|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectit.unimi.dsi.fastutil.ints.AbstractInt2DoubleFunction
it.unimi.dsi.fastutil.ints.AbstractInt2DoubleMap
it.unimi.dsi.fastutil.ints.Int2DoubleOpenHashMap
public class Int2DoubleOpenHashMap
A type-specific hash map with a fast, small-footprint implementation.
Instances of this class use a hash table to represent a map. The table is
enlarged as needed by doubling its size when new entries are created, but it is never made
smaller (even on a clear()
). A family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Warning: The implementation of this class has significantly
changed in fastutil
6.1.0. Please read the
comments about this issue in the section “Faster Hash Tables” of the overview.
Hash
,
HashCommon
,
Serialized FormNested Class Summary |
---|
Nested classes/interfaces inherited from class it.unimi.dsi.fastutil.ints.AbstractInt2DoubleMap |
---|
AbstractInt2DoubleMap.BasicEntry |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.Hash |
---|
Hash.Strategy<K> |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.ints.Int2DoubleMap |
---|
Int2DoubleMap.Entry, Int2DoubleMap.FastEntrySet |
Field Summary | |
---|---|
static long |
serialVersionUID
|
Fields inherited from interface it.unimi.dsi.fastutil.Hash |
---|
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR |
Constructor Summary | |
---|---|
Int2DoubleOpenHashMap()
Creates a new hash map with initial expected Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Int2DoubleOpenHashMap(int expected)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Int2DoubleOpenHashMap(int[] k,
double[] v)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
|
Int2DoubleOpenHashMap(int[] k,
double[] v,
float f)
Creates a new hash map using the elements of two parallel arrays. |
|
Int2DoubleOpenHashMap(Int2DoubleMap m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
|
Int2DoubleOpenHashMap(Int2DoubleMap m,
float f)
Creates a new hash map copying a given type-specific one. |
|
Int2DoubleOpenHashMap(int expected,
float f)
Creates a new hash map. |
|
Int2DoubleOpenHashMap(Map<? extends Integer,? extends Double> m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
|
Int2DoubleOpenHashMap(Map<? extends Integer,? extends Double> m,
float f)
Creates a new hash map copying a given one. |
Method Summary | |
---|---|
double |
add(int k,
double incr)
Adds an increment to value currently associated with a key. |
void |
clear()
Removes all associations from this function (optional operation). |
Int2DoubleOpenHashMap |
clone()
Returns a deep copy of this map. |
boolean |
containsKey(int k)
Checks whether the given value is contained in AbstractInt2DoubleMap.keySet() . |
boolean |
containsValue(double v)
Checks whether the given value is contained in AbstractInt2DoubleMap.values() . |
double |
get(int k)
Returns the value to which the given key is mapped. |
Double |
get(Integer ok)
|
int |
growthFactor()
Deprecated. Since fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated. Since fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map. |
Int2DoubleMap.FastEntrySet |
int2DoubleEntrySet()
Returns a type-specific set view of the mappings contained in this map. |
boolean |
isEmpty()
|
IntSet |
keySet()
Returns a type-specific-set view of the keys of this map. |
double |
put(int k,
double v)
Adds a pair to the map. |
Double |
put(Integer ok,
Double ov)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
boolean |
rehash()
Deprecated. A no-op. |
double |
remove(int k)
Removes the mapping with the given key. |
Double |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists. |
boolean |
trim()
Rehashes the map, making the table as small as possible. |
boolean |
trim(int n)
Rehashes this map if the table is too large. |
DoubleCollection |
values()
Returns a type-specific-set view of the values of this map. |
Methods inherited from class it.unimi.dsi.fastutil.ints.AbstractInt2DoubleMap |
---|
containsValue, entrySet, equals, putAll, toString |
Methods inherited from class it.unimi.dsi.fastutil.ints.AbstractInt2DoubleFunction |
---|
containsKey, defaultReturnValue, defaultReturnValue, get |
Methods inherited from class java.lang.Object |
---|
getClass, notify, notifyAll, wait, wait, wait |
Methods inherited from interface it.unimi.dsi.fastutil.ints.Int2DoubleFunction |
---|
defaultReturnValue, defaultReturnValue |
Methods inherited from interface it.unimi.dsi.fastutil.Function |
---|
containsKey, get |
Methods inherited from interface java.util.Map |
---|
containsKey, get |
Field Detail |
---|
public static final long serialVersionUID
Constructor Detail |
---|
public Int2DoubleOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.public Int2DoubleOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.
