|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectit.unimi.dsi.fastutil.chars.AbstractChar2ByteFunction
it.unimi.dsi.fastutil.chars.AbstractChar2ByteMap
it.unimi.dsi.fastutil.chars.AbstractChar2ByteSortedMap
it.unimi.dsi.fastutil.chars.Char2ByteLinkedOpenHashMap
public class Char2ByteLinkedOpenHashMap
A type-specific linked hash map with with a fast, small-footprint implementation.
Instances of this class use a hash table to represent a map. The table is
enlarged as needed by doubling its size when new entries are created, but it is never made
smaller (even on a clear()
). A family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Iterators generated by this map will enumerate pairs in the same order in which they have been added to the map (addition of pairs whose key is already present in the set does not change the iteration order). Note that this order has nothing in common with the natural order of the keys. The order is kept by means of a doubly linked list, represented via an array of longs parallel to the table.
This class implements the interface of a sorted map, so to allow easy
access of the iteration order: for instance, you can get the first key
in iteration order with AbstractChar2ByteSortedMap.firstKey()
without having to create an
iterator; however, this class partially violates the SortedMap
contract because all submap methods throw an exception and comparator()
returns always null
.
Additional methods, such as getAndMoveToFirst()
, make it easy
to use instances of this class as a cache (e.g., with LRU policy).
The iterators provided by the views of this class using are type-specific
list iterators, and can be started at any
element which is a key of the map, or
a NoSuchElementException
exception will be thrown.
If, however, the provided element is not the first or last key in the
set, the first access to the list index will require linear time, as in the worst case
the entire key set must be scanned in iteration order to retrieve the positional
index of the starting key. If you use just the methods of a type-specific BidirectionalIterator
,
however, all operations will be performed in constant time.
Hash
,
HashCommon
,
Serialized FormNested Class Summary |
---|
Nested classes/interfaces inherited from class it.unimi.dsi.fastutil.chars.AbstractChar2ByteMap |
---|
AbstractChar2ByteMap.BasicEntry |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.Hash |
---|
Hash.Strategy<K> |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.chars.Char2ByteSortedMap |
---|
Char2ByteSortedMap.FastSortedEntrySet |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.chars.Char2ByteMap |
---|
Char2ByteMap.Entry, Char2ByteMap.FastEntrySet |
Field Summary | |
---|---|
static long |
serialVersionUID
|
Fields inherited from interface it.unimi.dsi.fastutil.Hash |
---|
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR |
Constructor Summary | |
---|---|
Char2ByteLinkedOpenHashMap()
Creates a new hash map with initial expected Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Char2ByteLinkedOpenHashMap(char[] k,
byte[] v)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
|
Char2ByteLinkedOpenHashMap(char[] k,
byte[] v,
float f)
Creates a new hash map using the elements of two parallel arrays. |
|
Char2ByteLinkedOpenHashMap(Char2ByteMap m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
|
Char2ByteLinkedOpenHashMap(Char2ByteMap m,
float f)
Creates a new hash map copying a given type-specific one. |
|
Char2ByteLinkedOpenHashMap(int expected)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Char2ByteLinkedOpenHashMap(int expected,
float f)
Creates a new hash map. |
|
Char2ByteLinkedOpenHashMap(Map<? extends Character,? extends Byte> m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
|
Char2ByteLinkedOpenHashMap(Map<? extends Character,? extends Byte> m,
float f)
Creates a new hash map copying a given one. |
Method Summary | |
---|---|
byte |
add(char k,
byte incr)
Adds an increment to value currently associated with a key. |
Char2ByteSortedMap.FastSortedEntrySet |
char2ByteEntrySet()
Returns a type-specific sorted-set view of the mappings contained in this map. |
void |
clear()
Removes all associations from this function (optional operation). |
Char2ByteLinkedOpenHashMap |
clone()
Returns a deep copy of this map. |
CharComparator |
comparator()
Returns the comparator associated with this sorted set, or null if it uses its keys' natural ordering. |
boolean |
containsKey(char k)
Checks whether the given value is contained in AbstractChar2ByteMap.keySet() . |
