public class BatesModel extends Object implements ProcessCharacteristicFunctionInterface
Constructor and Description |
---|
BatesModel(double initialValue,
double riskFreeRate,
double[] volatility,
double[] alpha,
double[] beta,
double[] sigma,
double[] rho,
double[] lambda,
double k,
double delta)
Create a two factor Bates model.
|
BatesModel(double initialValue,
double riskFreeRate,
double[] volatility,
double discountRate,
double[] alpha,
double[] beta,
double[] sigma,
double[] rho,
double[] lambda,
double k,
double delta)
Create a two factor Bates model.
|
BatesModel(double initialValue,
double riskFreeRate,
double volatility,
double alpha,
double beta,
double sigma,
double rho,
double lambdaZero,
double lambdaOne,
double k,
double delta)
Create a one factor Bates model.
|
Modifier and Type | Method and Description |
---|---|
CharacteristicFunctionInterface |
apply(double time)
Returns the characteristic function of X(t), where X is
this stochastic process. |
public BatesModel(double initialValue, double riskFreeRate, double[] volatility, double discountRate, double[] alpha, double[] beta, double[] sigma, double[] rho, double[] lambda, double k, double delta)
initialValue
- Initial value of S.riskFreeRate
- Risk free rate.volatility
- Square root of initial value of the stochastic variance process V.discountRate
- Rate used for the discount factor.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambda
- Coefficients of for the jump intensity.k
- Jump size mean.delta
- Jump size variance.public BatesModel(double initialValue, double riskFreeRate, double[] volatility, double[] alpha, double[] beta, double[] sigma, double[] rho, double[] lambda, double k, double delta)
initialValue
- Initial value of S.riskFreeRate
- Risk free rate.volatility
- Square root of initial value of the stochastic variance process V.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambda
- Coefficients of for the jump intensity.k
- Jump size mean.delta
- Jump size variance.public BatesModel(double initialValue, double riskFreeRate, double volatility, double alpha, double beta, double sigma, double rho, double lambdaZero, double lambdaOne, double k, double delta)
initialValue
- Initial value of S.riskFreeRate
- Risk free rate.volatility
- Square root of initial value of the stochastic variance process V.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambdaZero
- Constant part of the jump intensity.lambdaOne
- Coefficients of the jump intensity, linear in variance.k
- Jump size mean.delta
- Jump size variance.public CharacteristicFunctionInterface apply(double time)
ProcessCharacteristicFunctionInterface
this
stochastic process.apply
in interface ProcessCharacteristicFunctionInterface
time
- The time at which the stochastic process is observed.Copyright © 2017. All rights reserved.