expected
- the expected number of elements in the hash map.public Int2DoubleOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.
public Int2DoubleOpenHashMap(Map<? extends Integer,? extends Double> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Int2DoubleOpenHashMap(Map<? extends Integer,? extends Double> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.
m
- a Map
to be copied into the new hash map.public Int2DoubleOpenHashMap(Int2DoubleMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Int2DoubleOpenHashMap(Int2DoubleMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.
m
- a type-specific map to be copied into the new hash map.public Int2DoubleOpenHashMap(int[] k, double[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.
IllegalArgumentException
- if k
and v
have different lengths.public Int2DoubleOpenHashMap(int[] k, double[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.
IllegalArgumentException
- if k
and v
have different lengths.Method Detail |
---|
public double put(int k, double v)
Int2DoubleFunction
put
in interface Int2DoubleFunction
put
in class AbstractInt2DoubleFunction
k
- the key.v
- the value.
Function.put(Object,Object)
public Double put(Integer ok, Double ov)
AbstractInt2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
put
in interface Function<Integer,Double>
put
in interface Map<Integer,Double>
put
in class AbstractInt2DoubleFunction
ok
- the key.ov
- the value.
null
if no value was present for the given key.Map.put(Object,Object)
public double add(int k, double incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.
public double remove(int k)
Int2DoubleFunction
remove
in interface Int2DoubleFunction
remove
in class AbstractInt2DoubleFunction
Function.remove(Object)
public Double remove(Object ok)
AbstractInt2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
remove
in interface Function<Integer,Double>
remove
in interface Map<Integer,Double>
remove
in class AbstractInt2DoubleFunction
null
if no value was present for the given key.Map.remove(Object)
public Double get(Integer ok)
public double get(int k)
Int2DoubleFunction
get
in interface Int2DoubleFunction
k
- the key.
Function.get(Object)
public boolean containsKey(int k)
AbstractInt2DoubleMap
AbstractInt2DoubleMap.keySet()
.
containsKey
in interface Int2DoubleFunction
containsKey
in class AbstractInt2DoubleMap
Function.containsKey(Object)
public boolean containsValue(double v)
AbstractInt2DoubleMap
AbstractInt2DoubleMap.values()
.
containsValue
in interface Int2DoubleMap
containsValue
in class AbstractInt2DoubleMap
Map.containsValue(Object)
public void clear()
Function
clear
in interface Function<Integer,Double>
clear
in interface Map<Integer,Double>
clear
in class AbstractInt2DoubleFunction
Map.clear()
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
size
in interface Function<Integer,Double>
size
in interface Map<Integer,Double>
public boolean isEmpty()
isEmpty
in interface Map<Integer,Double>
isEmpty
in class AbstractInt2DoubleMap
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.
growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.
growthFactor(int)
public Int2DoubleMap.FastEntrySet int2DoubleEntrySet()
Int2DoubleMap
This method is necessary because there is no inheritance along
type parameters: it is thus impossible to strengthen Int2DoubleMap.entrySet()
so that it returns an ObjectSet
of objects of type Int2DoubleMap.Entry
(the latter makes it possible to
access keys and values with type-specific methods).
int2DoubleEntrySet
in interface Int2DoubleMap
Int2DoubleMap.entrySet()
public IntSet keySet()
AbstractInt2DoubleMap
The view is backed by the set returned by AbstractInt2DoubleMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Int2DoubleMap
keySet
in interface Map<Integer,Double>
keySet
in class AbstractInt2DoubleMap
Map.keySet()
public DoubleCollection values()
AbstractInt2DoubleMap
The view is backed by the set returned by AbstractInt2DoubleMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Int2DoubleMap
values
in interface Map<Integer,Double>
values
in class AbstractInt2DoubleMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly
this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.
trim()
public Int2DoubleOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
clone
in class Object
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.
hashCode
in interface Map<Integer,Double>
hashCode
in class AbstractInt2DoubleMap
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |