, such as (a, b, c, d), (1, i, j, k), or (0, 1, 2, 3), which are perhaps better suited for mathematical interpretations.

To avoid any confusion, as well as to maintain compatibility with a large number of software libraries, the quaternions represented using the protocol buffer below must follow the Hamilton convention, which defines ij = k (i.e. a right-handed algebra), and therefore:

i^2 = j^2 = k^2 = ijk = −1 ij = −ji = k jk = −kj = i ki = −ik = j

Please DO NOT use this to represent quaternions that follow the JPL convention, or any of the other quaternion flavors out there.

Definitions:

  • Quaternion norm (or magnitude): sqrt(x^2 + y^2 + z^2 + w^2).
  • Unit (or normalized) quaternion: a quaternion whose norm is 1.
  • Pure quaternion: a quaternion whose scalar component (w) is 0.
  • Rotation quaternion: a unit quaternion used to represent rotation.
  • Orientation quaternion: a unit quaternion used to represent orientation.

A quaternion can be normalized by dividing it by its norm. The resulting quaternion maintains the same direction, but has a norm of 1, i.e. it moves on the unit sphere. This is generally necessary for rotation and orientation quaternions, to avoid rounding errors: https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

Note that (x, y, z, w) and (-x, -y, -z, -w) represent the same rotation, but normalization would be even more useful, e.g. for comparison purposes, if it would produce a unique representation. It is thus recommended that w be kept positive, which can be achieved by changing all the signs when w is negative.

Attributes

w

The scalar component.

x

The x component.

y

The y component.

z

The z component.

Companion:
object
Source:
Quaternion.scala
Graph
Supertypes
trait Updatable[Quaternion]
trait GeneratedMessage
trait Serializable
trait Product
trait Equals
class Object
trait Matchable
class Any
object Quaternion extends GeneratedMessageCompanion[Quaternion]

Attributes

Companion:
class
Source:
Quaternion.scala
Graph
Supertypes
trait Product
trait Mirror
trait GeneratedMessageCompanion[Quaternion]
trait Serializable
class Object
trait Matchable
class Any
Self type
object QuaternionProto extends GeneratedFileObject

Attributes

Source:
QuaternionProto.scala
Graph
Supertypes
class GeneratedFileObject
class Object
trait Matchable
class Any
Self type