public class BatesModel extends Object implements CharacteristicFunctionModel
Constructor and Description |
---|
BatesModel(double initialValue,
DiscountCurve discountCurveForForwardRate,
DiscountCurve discountCurveForDiscountRate,
double[] volatility,
double[] alpha,
double[] beta,
double[] sigma,
double[] rho,
double[] lambda,
double k,
double delta)
Create a two factor Bates model.
|
BatesModel(double initialValue,
double riskFreeRate,
double discountRate,
double[] volatility,
double[] alpha,
double[] beta,
double[] sigma,
double[] rho,
double[] lambda,
double k,
double delta)
Create a two factor Bates model.
|
BatesModel(double initialValue,
double riskFreeRate,
double volatility,
double alpha,
double beta,
double sigma,
double rho,
double lambdaZero,
double lambdaOne,
double k,
double delta)
Create a one factor Bates model.
|
BatesModel(LocalDate referenceDate,
double initialValue,
DiscountCurve discountCurveForForwardRate,
DiscountCurve discountCurveForDiscountRate,
double[] volatility,
double[] alpha,
double[] beta,
double[] sigma,
double[] rho,
double[] lambda,
double k,
double delta)
Create a two factor Bates model.
|
Modifier and Type | Method and Description |
---|---|
CharacteristicFunction |
apply(double time)
Returns the characteristic function of X(t), where X is
this stochastic process. |
double[] |
getAlpha() |
double[] |
getBeta() |
double |
getDelta() |
double |
getDiscountRate() |
double |
getInitialValue() |
double |
getK() |
double[] |
getLambda() |
int |
getNumberOfFactors() |
LocalDate |
getReferenceDate() |
double[] |
getRho() |
double |
getRiskFreeRate() |
double[] |
getSigma() |
double[] |
getVolatility() |
String |
toString() |
public BatesModel(LocalDate referenceDate, double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double[] volatility, double[] alpha, double[] beta, double[] sigma, double[] rho, double[] lambda, double k, double delta)
referenceDate
- The date representing the time t = 0. All other double times are following FloatingpointDate
.initialValue
- Initial value of S.discountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratevolatility
- Square root of initial value of the stochastic variance process V.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambda
- Coefficients of for the jump intensity.k
- Jump size mean.delta
- Jump size variance.public BatesModel(double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double[] volatility, double[] alpha, double[] beta, double[] sigma, double[] rho, double[] lambda, double k, double delta)
initialValue
- Initial value of S.discountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratevolatility
- Square root of initial value of the stochastic variance process V.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambda
- Coefficients of for the jump intensity.k
- Jump size mean.delta
- Jump size variance.public BatesModel(double initialValue, double riskFreeRate, double discountRate, double[] volatility, double[] alpha, double[] beta, double[] sigma, double[] rho, double[] lambda, double k, double delta)
initialValue
- Initial value of S.riskFreeRate
- Risk free rate.discountRate
- The rate used for discounting.volatility
- Square root of initial value of the stochastic variance process V.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambda
- Coefficients of for the jump intensity.k
- Jump size mean.delta
- Jump size variance.public BatesModel(double initialValue, double riskFreeRate, double volatility, double alpha, double beta, double sigma, double rho, double lambdaZero, double lambdaOne, double k, double delta)
initialValue
- Initial value of S.riskFreeRate
- Risk free rate.volatility
- Square root of initial value of the stochastic variance process V.alpha
- The parameter alpha/beta is the mean reversion level of the variance process V.beta
- Mean reversion speed of variance process V.sigma
- Volatility of volatility.rho
- Correlations of the Brownian drives (underlying, variance).lambdaZero
- Constant part of the jump intensity.lambdaOne
- Coefficients of the jump intensity, linear in variance.k
- Jump size mean.delta
- Jump size variance.public CharacteristicFunction apply(double time)
CharacteristicFunctionModel
this
stochastic process.apply
in interface CharacteristicFunctionModel
time
- The time at which the stochastic process is observed.public LocalDate getReferenceDate()
public double getInitialValue()
public double getRiskFreeRate()
public double[] getVolatility()
public double getDiscountRate()
public double[] getAlpha()
public double[] getBeta()
public double[] getSigma()
public double[] getRho()
public double[] getLambda()
public double getK()
public double getDelta()
public int getNumberOfFactors()
Copyright © 2020. All rights reserved.