| Package | Description |
|---|---|
| net.finmath.montecarlo.assetderivativevaluation |
Monte-Carlo models for asset value processes, like the Black Scholes model.
|
| net.finmath.montecarlo.hybridassetinterestrate |
Provides interfaces and classes needed to generate a Hybrid Asset LIBOR Market Model.
|
| net.finmath.montecarlo.interestrate |
Provides classes needed to generate a LIBOR market model (using numerical
algorithms from
net.finmath.montecarlo.process. |
| net.finmath.montecarlo.model | |
| net.finmath.montecarlo.process |
Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme.
|
| Class and Description |
|---|
| AbstractProcess
This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.
|
| Class and Description |
|---|
| AbstractProcessInterface
The interface for a process (numerical scheme) of a stochastic process X where
X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementing AbstractModelInterface:
The value of Y(0) is provided by the method AbstractModelInterface.getInitialState(). |
| Class and Description |
|---|
| AbstractProcess
This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.
|
| AbstractProcessInterface
The interface for a process (numerical scheme) of a stochastic process X where
X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementing AbstractModelInterface:
The value of Y(0) is provided by the method AbstractModelInterface.getInitialState(). |
| Class and Description |
|---|
| AbstractProcessInterface
The interface for a process (numerical scheme) of a stochastic process X where
X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementing AbstractModelInterface:
The value of Y(0) is provided by the method AbstractModelInterface.getInitialState(). |
| Class and Description |
|---|
| AbstractProcess
This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.
|
| AbstractProcessInterface
The interface for a process (numerical scheme) of a stochastic process X where
X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementing AbstractModelInterface:
The value of Y(0) is provided by the method AbstractModelInterface.getInitialState(). |
| LinearInterpolatedTimeDiscreteProcess
A linear interpolated time discrete process, that is, given a collection of tuples
(Double, RandomVariable) representing realizations \( X(t_{i}) \) this class implements
the
ProcessInterface and creates a stochastic process \( t \mapsto X(t) \)
where
\[
X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1})
\]
with \( t_{i} \leq t \leq t_{i+1} \). |
| ProcessEulerScheme
This class implements some numerical schemes for multi-dimensional multi-factor Ito process.
|
| ProcessEulerScheme.Scheme |
| ProcessInterface
The interface for a stochastic process X.
|
Copyright © 2015. All rights reserved.