public class Int2DoubleLinkedOpenHashMap extends AbstractInt2DoubleSortedMap implements Serializable, Cloneable, Hash
Instances of this class use a hash table to represent a map. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is emptied below one fourth of the load factor, it is halved in size. However, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration process.
Note that clear()
does not modify the hash table size. Rather, a family of trimming methods lets you control the size of the table; this is particularly useful if
you reuse instances of this class.
Iterators generated by this map will enumerate pairs in the same order in which they have been added to the map (addition of pairs whose key is already present in the set does not change the iteration order). Note that this order has nothing in common with the natural order of the keys. The order is kept by means of a doubly linked list, represented via an array of longs parallel to the table.
This class implements the interface of a sorted map, so to allow easy access of the iteration order: for instance, you can get the first key in iteration order with AbstractInt2DoubleSortedMap.firstKey()
without
having to create an iterator; however, this class partially violates the SortedMap
contract because all submap methods throw an exception and comparator()
returns always
null
.
Additional methods, such as getAndMoveToFirst()
, make it easy to use instances of this class as a cache (e.g., with LRU policy).
The iterators provided by the views of this class using are type-specific list iterators, and can be started at any element which is a key of the map,
or a NoSuchElementException
exception will be thrown. If, however, the provided element is not the first or last key in the set, the first access to the list index will require linear time,
as in the worst case the entire key set must be scanned in iteration order to retrieve the positional index of the starting key. If you use just the methods of a type-specific
BidirectionalIterator
, however, all operations will be performed in constant time.
Hash
,
HashCommon
,
Serialized FormAbstractInt2DoubleMap.BasicEntry
Hash.Strategy<K>
Int2DoubleSortedMap.FastSortedEntrySet
Int2DoubleMap.Entry, Int2DoubleMap.FastEntrySet
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR
Constructor and Description |
---|
Int2DoubleLinkedOpenHashMap()
Creates a new hash map with initial expected
Hash.DEFAULT_INITIAL_SIZE entries and Hash.DEFAULT_LOAD_FACTOR as load factor. |
Int2DoubleLinkedOpenHashMap(int expected)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor. |
Int2DoubleLinkedOpenHashMap(int[] k,
double[] v)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
Int2DoubleLinkedOpenHashMap(int[] k,
double[] v,
float f)
Creates a new hash map using the elements of two parallel arrays.
|
Int2DoubleLinkedOpenHashMap(Int2DoubleMap m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
Int2DoubleLinkedOpenHashMap(Int2DoubleMap m,
float f)
Creates a new hash map copying a given type-specific one.
|
Int2DoubleLinkedOpenHashMap(int expected,
float f)
Creates a new hash map.
|
Int2DoubleLinkedOpenHashMap(Map<? extends Integer,? extends Double> m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
Int2DoubleLinkedOpenHashMap(Map<? extends Integer,? extends Double> m,
float f)
Creates a new hash map copying a given one.
|
Modifier and Type | Method and Description |
---|---|
double |
addTo(int k,
double incr)
Adds an increment to value currently associated with a key.
|
void |
clear()
Removes all associations from this function (optional operation).
|
Int2DoubleLinkedOpenHashMap |
clone()
Returns a deep copy of this map.
|
IntComparator |
comparator()
Returns the comparator associated with this sorted set, or null if it uses its keys' natural ordering.
|
boolean |
containsKey(int k)
Checks whether the given value is contained in
AbstractInt2DoubleMap.keySet() . |
boolean |
containsValue(double v)
Checks whether the given value is contained in
AbstractInt2DoubleMap.values() . |
int |
firstIntKey()
Returns the first key of this map in iteration order.
|
double |
get(int k)
Returns the value to which the given key is mapped.
|
Double |
get(Integer ok) |
double |
getAndMoveToFirst(int k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order.
|
double |
getAndMoveToLast(int k)
Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order.
|
int |
growthFactor()
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map.
