finMath lib documentation

Uses of Interface
net.finmath.modelling.ModelInterface

Packages that use ModelInterface
net.finmath.marketdata.model Provides interface specification and implementation of a model, which is essentially a collection of curves. 
net.finmath.marketdata.products Provides interface specification and implementation of products, e.g., calibration products. 
net.finmath.modelling Provides interface separating models and products. 
net.finmath.montecarlo Provides basic interfaces and classes used in Monte-Carlo models (like LIBOR market model or Monte-Carlo simulation of a Black-Scholes model), e.g., the Monte-Carlo random variable and the Brownian motion. 
 

Uses of ModelInterface in net.finmath.marketdata.model
 

Subinterfaces of ModelInterface in net.finmath.marketdata.model
 interface AnalyticModelInterface
          A collection of objects representing analytic valuations, i.e., curves and volatility surfaces.
 

Classes in net.finmath.marketdata.model that implement ModelInterface
 class AnalyticModel
          Implements a collection of market data objects (e.g., discount curves, forward curve) which provide interpolation of market data or other derived quantities ("calibrated curves").
 

Uses of ModelInterface in net.finmath.marketdata.products
 

Methods in net.finmath.marketdata.products with parameters of type ModelInterface
 Object AbstractAnalyticProduct.getValue(double evaluationTime, ModelInterface model)
           
 

Uses of ModelInterface in net.finmath.modelling
 

Methods in net.finmath.modelling with parameters of type ModelInterface
 Object UnsupportedProduct.getValue(double evaluationTime, ModelInterface model)
           
 Object ProductInterface.getValue(double evaluationTime, ModelInterface model)
          Return the valuation of the product using the given model.
 

Uses of ModelInterface in net.finmath.montecarlo
 

Methods in net.finmath.montecarlo with parameters of type ModelInterface
 Object AbstractMonteCarloProduct.getValue(double evaluationTime, ModelInterface model)
           
 


Copyright © 2014 Christian P. Fries.

Copyright © 2014. All rights reserved.