Package | Description |
---|---|
net.finmath.montecarlo.process |
Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme.
|
Modifier and Type | Interface and Description |
---|---|
interface |
AbstractProcessInterface
The interface for a process (numerical scheme) of a stochastic process X where
X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementing AbstractModelInterface :
The value of Y(0) is provided by the method AbstractModelInterface.getInitialState() . |
Modifier and Type | Class and Description |
---|---|
class |
AbstractProcess
This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.
|
class |
LinearInterpolatedTimeDiscreteProcess
A linear interpolated time discrete process, that is, given a collection of tuples
(Double, RandomVariable) representing realizations \( X(t_{i}) \) this class implements
the
ProcessInterface and creates a stochastic process \( t \mapsto X(t) \)
where
\[
X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1})
\]
with \( t_{i} \leq t \leq t_{i+1} \). |
class |
ProcessEulerScheme
This class implements some numerical schemes for multi-dimensional multi-factor Ito process.
|
Modifier and Type | Method and Description |
---|---|
ProcessInterface |
ProcessInterface.clone()
Create and return a clone of this process.
|
ProcessInterface |
LinearInterpolatedTimeDiscreteProcess.clone() |
Copyright © 2015. All rights reserved.