|
Int2DoubleSortedMap |
headMap(int to)
Returns a view of the portion of this sorted map whose keys are strictly less than
toKey . |
Int2DoubleSortedMap.FastSortedEntrySet |
int2DoubleEntrySet()
Returns a type-specific sorted-set view of the mappings contained in this map.
|
boolean |
isEmpty() |
IntSortedSet |
keySet()
Returns a type-specific-sorted-set view of the keys of this map.
|
int |
lastIntKey()
Returns the last key of this map in iteration order.
|
double |
put(int k,
double v)
Adds a pair to the map.
|
Double |
put(Integer ok,
Double ov)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
void |
putAll(Map<? extends Integer,? extends Double> m)
Puts all pairs in the given map.
|
double |
putAndMoveToFirst(int k,
double v)
Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order.
|
double |
putAndMoveToLast(int k,
double v)
Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order.
|
boolean |
rehash()
Deprecated.
A no-op.
|
double |
remove(int k)
Removes the mapping with the given key.
|
Double |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
double |
removeFirstDouble()
Removes the mapping associated with the first key in iteration order.
|
double |
removeLastDouble()
Removes the mapping associated with the last key in iteration order.
|
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists.
|
Int2DoubleSortedMap |
subMap(int from,
int to)
Returns a view of the portion of this sorted map whose keys range from
fromKey , inclusive, to toKey , exclusive. |
Int2DoubleSortedMap |
tailMap(int from)
Returns a view of the portion of this sorted map whose keys are greater than or equal to
fromKey . |
boolean |
trim()
Rehashes the map, making the table as small as possible.
|
boolean |
trim(int n)
Rehashes this map if the table is too large.
|
DoubleCollection |
values()
Returns a type-specific collection view of the values contained in this map.
|
entrySet, firstKey, headMap, lastKey, subMap, tailMap
containsValue, equals, toString
containsKey, defaultReturnValue, defaultReturnValue, get
defaultReturnValue, defaultReturnValue
containsKey, get
compute, computeIfAbsent, computeIfPresent, containsKey, containsValue, equals, forEach, get, getOrDefault, merge, putIfAbsent, remove, replace, replace, replaceAll
public Int2DoubleLinkedOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.public Int2DoubleLinkedOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.expected
- the expected number of elements in the hash map.public Int2DoubleLinkedOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries and Hash.DEFAULT_LOAD_FACTOR
as load factor.public Int2DoubleLinkedOpenHashMap(Map<? extends Integer,? extends Double> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Int2DoubleLinkedOpenHashMap(Map<? extends Integer,? extends Double> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.m
- a Map
to be copied into the new hash map.public Int2DoubleLinkedOpenHashMap(Int2DoubleMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Int2DoubleLinkedOpenHashMap(Int2DoubleMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.m
- a type-specific map to be copied into the new hash map.public Int2DoubleLinkedOpenHashMap(int[] k, double[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.IllegalArgumentException
- if k
and v
have different lengths.public Int2DoubleLinkedOpenHashMap(int[] k, double[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.IllegalArgumentException
- if k
and v
have different lengths.public void putAll(Map<? extends Integer,? extends Double> m)
public double put(int k, double v)
Int2DoubleFunction
put
in interface Int2DoubleFunction
put
in class AbstractInt2DoubleFunction
k
- the key.v
- the value.Function.put(Object,Object)
public Double put(Integer ok, Double ov)
AbstractInt2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus, it probes the map twice. Implementors of subclasses should override it with a
more efficient method.
put
in interface Function<Integer,Double>
put
in interface Map<Integer,Double>
put
in class AbstractInt2DoubleFunction
ok
- the key.ov
- the value.null
if no value was present for the given key.Map.put(Object,Object)
public double addTo(int k, double incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.public double remove(int k)
Int2DoubleFunction
remove
in interface Int2DoubleFunction
remove
in class AbstractInt2DoubleFunction
k
- the key.Function.remove(Object)
public Double remove(Object ok)
AbstractInt2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus, it probes the map twice. Implementors of subclasses should override it with a
more efficient method.