boolean |
containsValue(byte v)
Checks whether the given value is contained in AbstractChar2ByteMap.values() . |
char |
firstCharKey()
Returns the first key of this map in iteration order. |
byte |
get(char k)
Returns the value to which the given key is mapped. |
Byte |
get(Character ok)
|
byte |
getAndMoveToFirst(char k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order. |
byte |
getAndMoveToLast(char k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order. |
int |
growthFactor()
Deprecated. Since fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated. Since fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map. |
Char2ByteSortedMap |
headMap(char to)
Returns a view of the portion of this sorted map whose keys are strictly less than toKey . |
boolean |
isEmpty()
|
CharSortedSet |
keySet()
Returns a type-specific-sorted-set view of the keys of this map. |
char |
lastCharKey()
Returns the last key of this map in iteration order. |
Byte |
put(Character ok,
Byte ov)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
byte |
put(char k,
byte v)
Adds a pair to the map. |
byte |
putAndMoveToFirst(char k,
byte v)
Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order. |
byte |
putAndMoveToLast(char k,
byte v)
Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order. |
boolean |
rehash()
Deprecated. A no-op. |
byte |
remove(char k)
Removes the mapping with the given key. |
Byte |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
byte |
removeFirstByte()
Removes the mapping associated with the first key in iteration order. |
byte |
removeLastByte()
Removes the mapping associated with the last key in iteration order. |
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists. |
Char2ByteSortedMap |
subMap(char from,
char to)
Returns a view of the portion of this sorted map whose keys range from fromKey , inclusive, to toKey , exclusive. |
Char2ByteSortedMap |
tailMap(char from)
Returns a view of the portion of this sorted map whose keys are greater than or equal to fromKey . |
boolean |
trim()
Rehashes the map, making the table as small as possible. |
boolean |
trim(int n)
Rehashes this map if the table is too large. |
ByteCollection |
values()
Returns a type-specific collection view of the values contained in this map. |
Methods inherited from class it.unimi.dsi.fastutil.chars.AbstractChar2ByteSortedMap |
---|
entrySet, firstKey, headMap, lastKey, subMap, tailMap |
Methods inherited from class it.unimi.dsi.fastutil.chars.AbstractChar2ByteMap |
---|
containsValue, equals, putAll, toString |
Methods inherited from class it.unimi.dsi.fastutil.chars.AbstractChar2ByteFunction |
---|
containsKey, defaultReturnValue, defaultReturnValue, get |
Methods inherited from class java.lang.Object |
---|
getClass, notify, notifyAll, wait, wait, wait |
Methods inherited from interface it.unimi.dsi.fastutil.chars.Char2ByteFunction |
---|
defaultReturnValue, defaultReturnValue |
Methods inherited from interface it.unimi.dsi.fastutil.Function |
---|
containsKey, get |
Methods inherited from interface java.util.Map |
---|
containsKey, containsValue, equals, get, putAll |
Field Detail |
---|
public static final long serialVersionUID
Constructor Detail |
---|
public Char2ByteLinkedOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.public Char2ByteLinkedOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.
expected
- the expected number of elements in the hash map.public Char2ByteLinkedOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.
public Char2ByteLinkedOpenHashMap(Map<? extends Character,? extends Byte> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Char2ByteLinkedOpenHashMap(Map<? extends Character,? extends Byte> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.
m
- a Map
to be copied into the new hash map.public Char2ByteLinkedOpenHashMap(Char2ByteMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Char2ByteLinkedOpenHashMap(Char2ByteMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.
m
- a type-specific map to be copied into the new hash map.public Char2ByteLinkedOpenHashMap(char[] k, byte[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.
IllegalArgumentException
- if k
and v
have different lengths.public Char2ByteLinkedOpenHashMap(char[] k, byte[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.
IllegalArgumentException
- if k
and v
have different lengths.Method Detail |
---|
public byte put(char k, byte v)
Char2ByteFunction
put
in interface Char2ByteFunction
put
in class AbstractChar2ByteFunction
k
- the key.v
- the value.
