Package | Description |
---|---|
io.kgraph.library | |
io.kgraph.library.basic | |
io.kgraph.library.cf | |
io.kgraph.library.clustering | |
io.kgraph.library.maxbmatching | |
io.kgraph.library.similarity | |
io.kgraph.pregel |
Modifier and Type | Class and Description |
---|---|
class |
BreadthFirstSearch<K,EV>
Adapted from the Graphalytics implementation.
|
class |
ConnectedComponents<EV> |
class |
LabelPropagation<EV> |
class |
LocalClusteringCoefficient
Adapted from the Graphalytics implementation.
|
class |
MultipleSourceShortestPaths |
class |
PageRank<K> |
class |
SingleSourceShortestPaths |
class |
SybilRank
This is an implementation of the SybilRank algorithm.
|
class |
SybilRank.Initializer
This class is used only to initialize the rank of the vertices.
|
static class |
SybilRank.SybilRankComputation
This class implements the main part of the SybilRank algorithms, that is,
the power iterations.
|
static class |
SybilRank.TrustAggregation
This computation class is used to calculate the aggregate number of
trusted nodes.
|
Modifier and Type | Method and Description |
---|---|
static ComputeFunction |
GraphAlgorithmType.computeFunction(GraphAlgorithmType type) |
Modifier and Type | Class and Description |
---|---|
class |
EdgeCount<K,VV,EV,Message> |
class |
ReverseEdges<K,VV,EV> |
class |
VertexCount<K,VV,EV,Message> |
Modifier and Type | Class and Description |
---|---|
class |
Als
Alternating Least Squares (ALS) implementation.
|
class |
Als.InitItemsComputation
This computation class is used to initialize the factors of the item nodes
in the second superstep.
|
class |
Als.InitUsersComputation
This computation class is used to initialize the factors of the user nodes
in the very first superstep, and send the first updates to the item nodes.
|
class |
Sgd
Stochastic Gradient Descent (SGD) implementation.
|
class |
Sgd.InitItemsComputation
This computation class is used to initialize the factors of the item nodes
in the second superstep.
|
class |
Sgd.InitUsersComputation
This computation class is used to initialize the factors of the user nodes
in the very first superstep, and send the first updates to the item nodes.
|
class |
Svdpp |
class |
Svdpp.InitItemsComputation |
class |
Svdpp.InitUsersComputation
This computation class is used to initialize the factors of the user nodes
in the very first superstep, and send the first updates to the item nodes.
|
class |
Svdpp.ItemComputation |
class |
Svdpp.UserComputation |
Modifier and Type | Class and Description |
---|---|
class |
KMeansClustering<EV,Message>
The k-means clustering algorithm partitions
N data points (observations) into k clusters. |
class |
KMeansClustering.RandomCentersInitialization |
class |
SemiClustering
Implements the Semi-Clustering algorithm as presented in the Pregel paper
from SIGMOD'10.
|
Modifier and Type | Class and Description |
---|---|
class |
MaxBMatching
Greedy algorithm for the Maximum B-Matching problem as described in G.
|
Modifier and Type | Class and Description |
---|---|
class |
AdamicAdar
This class computes the Adamic-Adar similarity or distance
for each pair of neighbors in an undirected unweighted graph.
|
static class |
AdamicAdar.ComputeLogOfInverseDegree
Implements the first step in the Adamic-Adar similarity computation.
|
static class |
AdamicAdar.ScaleToDistance |
static class |
AdamicAdar.SendFriendsListAndValue
Implements the first step in the exact Adamic-Adar similarity algorithm.
|
class |
Jaccard<VV>
This class computes the Jaccard similarity or distance
for each pair of neighbors in an undirected unweighted graph.
|
static class |
Jaccard.ScaleToDistance<VV> |
static class |
Jaccard.SendFriends<K,VV,EV>
Implements the first step in the exact jaccard similirity algorithm.
|
Constructor and Description |
---|
PregelComputation(String hostAndPort,
String applicationId,
String bootstrapServers,
org.apache.curator.framework.CuratorFramework curator,
String verticesTopic,
String edgesGroupedBySourceTopic,
Map<org.apache.kafka.common.TopicPartition,Long> graphOffsets,
GraphSerialized<K,VV,EV> serialized,
String solutionSetTopic,
String solutionSetStore,
String workSetTopic,
int numPartitions,
Map<String,?> configs,
Optional<Message> initialMessage,
ComputeFunction<K,VV,EV,Message> cf) |
PregelGraphAlgorithm(String hostAndPort,
String applicationId,
String bootstrapServers,
org.apache.curator.framework.CuratorFramework curator,
String verticesTopic,
String edgesGroupedBySourceTopic,
Map<org.apache.kafka.common.TopicPartition,Long> graphOffsets,
GraphSerialized<K,VV,EV> serialized,
int numPartitions,
short replicationFactor,
Map<String,?> configs,
Optional<Message> initialMessage,
ComputeFunction<K,VV,EV,Message> cf) |
PregelGraphAlgorithm(String hostAndPort,
String applicationId,
String bootstrapServers,
org.apache.curator.framework.CuratorFramework curator,
String verticesTopic,
String edgesGroupedBySourceTopic,
Map<org.apache.kafka.common.TopicPartition,Long> graphOffsets,
GraphSerialized<K,VV,EV> serialized,
String solutionSetTopic,
String solutionSetStore,
String workSetTopic,
int numPartitions,
short replicationFactor,
Map<String,?> configs,
Optional<Message> initialMessage,
ComputeFunction<K,VV,EV,Message> cf) |
PregelGraphAlgorithm(String hostAndPort,
String applicationId,
String bootstrapServers,
String zookeeperConnect,
String verticesTopic,
String edgesGroupedBySourceTopic,
Map<org.apache.kafka.common.TopicPartition,Long> graphOffsets,
GraphSerialized<K,VV,EV> serialized,
String solutionSetTopic,
String solutionSetStore,
String workSetTopic,
int numPartitions,
short replicationFactor,
Map<String,?> configs,
Optional<Message> initialMessage,
ComputeFunction<K,VV,EV,Message> cf) |
Copyright © 2020. All rights reserved.