public double removeFirstDouble()
NoSuchElementException
- is this map is empty.public double removeLastDouble()
NoSuchElementException
- is this map is empty.public double getAndMoveToFirst(int k)
k
- the key.public double getAndMoveToLast(int k)
k
- the key.public double putAndMoveToFirst(int k, double v)
k
- the key.v
- the value.public double putAndMoveToLast(int k, double v)
k
- the key.v
- the value.public double get(int k)
Int2DoubleFunction
get
in interface Int2DoubleFunction
k
- the key.Function.get(Object)
public boolean containsKey(int k)
AbstractInt2DoubleMap
AbstractInt2DoubleMap.keySet()
.containsKey
in interface Int2DoubleFunction
containsKey
in class AbstractInt2DoubleMap
Function.containsKey(Object)
public boolean containsValue(double v)
AbstractInt2DoubleMap
AbstractInt2DoubleMap.values()
.containsValue
in interface Int2DoubleMap
containsValue
in class AbstractInt2DoubleMap
Map.containsValue(Object)
public void clear()
Function
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
public boolean isEmpty()
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor(int)
public int firstIntKey()
firstIntKey
in interface Int2DoubleSortedMap
SortedMap.firstKey()
public int lastIntKey()
lastIntKey
in interface Int2DoubleSortedMap
SortedMap.lastKey()
public IntComparator comparator()
Int2DoubleSortedMap
Note that this specification strengthens the one given in SortedMap.comparator()
.
comparator
in interface Int2DoubleSortedMap
comparator
in interface SortedMap<Integer,Double>
SortedMap.comparator()
public Int2DoubleSortedMap tailMap(int from)
Int2DoubleSortedMap
fromKey
.tailMap
in interface Int2DoubleSortedMap
SortedMap.tailMap(Object)
public Int2DoubleSortedMap headMap(int to)
Int2DoubleSortedMap
toKey
.headMap
in interface Int2DoubleSortedMap
SortedMap.headMap(Object)
public Int2DoubleSortedMap subMap(int from, int to)
Int2DoubleSortedMap
fromKey
, inclusive, to toKey
, exclusive.subMap
in interface Int2DoubleSortedMap
SortedMap.subMap(Object,Object)
public Int2DoubleSortedMap.FastSortedEntrySet int2DoubleEntrySet()
Int2DoubleSortedMap
int2DoubleEntrySet
in interface Int2DoubleMap
int2DoubleEntrySet
in interface Int2DoubleSortedMap
Int2DoubleSortedMap.entrySet()
public IntSortedSet keySet()
AbstractInt2DoubleSortedMap
The view is backed by the sorted set returned by AbstractInt2DoubleSortedMap.entrySet()
. Note that no attempt is made at caching the result of this method, as this would require adding some attributes
that lightweight implementations would not need. Subclasses may easily override this policy by calling this method and caching the result, but implementors are encouraged to write more
efficient ad-hoc implementations.
keySet
in interface Int2DoubleMap
keySet
in interface Int2DoubleSortedMap
keySet
in interface Map<Integer,Double>
keySet
in interface SortedMap<Integer,Double>
keySet
in class AbstractInt2DoubleSortedMap
Map.keySet()
public DoubleCollection values()
AbstractInt2DoubleSortedMap
The view is backed by the sorted set returned by AbstractInt2DoubleSortedMap.entrySet()
. Note that no attempt is made at caching the result of this method, as this would require adding some attributes
that lightweight implementations would not need. Subclasses may easily override this policy by calling this method and caching the result, but implementors are encouraged to write more
efficient ad-hoc implementations.
values
in interface Int2DoubleMap
values
in interface Int2DoubleSortedMap
values
in interface Map<Integer,Double>
values
in interface SortedMap<Integer,Double>
values
in class AbstractInt2DoubleSortedMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold max(n,
entries, still satisfying the load factor. If the current table size is smaller than or equal to
N, this method does nothing. Otherwise, it rehashes this map in a table of size N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.trim()
public Int2DoubleLinkedOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
public int hashCode()
equals()
is not overriden, it is important that the value returned by this method is the same value as
the one returned by the overriden method.