finMath lib documentation

net.finmath.functions
Class NormalDistribution

java.lang.Object
  extended by net.finmath.functions.NormalDistribution

public class NormalDistribution
extends Object

Author:
Christian Fries

Constructor Summary
NormalDistribution()
           
 
Method Summary
static double cumulativeDistribution(double x)
          Cumulative distribution function of the standard normal distribution.
static double density(double x)
          Returns the value of the density at x.
static double inverseCumulativeDistribution(double p)
          Inverse of the cumulative distribution function of the standard normal distribution using Jakarta commons-math
static double inverseCumulativeNormalDistribution_Wichura(double p)
          Inverse of the cumulative distribution function of the standard normal distribution Java Version of Michael J.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

NormalDistribution

public NormalDistribution()
Method Detail

density

public static double density(double x)
Returns the value of the density at x.

Parameters:
x - Argument
Returns:
The value of the density at x.

cumulativeDistribution

public static double cumulativeDistribution(double x)
Cumulative distribution function of the standard normal distribution. The implementation is currently using Jakarta commons-math

Parameters:
x - A sample point
Returns:
The probability of being below x, given x is standard normal

inverseCumulativeDistribution

public static double inverseCumulativeDistribution(double p)
Inverse of the cumulative distribution function of the standard normal distribution using Jakarta commons-math

Parameters:
p - The probability
Returns:
The quantile

inverseCumulativeNormalDistribution_Wichura

public static double inverseCumulativeNormalDistribution_Wichura(double p)
Inverse of the cumulative distribution function of the standard normal distribution Java Version of Michael J. Wichura: Algorithm AS241 Appl. Statist. (1988) Vol. 37, No. 3 Produces the normal deviate z corresponding to a given lower tail area of p; z is accurate to about 1 part in 10**16. The hash sums below are the sums of the mantissas of the coefficients. they are included for use in checking transcription.

Parameters:
p - The probablity (quantile).
Returns:
The argument of the cumulative distribution function being assigned to p.

Copyright © 2014 Christian P. Fries.

Copyright © 2014. All rights reserved.