See: Description
Class | Description |
---|---|
AbstractLIBORCovarianceModel |
A base class and interface description for the instantaneous covariance of
an forward rate interest rate model.
|
AbstractLIBORCovarianceModelParametric |
Base class for parametric covariance models, see also
AbstractLIBORCovarianceModel . |
BlendedLocalVolatilityModel |
Blended model (or displaced diffusion model) build on top of a standard covariance model.
|
LIBORCorrelationModel |
Abstract base class and interface description of a correlation model
(as it is used in
LIBORCovarianceModelFromVolatilityAndCorrelation ). |
LIBORCorrelationModelExponentialDecay |
Simple correlation model given by R, where R is a factor reduced matrix
(see
LinearAlgebra.factorReduction(double[][], int) ) created from the
\( n \) Eigenvectors of \( \tilde{R} \) belonging to the \( n \) largest non-negative Eigenvalues,
where \( \tilde{R} = \tilde{\rho}_{i,j} \) and \[ \tilde{\rho}_{i,j} = \exp( -\max(a,0) | T_{i}-T_{j} | ) \]
For a more general model featuring three parameters see LIBORCorrelationModelThreeParameterExponentialDecay . |
LIBORCorrelationModelThreeParameterExponentialDecay |
Simple correlation model given by R, where R is a factor reduced matrix
(see
LinearAlgebra.factorReduction(double[][], int) ) created from the
\( n \) Eigenvectors of \( \tilde{R} \) belonging to the \( n \) largest non-negative Eigenvalues,
where \( \tilde{R} = \tilde{\rho}_{i,j} \) and
\[ \tilde{\rho}_{i,j} = b + (1-b) * \exp(-a |T_{i} - T_{j}| - c \max(T_{i},T_{j})) |
LIBORCovarianceModelExponentialForm5Param |
The five parameter covariance model consisting of an
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm
and an
LIBORCorrelationModelExponentialDecay . |
LIBORCovarianceModelExponentialForm7Param | |
LIBORCovarianceModelFromVolatilityAndCorrelation |
A covariance model build from a volatility model implementing
LIBORVolatilityModel and a correlation model
implementing LIBORCorrelationModel . |
LIBORCovarianceModelStochasticVolatility |
Simple stochastic volatility model, using a process
\[
d\lambda(t) = \nu \lambda(t) \left( \rho \mathrm{d} W_{1}(t) + \sqrt{1-\rho^{2}} \mathrm{d} W_{2}(t) \right) \text{,}
\]
where \( \lambda(0) = 1 \) to scale all factor loadings \( f_{i} \) returned by a given covariance model.
|
LIBORVolatilityModel |
Abstract base class and interface description of a volatility model
(as it is used in
LIBORCovarianceModelFromVolatilityAndCorrelation ). |
LIBORVolatilityModelFourParameterExponentialForm |
Implements the volatility model
\[
\sigma_{i}(t_{j}) = ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \text{
|
LIBORVolatilityModelFourParameterExponentialFormIntegrated |
Implements the volatility model
\[
\sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{
|
LIBORVolatilityModelFromGivenMatrix |
Implements a simple volatility model using given piece-wise constant values on
a given discretization grid.
|
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm | |
LIBORVolatilityModelTwoParameterExponentialForm |
Implements the volatility model σi(tj) = a * exp(-b (Ti-tj))
|
Copyright © 2015. All rights reserved.