Function.put(Object,Object)
public Byte put(Character ok, Byte ov)
AbstractChar2ByteFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
put
in interface Function<Character,Byte>
put
in interface Map<Character,Byte>
put
in class AbstractChar2ByteFunction
ok
- the key.ov
- the value.
null
if no value was present for the given key.Map.put(Object,Object)
public byte add(char k, byte incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.
public byte remove(char k)
Char2ByteFunction
remove
in interface Char2ByteFunction
remove
in class AbstractChar2ByteFunction
Function.remove(Object)
public Byte remove(Object ok)
AbstractChar2ByteFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
remove
in interface Function<Character,Byte>
remove
in interface Map<Character,Byte>
remove
in class AbstractChar2ByteFunction
null
if no value was present for the given key.Map.remove(Object)
public byte removeFirstByte()
NoSuchElementException
- is this map is empty.public byte removeLastByte()
NoSuchElementException
- is this map is empty.public byte getAndMoveToFirst(char k)
k
- the key.
public byte getAndMoveToLast(char k)
k
- the key.
public byte putAndMoveToFirst(char k, byte v)
k
- the key.v
- the value.
public byte putAndMoveToLast(char k, byte v)
k
- the key.v
- the value.
public Byte get(Character ok)
public byte get(char k)
Char2ByteFunction
get
in interface Char2ByteFunction
k
- the key.
Function.get(Object)
public boolean containsKey(char k)
AbstractChar2ByteMap
AbstractChar2ByteMap.keySet()
.
containsKey
in interface Char2ByteFunction
containsKey
in class AbstractChar2ByteMap
Function.containsKey(Object)
public boolean containsValue(byte v)
AbstractChar2ByteMap
AbstractChar2ByteMap.values()
.
containsValue
in interface Char2ByteMap
containsValue
in class AbstractChar2ByteMap
Map.containsValue(Object)
public void clear()
Function
clear
in interface Function<Character,Byte>
clear
in interface Map<Character,Byte>
clear
in class AbstractChar2ByteFunction
Map.clear()
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
size
in interface Function<Character,Byte>
size
in interface Map<Character,Byte>
public boolean isEmpty()
isEmpty
in interface Map<Character,Byte>
isEmpty
in class AbstractChar2ByteMap
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.
growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.
growthFactor(int)
public char firstCharKey()
firstCharKey
in interface Char2ByteSortedMap
SortedMap.firstKey()
public char lastCharKey()
lastCharKey
in interface Char2ByteSortedMap
SortedMap.lastKey()
public CharComparator comparator()
Char2ByteSortedMap
Note that this specification strengthens the one given in SortedMap.comparator()
.
comparator
in interface Char2ByteSortedMap
comparator
in interface SortedMap<Character,Byte>
SortedMap.comparator()
public Char2ByteSortedMap tailMap(char from)
Char2ByteSortedMap
fromKey
.
tailMap
in interface Char2ByteSortedMap
SortedMap.tailMap(Object)
public Char2ByteSortedMap headMap(char to)
Char2ByteSortedMap
toKey
.
headMap
in interface Char2ByteSortedMap
SortedMap.headMap(Object)
public Char2ByteSortedMap subMap(char from, char to)
Char2ByteSortedMap
fromKey
, inclusive, to toKey
, exclusive.
subMap
in interface Char2ByteSortedMap
SortedMap.subMap(Object,Object)
public Char2ByteSortedMap.FastSortedEntrySet char2ByteEntrySet()
Char2ByteSortedMap
char2ByteEntrySet
in interface Char2ByteMap
char2ByteEntrySet
in interface Char2ByteSortedMap
Char2ByteSortedMap.entrySet()
public CharSortedSet keySet()
AbstractChar2ByteSortedMap
The view is backed by the sorted set returned by AbstractChar2ByteSortedMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Char2ByteMap
keySet
in interface Char2ByteSortedMap
keySet
in interface Map<Character,Byte>
keySet
in interface SortedMap<Character,Byte>
keySet
in class AbstractChar2ByteSortedMap
Map.keySet()
public ByteCollection values()
AbstractChar2ByteSortedMap
The view is backed by the sorted set returned by AbstractChar2ByteSortedMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Char2ByteMap
values
in interface Char2ByteSortedMap
values
in interface Map<Character,Byte>
values
in interface SortedMap<Character,Byte>
values
in class AbstractChar2ByteSortedMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly
this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.
trim()
public Char2ByteLinkedOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
clone
in class Object
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.
hashCode
in interface Map<Character,Byte>
hashCode
in class AbstractChar2ByteMap
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |