Package | Description |
---|---|
net.finmath.functions |
Provides some static functions, e.g., analytic valuation formulas or functions from linear algebra.
|
net.finmath.marketdata2.calibration |
Provides classes to create a calibrated model of curves from a collection of calibration
products and corresponding target values.
|
net.finmath.marketdata2.interpolation |
Basic methodologies to interpolate of curves and surfaces are provided here.
|
net.finmath.marketdata2.model |
Provides interface specification and implementation of a model, which is essentially
a collection of curves.
|
net.finmath.marketdata2.model.curves |
Provides interface specification and implementation of curves, e.g., interest rate
curves like discount curves and forward curves.
|
net.finmath.marketdata2.products |
Provides interface specification and implementation of products, e.g., calibration products.
|
net.finmath.modelling.productfactory |
Provides classes to build products from descriptors.
|
net.finmath.montecarlo |
Provides basic interfaces and classes used in Monte-Carlo models (like LIBOR market model or Monte-Carlo simulation
of a Black-Scholes model), e.g., the Monte-Carlo random variable and the Brownian motion.
|
net.finmath.montecarlo.assetderivativevaluation |
Monte-Carlo models for asset value processes, like the Black Scholes model.
|
net.finmath.montecarlo.assetderivativevaluation.models |
Equity models implementing
ProcessModel
e.g. by extending AbstractProcessModel . |
net.finmath.montecarlo.assetderivativevaluation.products |
Products which may be valued using an
AssetModelMonteCarloSimulationModel . |
net.finmath.montecarlo.automaticdifferentiation |
Provides classes adding automatic differentiation capabilities to objects relying on RandomVariable objects.
|
net.finmath.montecarlo.automaticdifferentiation.backward |
Provides the implementation of backward automatic differentiation.
|
net.finmath.montecarlo.automaticdifferentiation.forward |
Provides the implementation of forward automatic differentiation.
|
net.finmath.montecarlo.conditionalexpectation |
Algorithms to perform the calculation of conditional expectations in Monte-Carlo simulations,
also known as "American Monte-Carlo".
|
net.finmath.montecarlo.crosscurrency |
Provides classes for Cross-Currency models to be implemented via Monte-Carlo
algorithms from
net.finmath.montecarlo.process . |
net.finmath.montecarlo.hybridassetinterestrate |
Provides interfaces and classes needed to generate a Hybrid Asset LIBOR Market Model.
|
net.finmath.montecarlo.interestrate |
Provides classes needed to generate a LIBOR market model (using numerical
algorithms from
net.finmath.montecarlo.process . |
net.finmath.montecarlo.interestrate.models |
Interest rate models implementing
ProcessModel
e.g. by extending AbstractProcessModel . |
net.finmath.montecarlo.interestrate.models.covariance |
Contains covariance models and their calibration as plug-ins for the LIBOR market model and volatility and correlation models which may be used to build a covariance model.
|
net.finmath.montecarlo.interestrate.products |
Provides classes which implement financial products which may be
valued using a
net.finmath.montecarlo.interestrate.LIBORModelMonteCarloSimulationModel . |
net.finmath.montecarlo.interestrate.products.components |
Provides a set product components which allow to build financial products by composition.
|
net.finmath.montecarlo.interestrate.products.indices |
Provides a set of indices which can be used as part of a period.
|
net.finmath.montecarlo.model |
Provides an interface and a base class for process models, i.e., models providing the parameters for
stochastic processes.
|
net.finmath.montecarlo.process |
Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme.
|
net.finmath.montecarlo.process.component.barrier |
Components providing the barrier in the Monte-Carlo simulation with barrier.
|
net.finmath.montecarlo.process.component.factordrift |
Components providing the factor drift in the simulation of a proxy simulation scheme.
|
net.finmath.montecarlo.products |
Products which are model independent, but assume a Monte-Carlo simulation.
|
net.finmath.montecarlo.templatemethoddesign |
Legacy classes related to Monte-Carlo simulation - used for teaching only.
|
net.finmath.montecarlo.templatemethoddesign.assetderivativevaluation |
Legacy classes related to Monte-Carlo simulation - used for teaching only.
|
net.finmath.optimizer |
This package provides classes with numerical algorithm for optimization of
an objective function and a factory to easy construction of the optimizers.
|
net.finmath.stochastic |
Interfaces specifying operations on random variables.
|
Modifier and Type | Method and Description |
---|---|
static RandomVariable |
AnalyticFormulas.bachelierOptionValue(RandomVariable forward,
RandomVariable volatility,
double optionMaturity,
double optionStrike,
RandomVariable payoffUnit)
Calculates the option value of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a
normal process with constant volatility, i.e., a Bachelier model
\[
\mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t)
\]
|
static RandomVariable |
AnalyticFormulas.blackScholesGeneralizedOptionValue(RandomVariable forward,
RandomVariable volatility,
double optionMaturity,
double optionStrike,
RandomVariable payoffUnit)
Calculates the Black-Scholes option value of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a log-normal process with constant log-volatility.
|
static RandomVariable |
AnalyticFormulas.blackScholesOptionDelta(RandomVariable initialStockValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
double optionMaturity,
double optionStrike)
Calculates the delta of a call option under a Black-Scholes model
The method also handles cases where the forward and/or option strike is negative
and some limit cases where the forward or the option strike is zero.
|
static RandomVariable |
AnalyticFormulas.blackScholesOptionDelta(RandomVariable initialStockValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
double optionMaturity,
RandomVariable optionStrike)
Calculates the delta of a call option under a Black-Scholes model
The method also handles cases where the forward and/or option strike is negative
and some limit cases where the forward or the option strike is zero.
|
static RandomVariable |
AnalyticFormulas.blackScholesOptionGamma(RandomVariable initialStockValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
double optionMaturity,
double optionStrike)
This static method calculated the gamma of a call option under a Black-Scholes model
|
Modifier and Type | Method and Description |
---|---|
static RandomVariable |
AnalyticFormulas.bachelierOptionValue(RandomVariable forward,
RandomVariable volatility,
double optionMaturity,
double optionStrike,
RandomVariable payoffUnit)
Calculates the option value of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a
normal process with constant volatility, i.e., a Bachelier model
\[
\mathrm{d} S(t) = r S(t) \mathrm{d} t + \sigma \mathrm{d}W(t)
\]
|
static RandomVariable |
AnalyticFormulas.blackScholesGeneralizedOptionValue(RandomVariable forward,
RandomVariable volatility,
double optionMaturity,
double optionStrike,
RandomVariable payoffUnit)
Calculates the Black-Scholes option value of a call, i.e., the payoff max(S(T)-K,0) P, where S follows a log-normal process with constant log-volatility.
|
static RandomVariable |
AnalyticFormulas.blackScholesOptionDelta(RandomVariable initialStockValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
double optionMaturity,
double optionStrike)
Calculates the delta of a call option under a Black-Scholes model
The method also handles cases where the forward and/or option strike is negative
and some limit cases where the forward or the option strike is zero.
|
static RandomVariable |
AnalyticFormulas.blackScholesOptionDelta(RandomVariable initialStockValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
double optionMaturity,
RandomVariable optionStrike)
Calculates the delta of a call option under a Black-Scholes model
The method also handles cases where the forward and/or option strike is negative
and some limit cases where the forward or the option strike is zero.
|
static RandomVariable |
AnalyticFormulas.blackScholesOptionGamma(RandomVariable initialStockValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
double optionMaturity,
double optionStrike)
This static method calculated the gamma of a call option under a Black-Scholes model
|
double |
JarqueBeraTest.test(RandomVariable randomVariable)
Return the test statistic of the Jarque-Bera test for a given
random variable.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
ParameterObject.getParameter()
Get the current parameter associated with the state of the objects.
|
RandomVariable[] |
ParameterAggregation.getParameter() |
RandomVariable[] |
ParameterTransformation.getParameter(RandomVariable[] solverParameter)
Return the original parameter for the given (unbounded) solver parameter.
|
RandomVariable[] |
ParameterTransformation.getSolverParameter(RandomVariable[] parameter)
Return the (unbounded) solver parameter for the given original parameter.
|
Modifier and Type | Method and Description |
---|---|
ParameterObject |
ParameterObject.getCloneForParameter(RandomVariable[] value)
Create a clone with a modified parameter.
|
Curve |
ParameterAggregation.getCloneForParameter(RandomVariable[] value) |
Map<E,RandomVariable[]> |
ParameterAggregation.getObjectsToModifyForParameter(RandomVariable[] parameter) |
RandomVariable[] |
ParameterTransformation.getParameter(RandomVariable[] solverParameter)
Return the original parameter for the given (unbounded) solver parameter.
|
RandomVariable[] |
ParameterTransformation.getSolverParameter(RandomVariable[] parameter)
Return the (unbounded) solver parameter for the given original parameter.
|
void |
ParameterObject.setParameter(RandomVariable[] parameter)
Deprecated.
|
void |
ParameterAggregation.setParameter(RandomVariable[] parameter) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RationalFunctionInterpolation.getValue(double x)
Get an interpolated value for a given argument x.
|
Constructor and Description |
---|
RationalFunctionInterpolation(double[] points,
RandomVariable[] values)
Generate a rational function interpolation from a given set of points.
|
RationalFunctionInterpolation(double[] points,
RandomVariable[] values,
RationalFunctionInterpolation.InterpolationMethod interpolationMethod,
RationalFunctionInterpolation.ExtrapolationMethod extrapolationMethod)
Generate a rational function interpolation from a given set of points using
the specified interpolation and extrapolation method.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
AnalyticModel.getRandomVariableForConstant(double value) |
RandomVariable |
AnalyticModelFromCurvesAndVols.getRandomVariableForConstant(double value) |
Modifier and Type | Method and Description |
---|---|
static RandomVariable[] |
DiscountCurveInterpolation.createZeroRates(double time,
double[] maturities,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
DiscountCurveFromForwardCurve.getDiscountFactor(AnalyticModel model,
double maturity) |
RandomVariable |
DiscountCurveInterpolation.getDiscountFactor(AnalyticModel model,
double maturity) |
RandomVariable |
DiscountCurveInterface.getDiscountFactor(AnalyticModel model,
double maturity)
Returns the discount factor for the corresponding maturity.
|
RandomVariable |
DiscountCurveFromForwardCurve.getDiscountFactor(double maturity) |
RandomVariable |
DiscountCurveInterpolation.getDiscountFactor(double maturity) |
RandomVariable |
DiscountCurveInterface.getDiscountFactor(double maturity)
Returns the discount factor for the corresponding maturity.
|
RandomVariable |
ForwardCurveFromDiscountCurve.getForward(AnalyticModel model,
double fixingTime) |
RandomVariable |
ForwardCurveInterface.getForward(AnalyticModel model,
double fixingTime)
Returns the forward for the corresponding fixing time.
|
RandomVariable |
ForwardCurveInterpolation.getForward(AnalyticModel model,
double fixingTime) |
RandomVariable |
ForwardCurveFromDiscountCurve.getForward(AnalyticModel model,
double fixingTime,
double paymentOffset) |
RandomVariable |
ForwardCurveInterface.getForward(AnalyticModel model,
double fixingTime,
double paymentOffset)
Returns the forward for the corresponding fixing time and paymentOffset.
|
RandomVariable |
ForwardCurveInterpolation.getForward(AnalyticModel model,
double fixingTime,
double paymentOffset)
Returns the forward for the corresponding fixing time.
|
RandomVariable[] |
AbstractForwardCurve.getForwards(AnalyticModel model,
double[] fixingTimes)
Returns the forwards for a given vector fixing times.
|
RandomVariable[] |
ForwardCurveFromDiscountCurve.getParameter() |
RandomVariable[] |
CurveInterpolation.getParameter() |
RandomVariable[] |
DiscountCurveFromForwardCurve.getParameter() |
RandomVariable |
ForwardCurveFromDiscountCurve.getValue(AnalyticModel model,
double time) |
RandomVariable |
CurveInterpolation.getValue(AnalyticModel model,
double time) |
RandomVariable |
DiscountCurveFromForwardCurve.getValue(AnalyticModel model,
double time) |
RandomVariable |
Curve.getValue(AnalyticModel model,
double time)
Returns the value for the time using the interpolation method associated with this curve
within a given context, i.e., a model.
|
RandomVariable |
ForwardCurveFromDiscountCurve.getValue(double time) |
RandomVariable |
CurveInterpolation.getValue(double time) |
RandomVariable |
Curve.getValue(double time)
Returns the value for the time using the interpolation method associated with this curve.
|
RandomVariable |
AbstractCurve.getValue(double time) |
RandomVariable[] |
AbstractCurve.getValues(double[] times)
Return a vector of values corresponding to a given vector of times.
|
RandomVariable |
DiscountCurveInterpolation.getZeroRate(double maturity)
Returns the zero rate for a given maturity, i.e., -ln(df(T)) / T where T is the given maturity and df(T) is
the discount factor at time $T$.
|
RandomVariable[] |
DiscountCurveInterpolation.getZeroRates(double[] maturities)
Returns the zero rates for a given vector maturities.
|
Modifier and Type | Method and Description |
---|---|
protected void |
DiscountCurveInterpolation.addDiscountFactor(double maturity,
RandomVariable discountFactor,
boolean isParameter) |
protected void |
CurveInterpolation.addPoint(double time,
RandomVariable value,
boolean isParameter)
Add a point to this curveFromInterpolationPoints.
|
CurveBuilder |
CurveInterpolation.Builder.addPoint(double time,
RandomVariable value,
boolean isParameter) |
CurveBuilder |
CurveBuilder.addPoint(double time,
RandomVariable value,
boolean isParameter)
Add a point to the curve.
|
protected void |
ForwardCurveInterpolation.addPoint(double time,
RandomVariable value,
boolean isParameter) |
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromAnnualizedZeroRates(String name,
LocalDate referenceDate,
double[] times,
RandomVariable[] givenAnnualizedZeroRates,
boolean[] isParameter,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given annualized zero rates using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromAnnualizedZeroRates(String name,
LocalDate referenceDate,
double[] times,
RandomVariable[] givenAnnualizedZeroRates,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given annualized zero rates using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromDiscountFactors(String name,
double[] times,
RandomVariable[] givenDiscountFactors)
Create a discount curve from given times and given discount factors using default interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromDiscountFactors(String name,
double[] times,
RandomVariable[] givenDiscountFactors,
boolean[] isParameter,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given discount factors using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromDiscountFactors(String name,
double[] times,
RandomVariable[] givenDiscountFactors,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given discount factors using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromDiscountFactors(String name,
LocalDate referenceDate,
double[] times,
RandomVariable[] givenDiscountFactors,
boolean[] isParameter,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given discount factors using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromZeroRates(String name,
Date referenceDate,
double[] times,
RandomVariable[] givenZeroRates,
boolean[] isParameter,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given zero rates using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromZeroRates(String name,
double[] times,
RandomVariable[] givenZeroRates)
Create a discount curve from given times and given zero rates using default interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromZeroRates(String name,
LocalDate referenceDate,
double[] times,
RandomVariable[] givenZeroRates,
boolean[] isParameter,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given zero rates using given interpolation and extrapolation methods.
|
static DiscountCurveInterpolation |
DiscountCurveInterpolation.createDiscountCurveFromZeroRates(String name,
LocalDate referenceDate,
double[] times,
RandomVariable[] givenZeroRates,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity)
Create a discount curve from given times and given zero rates using given interpolation and extrapolation methods.
|
static DiscountCurveInterface |
DiscountCurveInterpolation.createDiscountFactorsFromForwardRates(String name,
TimeDiscretization tenor,
RandomVariable[] forwardRates)
Create a discount curve from given time discretization and forward rates.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromDiscountFactors(String name,
double[] times,
RandomVariable[] givenDiscountFactors,
double paymentOffset)
Create a forward curve from given times and discount factors.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromForwards(String name,
Date referenceDate,
String paymentOffsetCode,
BusinessdayCalendar paymentBusinessdayCalendar,
BusinessdayCalendar.DateRollConvention paymentDateRollConvention,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity,
ForwardCurveInterpolation.InterpolationEntityForward interpolationEntityForward,
String discountCurveName,
AnalyticModel model,
double[] times,
RandomVariable[] givenForwards)
Create a forward curve from given times and given forwards.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromForwards(String name,
double[] times,
RandomVariable[] givenForwards,
AnalyticModel model,
String discountCurveName,
double paymentOffset)
Create a forward curve from given times and given forwards with respect to an associated discount curve and payment offset.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromForwards(String name,
double[] times,
RandomVariable[] givenForwards,
double paymentOffset)
Create a forward curve from given times and given forwards.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromForwards(String name,
LocalDate referenceDate,
String paymentOffsetCode,
BusinessdayCalendar paymentBusinessdayCalendar,
BusinessdayCalendar.DateRollConvention paymentDateRollConvention,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity,
ForwardCurveInterpolation.InterpolationEntityForward interpolationEntityForward,
String discountCurveName,
AnalyticModel model,
double[] times,
RandomVariable[] givenForwards)
Create a forward curve from given times and given forwards.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromForwards(String name,
LocalDate referenceDate,
String paymentOffsetCode,
ForwardCurveInterpolation.InterpolationEntityForward interpolationEntityForward,
String discountCurveName,
AnalyticModel model,
double[] times,
RandomVariable[] givenForwards)
Create a forward curve from given times and given forwards.
|
static ForwardCurveInterpolation |
ForwardCurveInterpolation.createForwardCurveFromForwards(String name,
LocalDate referenceDate,
String paymentOffsetCode,
String interpolationEntityForward,
String discountCurveName,
AnalyticModel model,
double[] times,
RandomVariable[] givenForwards)
Create a forward curve from given times and given forwards.
|
Curve |
CurveInterpolation.getCloneForParameter(RandomVariable[] parameter) |
Curve |
Curve.getCloneForParameter(RandomVariable[] value) |
Curve |
AbstractCurve.getCloneForParameter(RandomVariable[] value) |
void |
CurveInterpolation.setParameter(RandomVariable[] parameter) |
void |
DiscountCurveFromForwardCurve.setParameter(RandomVariable[] parameter) |
Constructor and Description |
---|
CurveInterpolation(String name,
LocalDate referenceDate,
CurveInterpolation.InterpolationMethod interpolationMethod,
CurveInterpolation.ExtrapolationMethod extrapolationMethod,
CurveInterpolation.InterpolationEntity interpolationEntity,
double[] times,
RandomVariable[] values)
Create a curveFromInterpolationPoints with a given name, reference date and an interpolation method from given points
|
Modifier and Type | Method and Description |
---|---|
static RandomVariable |
Swap.getForwardSwapRate(Schedule fixSchedule,
Schedule floatSchedule,
ForwardCurveInterface forwardCurve) |
static RandomVariable |
Swap.getForwardSwapRate(Schedule fixSchedule,
Schedule floatSchedule,
ForwardCurveInterface forwardCurve,
AnalyticModel model) |
static RandomVariable |
Swap.getForwardSwapRate(TimeDiscretization fixTenor,
TimeDiscretization floatTenor,
ForwardCurveInterface forwardCurve) |
static RandomVariable |
Swap.getForwardSwapRate(TimeDiscretization fixTenor,
TimeDiscretization floatTenor,
ForwardCurveInterface forwardCurve,
DiscountCurveInterface discountCurve) |
RandomVariable |
ForwardRateAgreement.getRate(AnalyticModel model)
Return the par FRA rate for a given curve.
|
RandomVariable |
Deposit.getRate(AnalyticModel model)
Return the deposit rate implied by the given model's curve.
|
static RandomVariable |
SwapAnnuity.getSwapAnnuity(double evaluationTime,
Schedule schedule,
DiscountCurveInterface discountCurve,
AnalyticModel model)
Function to calculate an (idealized) swap annuity for a given schedule and discount curve.
|
static RandomVariable |
SwapAnnuity.getSwapAnnuity(Schedule schedule,
DiscountCurveInterface discountCurve)
Function to calculate an (idealized) swap annuity for a given schedule and discount curve.
|
static RandomVariable |
SwapAnnuity.getSwapAnnuity(Schedule schedule,
ForwardCurveInterface forwardCurve)
Function to calculate an (idealized) single curve swap annuity for a given schedule and forward curve.
|
static RandomVariable |
SwapAnnuity.getSwapAnnuity(TimeDiscretization tenor,
DiscountCurveInterface discountCurve)
Function to calculate an (idealized) swap annuity for a given schedule and discount curve.
|
static RandomVariable |
SwapAnnuity.getSwapAnnuity(TimeDiscretization tenor,
ForwardCurveInterface forwardCurve)
Function to calculate an (idealized) single curve swap annuity for a given schedule and forward curve.
|
RandomVariable |
AbstractAnalyticProduct.getValue(AnalyticModel model) |
RandomVariable |
Portfolio.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
MarketForwardRateAgreement.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
Forward.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
Performance.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
Swap.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
SwapLeg.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
ForwardRateAgreement.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
Cashflow.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
SwapAnnuity.getValue(double evaluationTime,
AnalyticModel model) |
RandomVariable |
AnalyticProduct.getValue(double evaluationTime,
AnalyticModel model)
Return the valuation of the product using the given model.
|
RandomVariable |
Deposit.getValue(double evaluationTime,
AnalyticModel model) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
InterestRateMonteCarloProductFactory.SwapMonteCarlo.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
InterestRateMonteCarloProductFactory.SwaptionPhysicalMonteCarlo.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
Modifier and Type | Class and Description |
---|---|
class |
RandomVariableFromDoubleArray
The class RandomVariableFromDoubleArray represents a random variable being the evaluation of a stochastic process
at a certain time within a Monte-Carlo simulation.
|
class |
RandomVariableFromFloatArray
The class RandomVariableFromFloatArray represents a random variable being the evaluation of a stochastic process
at a certain time within a Monte-Carlo simulation.
|
class |
RandomVariableLazyEvaluation
Implements a Monte-Carlo random variable (like
RandomVariableFromDoubleArray using
late evaluation of Java 8 streams
Accesses performed exclusively through the interface
RandomVariable is thread safe (and does not mutate the class). |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableLazyEvaluation.abs() |
RandomVariable |
RandomVariableFromDoubleArray.abs() |
RandomVariable |
RandomVariableFromFloatArray.abs() |
RandomVariable |
RandomVariableLazyEvaluation.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromDoubleArray.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromFloatArray.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableLazyEvaluation.add(double value) |
RandomVariable |
RandomVariableFromDoubleArray.add(double value) |
RandomVariable |
RandomVariableFromFloatArray.add(double value) |
RandomVariable |
RandomVariableLazyEvaluation.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableFromDoubleArray.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableFromFloatArray.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableLazyEvaluation.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableFromDoubleArray.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableFromFloatArray.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableLazyEvaluation.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromDoubleArray.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromFloatArray.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromDoubleArray.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2) |
RandomVariable |
RandomVariableFromFloatArray.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleBinaryOperator operatorOuter,
DoubleBinaryOperator operatorInner,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleBinaryOperator operatorOuter,
DoubleBinaryOperator operatorInner,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableFromFloatArray.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableFromFloatArray.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleUnaryOperator operator) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleUnaryOperator operator) |
RandomVariable |
RandomVariableFromFloatArray.apply(DoubleUnaryOperator operator) |
RandomVariable |
RandomVariableLazyEvaluation.average() |
RandomVariable |
RandomVariableFromDoubleArray.average() |
RandomVariable |
RandomVariableFromFloatArray.average() |
RandomVariable |
RandomVariableFromDoubleArray.bus(double value) |
RandomVariable |
RandomVariableLazyEvaluation.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.cache() |
RandomVariable |
RandomVariableFromDoubleArray.cache() |
RandomVariable |
RandomVariableFromFloatArray.cache() |
RandomVariable |
RandomVariableLazyEvaluation.cap(double cap) |
RandomVariable |
RandomVariableFromDoubleArray.cap(double cap) |
RandomVariable |
RandomVariableFromFloatArray.cap(double cap) |
RandomVariable |
RandomVariableLazyEvaluation.cap(RandomVariable cap) |
RandomVariable |
RandomVariableFromDoubleArray.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableFromDoubleArray.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableFromFloatArray.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableLazyEvaluation.cos() |
RandomVariable |
RandomVariableFromDoubleArray.cos() |
RandomVariable |
RandomVariableFromFloatArray.cos() |
RandomVariable |
RandomVariableFactory.createRandomVariable(double value)
Create a (deterministic) random variable form a constant.
|
RandomVariable |
RandomVariableFromArrayFactory.createRandomVariable(double value) |
RandomVariable |
AbstractRandomVariableFactory.createRandomVariable(double value) |
RandomVariable |
RandomVariableLazyEvaluationFactory.createRandomVariable(double time,
double value) |
RandomVariable |
RandomVariableFactory.createRandomVariable(double time,
double value)
Create a (deterministic) random variable form a constant using a specific filtration time.
|
RandomVariable |
RandomVariableFloatFactory.createRandomVariable(double time,
double value) |
RandomVariable |
RandomVariableFromArrayFactory.createRandomVariable(double time,
double value) |
abstract RandomVariable |
AbstractRandomVariableFactory.createRandomVariable(double time,
double value) |
RandomVariable |
RandomVariableLazyEvaluationFactory.createRandomVariable(double time,
double[] values) |
RandomVariable |
RandomVariableFactory.createRandomVariable(double time,
double[] values)
Create a random variable form an array using a specific filtration time.
|
RandomVariable |
RandomVariableFloatFactory.createRandomVariable(double time,
double[] values) |
RandomVariable |
RandomVariableFromArrayFactory.createRandomVariable(double time,
double[] values) |
abstract RandomVariable |
AbstractRandomVariableFactory.createRandomVariable(double time,
double[] values) |
RandomVariable[] |
RandomVariableFactory.createRandomVariableArray(double[] values)
Create an array of (deterministic) random variables from an array of constants.
|
RandomVariable[] |
AbstractRandomVariableFactory.createRandomVariableArray(double[] values) |
RandomVariable[][] |
RandomVariableFactory.createRandomVariableMatrix(double[][] values)
Create a matrix of (deterministic) random variables from an matrix of constants.
|
RandomVariable[][] |
AbstractRandomVariableFactory.createRandomVariableMatrix(double[][] values) |
RandomVariable |
RandomVariableLazyEvaluation.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromDoubleArray.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromFloatArray.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableLazyEvaluation.div(double value) |
RandomVariable |
RandomVariableFromDoubleArray.div(double value) |
RandomVariable |
RandomVariableFromFloatArray.div(double value) |
RandomVariable |
RandomVariableLazyEvaluation.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.exp() |
RandomVariable |
RandomVariableLazyEvaluation.expand(int numberOfPaths) |
RandomVariable |
RandomVariableLazyEvaluation.floor(double floor) |
RandomVariable |
RandomVariableFromDoubleArray.floor(double floor) |
RandomVariable |
RandomVariableFromFloatArray.floor(double floor) |
RandomVariable |
RandomVariableLazyEvaluation.floor(RandomVariable floor) |
RandomVariable |
RandomVariableFromDoubleArray.floor(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.floor(RandomVariable randomVariable) |
default RandomVariable |
BrownianMotion.getBrownianIncrement(double time,
int factor)
Return the Brownian increment for a given timeIndex.
|
RandomVariable |
BrownianMotionWithControlVariate.getBrownianIncrement(int timeIndex,
int factorIndex) |
RandomVariable |
CorrelatedBrownianMotion.getBrownianIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotionView.getBrownianIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotion.getBrownianIncrement(int timeIndex,
int factor)
Return the Brownian increment for a given timeIndex.
|
RandomVariable |
BrownianBridge.getBrownianIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotionFromRandomNumberGenerator.getBrownianIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotionLazyInit.getBrownianIncrement(int timeIndex,
int factor) |
RandomVariable |
RandomVariableFromDoubleArray.getConditionalExpectation(ConditionalExpectationEstimator conditionalExpectationOperator) |
RandomVariable |
RandomVariableFromFloatArray.getConditionalExpectation(ConditionalExpectationEstimator conditionalExpectationOperator) |
RandomVariable[] |
BrownianBridge.getIncrement(int timeIndex) |
default RandomVariable[] |
IndependentIncrements.getIncrement(int timeIndex)
Return the increment for a given timeIndex.
|
RandomVariable |
JumpProcessIncrements.getIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotionWithControlVariate.getIncrement(int timeIndex,
int factor) |
RandomVariable |
CorrelatedBrownianMotion.getIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotionView.getIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianBridge.getIncrement(int timeIndex,
int factor) |
RandomVariable |
VarianceGammaProcess.getIncrement(int timeIndex,
int factor) |
RandomVariable |
IndependentIncrementsFromICDF.getIncrement(int timeIndex,
int factor) |
RandomVariable |
GammaProcess.getIncrement(int timeIndex,
int factor) |
RandomVariable |
IndependentIncrements.getIncrement(int timeIndex,
int factor)
Return the increment for a given timeIndex and given factor.
|
RandomVariable |
BrownianMotionFromRandomNumberGenerator.getIncrement(int timeIndex,
int factor) |
RandomVariable |
BrownianMotionLazyInit.getIncrement(int timeIndex,
int factor) |
RandomVariable |
MonteCarloSimulationModel.getMonteCarloWeights(double time)
This method returns the weights of a weighted Monte Carlo method (the probability density).
|
RandomVariable |
MonteCarloSimulationModel.getMonteCarloWeights(int timeIndex)
This method returns the weights of a weighted Monte Carlo method (the probability density).
|
RandomVariable |
JumpProcessIncrements.getRandomVariableForConstant(double value) |
RandomVariable |
BrownianMotionWithControlVariate.getRandomVariableForConstant(double value) |
RandomVariable |
CorrelatedBrownianMotion.getRandomVariableForConstant(double value) |
RandomVariable |
MonteCarloSimulationModel.getRandomVariableForConstant(double value)
Returns a random variable which is initialized to a constant,
but has exactly the same number of paths or discretization points as the ones used by this
MonteCarloSimulationModel . |
RandomVariable |
BrownianMotionView.getRandomVariableForConstant(double value) |
RandomVariable |
BrownianMotion.getRandomVariableForConstant(double value)
Returns a random variable which is initialized to a constant,
but has exactly the same number of paths or discretization points as the ones used by this BrownianMotion.
|
RandomVariable |
BrownianBridge.getRandomVariableForConstant(double value) |
RandomVariable |
VarianceGammaProcess.getRandomVariableForConstant(double value) |
RandomVariable |
IndependentIncrementsFromICDF.getRandomVariableForConstant(double value) |
RandomVariable |
GammaProcess.getRandomVariableForConstant(double value) |
RandomVariable |
IndependentIncrements.getRandomVariableForConstant(double value)
Returns a random variable which is initialized to a constant,
but has exactly the same number of paths or discretization points as the ones used by this BrownianMotion.
|
RandomVariable |
BrownianMotionFromRandomNumberGenerator.getRandomVariableForConstant(double value) |
RandomVariable |
BrownianMotionLazyInit.getRandomVariableForConstant(double value) |
abstract RandomVariable |
AbstractMonteCarloProduct.getValue(double evaluationTime,
MonteCarloSimulationModel model) |
RandomVariable |
MonteCarloProduct.getValue(double evaluationTime,
MonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
RandomVariableLazyEvaluation.invert() |
RandomVariable |
RandomVariableFromDoubleArray.invert() |
RandomVariable |
RandomVariableFromFloatArray.invert() |
RandomVariable |
RandomVariableLazyEvaluation.isNaN() |
RandomVariable |
RandomVariableFromDoubleArray.isNaN() |
RandomVariable |
RandomVariableFromFloatArray.isNaN() |
RandomVariable |
RandomVariableLazyEvaluation.log() |
RandomVariable |
RandomVariableLazyEvaluation.mult(double value) |
RandomVariable |
RandomVariableFromDoubleArray.mult(double value) |
RandomVariable |
RandomVariableFromFloatArray.mult(double value) |
RandomVariable |
RandomVariableLazyEvaluation.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.pow(double exponent) |
RandomVariable |
RandomVariableFromDoubleArray.pow(double exponent) |
RandomVariable |
RandomVariableFromFloatArray.pow(double exponent) |
RandomVariable |
RandomVariableLazyEvaluation.sin() |
RandomVariable |
RandomVariableFromDoubleArray.sin() |
RandomVariable |
RandomVariableFromFloatArray.sin() |
RandomVariable |
RandomVariableLazyEvaluation.sqrt() |
RandomVariable |
RandomVariableFromDoubleArray.sqrt() |
RandomVariable |
RandomVariableFromFloatArray.sqrt() |
RandomVariable |
RandomVariableLazyEvaluation.squared() |
RandomVariable |
RandomVariableFromDoubleArray.squared() |
RandomVariable |
RandomVariableFromFloatArray.squared() |
RandomVariable |
RandomVariableLazyEvaluation.sub(double value) |
RandomVariable |
RandomVariableFromDoubleArray.sub(double value) |
RandomVariable |
RandomVariableFromFloatArray.sub(double value) |
RandomVariable |
RandomVariableLazyEvaluation.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromDoubleArray.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromFloatArray.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromDoubleArray.vid(double value) |
RandomVariable |
RandomVariableLazyEvaluation.vid(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.vid(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.vid(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableLazyEvaluation.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromDoubleArray.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromFloatArray.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableLazyEvaluation.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableFromDoubleArray.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableFromFloatArray.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableLazyEvaluation.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableFromDoubleArray.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableFromFloatArray.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableLazyEvaluation.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromDoubleArray.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromFloatArray.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleBinaryOperator operatorOuter,
DoubleBinaryOperator operatorInner,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleBinaryOperator operatorOuter,
DoubleBinaryOperator operatorInner,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableFromFloatArray.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableLazyEvaluation.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableFromDoubleArray.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableFromFloatArray.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableLazyEvaluation.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.cap(RandomVariable cap) |
RandomVariable |
RandomVariableFromDoubleArray.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableFromDoubleArray.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableFromFloatArray.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableLazyEvaluation.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromDoubleArray.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableFromFloatArray.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableLazyEvaluation.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.div(RandomVariable randomVariable) |
boolean |
RandomVariableLazyEvaluation.equals(RandomVariable randomVariable) |
boolean |
RandomVariableFromDoubleArray.equals(RandomVariable randomVariable) |
boolean |
RandomVariableFromFloatArray.equals(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.floor(RandomVariable floor) |
RandomVariable |
RandomVariableFromDoubleArray.floor(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.floor(RandomVariable randomVariable) |
double |
RandomVariableLazyEvaluation.getAverage(RandomVariable probabilities) |
double |
RandomVariableFromDoubleArray.getAverage(RandomVariable probabilities) |
double |
RandomVariableFromFloatArray.getAverage(RandomVariable probabilities) |
double |
RandomVariableLazyEvaluation.getQuantile(double quantile,
RandomVariable probabilities) |
double |
RandomVariableFromDoubleArray.getQuantile(double quantile,
RandomVariable probabilities) |
double |
RandomVariableFromFloatArray.getQuantile(double quantile,
RandomVariable probabilities) |
double |
RandomVariableLazyEvaluation.getStandardDeviation(RandomVariable probabilities) |
double |
RandomVariableFromDoubleArray.getStandardDeviation(RandomVariable probabilities) |
double |
RandomVariableFromFloatArray.getStandardDeviation(RandomVariable probabilities) |
double |
RandomVariableLazyEvaluation.getStandardError(RandomVariable probabilities) |
double |
RandomVariableFromDoubleArray.getStandardError(RandomVariable probabilities) |
double |
RandomVariableFromFloatArray.getStandardError(RandomVariable probabilities) |
double |
RandomVariableLazyEvaluation.getVariance(RandomVariable probabilities) |
double |
RandomVariableFromDoubleArray.getVariance(RandomVariable probabilities) |
double |
RandomVariableFromFloatArray.getVariance(RandomVariable probabilities) |
RandomVariable |
RandomVariableLazyEvaluation.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableLazyEvaluation.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromDoubleArray.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableFromFloatArray.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableLazyEvaluation.vid(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromDoubleArray.vid(RandomVariable randomVariable) |
RandomVariable |
RandomVariableFromFloatArray.vid(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableFromDoubleArray.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2) |
RandomVariable |
RandomVariableFromDoubleArray.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2) |
RandomVariable |
RandomVariableFromFloatArray.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2) |
RandomVariable |
RandomVariableFromFloatArray.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2) |
Constructor and Description |
---|
BrownianBridge(TimeDiscretization timeDiscretization,
int numberOfPaths,
int seed,
RandomVariable[] start,
RandomVariable[] end)
Construct a Brownian bridge, bridging from a given start to a given end.
|
BrownianBridge(TimeDiscretization timeDiscretization,
int numberOfPaths,
int seed,
RandomVariable[] start,
RandomVariable[] end)
Construct a Brownian bridge, bridging from a given start to a given end.
|
BrownianBridge(TimeDiscretization timeDiscretization,
int numberOfPaths,
int seed,
RandomVariable start,
RandomVariable end)
Construct a Brownian bridge, bridging from a given start to a given end.
|
RandomVariableFromDoubleArray(RandomVariable value)
Create a random variable from a given other implementation of
RandomVariable . |
RandomVariableFromDoubleArray(RandomVariable value,
DoubleUnaryOperator function)
Create a random variable by applying a function to a given other implementation of
RandomVariable . |
RandomVariableFromFloatArray(RandomVariable value)
Create a random variable from a given other implementation of
RandomVariable . |
RandomVariableFromFloatArray(RandomVariable value,
DoubleUnaryOperator function)
Create a random variable by applying a function to a given other implementation of
RandomVariable . |
RandomVariableLazyEvaluation(RandomVariable value)
Create a random variable from a given other implementation of
RandomVariable . |
RandomVariableLazyEvaluation(RandomVariable value,
DoubleUnaryOperator function)
Create a random variable by applying a function to a given other implementation of
RandomVariable . |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.getAssetValue(double time,
int assetIndex) |
RandomVariable |
MonteCarloBlackScholesModel.getAssetValue(double time,
int assetIndex) |
RandomVariable |
MonteCarloVarianceGammaModel.getAssetValue(double time,
int assetIndex) |
RandomVariable |
AssetModelMonteCarloSimulationModel.getAssetValue(double time,
int assetIndex)
Returns the random variable representing the asset's value at a given time for a given asset.
|
RandomVariable |
MonteCarloAssetModel.getAssetValue(double time,
int assetIndex) |
RandomVariable |
MonteCarloMertonModel.getAssetValue(double time,
int assetIndex) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable |
MonteCarloBlackScholesModel.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable |
MonteCarloVarianceGammaModel.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable |
AssetModelMonteCarloSimulationModel.getAssetValue(int timeIndex,
int assetIndex)
Returns the random variable representing the asset's value at a given time for a given asset.
|
RandomVariable |
MonteCarloAssetModel.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable |
MonteCarloMertonModel.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable[] |
MonteCarloMultiAssetBlackScholesModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MonteCarloMultiAssetBlackScholesModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
MonteCarloMultiAssetBlackScholesModel.getInitialState() |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.getMonteCarloWeights(double time) |
RandomVariable |
MonteCarloBlackScholesModel.getMonteCarloWeights(double time) |
RandomVariable |
MonteCarloVarianceGammaModel.getMonteCarloWeights(double time) |
RandomVariable |
MonteCarloAssetModel.getMonteCarloWeights(double time) |
RandomVariable |
MonteCarloMertonModel.getMonteCarloWeights(double time) |
RandomVariable |
MonteCarloBlackScholesModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
MonteCarloVarianceGammaModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
MonteCarloAssetModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
MonteCarloMertonModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.getNumeraire(double time) |
RandomVariable |
MonteCarloBlackScholesModel.getNumeraire(double time) |
RandomVariable |
MonteCarloVarianceGammaModel.getNumeraire(double time) |
RandomVariable |
AssetModelMonteCarloSimulationModel.getNumeraire(double time)
Returns the numeraire associated with the valuation measure used by this model.
|
RandomVariable |
MonteCarloAssetModel.getNumeraire(double time) |
RandomVariable |
MonteCarloMertonModel.getNumeraire(double time) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.getNumeraire(int timeIndex) |
RandomVariable |
MonteCarloBlackScholesModel.getNumeraire(int timeIndex) |
RandomVariable |
MonteCarloVarianceGammaModel.getNumeraire(int timeIndex) |
RandomVariable |
AssetModelMonteCarloSimulationModel.getNumeraire(int timeIndex)
Returns the numeraire associated with the valuation measure used by this model.
|
RandomVariable |
MonteCarloAssetModel.getNumeraire(int timeIndex) |
RandomVariable |
MonteCarloMertonModel.getNumeraire(int timeIndex) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.getRandomVariableForConstant(double value) |
RandomVariable |
MonteCarloBlackScholesModel.getRandomVariableForConstant(double value) |
RandomVariable |
MonteCarloVarianceGammaModel.getRandomVariableForConstant(double value) |
RandomVariable |
MonteCarloAssetModel.getRandomVariableForConstant(double value) |
RandomVariable |
MonteCarloMertonModel.getRandomVariableForConstant(double value) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MonteCarloMultiAssetBlackScholesModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
MonteCarloMultiAssetBlackScholesModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MonteCarloMultiAssetBlackScholesModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MonteCarloMultiAssetBlackScholesModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
InhomogenousBachelierModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
InhomogeneousDisplacedLognomalModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MertonModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HestonModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BachelierModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
DisplacedLognomalModelExperimental.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
VarianceGammaModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModelWithCurves.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
InhomogenousBachelierModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
InhomogeneousDisplacedLognomalModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MertonModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HestonModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BachelierModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
DisplacedLognomalModelExperimental.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
VarianceGammaModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModelWithCurves.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
InhomogenousBachelierModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
InhomogeneousDisplacedLognomalModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MertonModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HestonModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BlackScholesModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BachelierModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
DisplacedLognomalModelExperimental.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
VarianceGammaModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BlackScholesModelWithCurves.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
InhomogenousBachelierModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
InhomogeneousDisplacedLognomalModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
MertonModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HestonModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BlackScholesModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BachelierModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
DisplacedLognomalModelExperimental.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
VarianceGammaModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BlackScholesModelWithCurves.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
InhomogenousBachelierModel.getInitialState() |
RandomVariable[] |
InhomogeneousDisplacedLognomalModel.getInitialState() |
RandomVariable[] |
MertonModel.getInitialState() |
RandomVariable[] |
HestonModel.getInitialState() |
RandomVariable[] |
BlackScholesModel.getInitialState() |
RandomVariable[] |
BachelierModel.getInitialState() |
RandomVariable[] |
DisplacedLognomalModelExperimental.getInitialState() |
RandomVariable[] |
VarianceGammaModel.getInitialState() |
RandomVariable[] |
BlackScholesModelWithCurves.getInitialState() |
RandomVariable[] |
BlackScholesModel.getInitialValue()
Return the initial value of this model.
|
RandomVariable[] |
BlackScholesModelWithCurves.getInitialValue()
Return the initial value of this model.
|
RandomVariable |
InhomogenousBachelierModel.getNumeraire(double time) |
RandomVariable |
InhomogeneousDisplacedLognomalModel.getNumeraire(double time) |
RandomVariable |
MertonModel.getNumeraire(double time) |
RandomVariable |
HestonModel.getNumeraire(double time) |
RandomVariable |
BlackScholesModel.getNumeraire(double time) |
RandomVariable |
BachelierModel.getNumeraire(double time) |
RandomVariable |
DisplacedLognomalModelExperimental.getNumeraire(double time) |
RandomVariable |
VarianceGammaModel.getNumeraire(double time) |
RandomVariable |
BlackScholesModelWithCurves.getNumeraire(double time) |
RandomVariable |
InhomogenousBachelierModel.getRandomVariableForConstant(double value) |
RandomVariable |
InhomogeneousDisplacedLognomalModel.getRandomVariableForConstant(double value) |
RandomVariable |
MertonModel.getRandomVariableForConstant(double value) |
RandomVariable |
HestonModel.getRandomVariableForConstant(double value) |
RandomVariable |
BlackScholesModel.getRandomVariableForConstant(double value) |
RandomVariable |
BachelierModel.getRandomVariableForConstant(double value) |
RandomVariable |
DisplacedLognomalModelExperimental.getRandomVariableForConstant(double value) |
RandomVariable |
VarianceGammaModel.getRandomVariableForConstant(double value) |
RandomVariable |
BlackScholesModelWithCurves.getRandomVariableForConstant(double value) |
RandomVariable |
HestonModel.getRiskFreeRate()
Returns the risk free rate parameter of this model.
|
RandomVariable |
BlackScholesModel.getRiskFreeRate()
Returns the risk free rate parameter of this model.
|
RandomVariable |
HestonModel.getVolatility()
Returns the volatility parameter of this model.
|
RandomVariable |
BlackScholesModel.getVolatility()
Returns the volatility parameter of this model.
|
RandomVariable |
BlackScholesModelWithCurves.getVolatility()
Returns the volatility parameter of this model.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
InhomogenousBachelierModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
InhomogeneousDisplacedLognomalModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MertonModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HestonModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BachelierModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
DisplacedLognomalModelExperimental.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
VarianceGammaModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModelWithCurves.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
InhomogenousBachelierModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
InhomogeneousDisplacedLognomalModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MertonModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HestonModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BachelierModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
DisplacedLognomalModelExperimental.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
VarianceGammaModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
BlackScholesModelWithCurves.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
InhomogenousBachelierModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
InhomogenousBachelierModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
InhomogeneousDisplacedLognomalModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
InhomogeneousDisplacedLognomalModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MertonModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MertonModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HestonModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HestonModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BlackScholesModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BlackScholesModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BachelierModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BachelierModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
DisplacedLognomalModelExperimental.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
DisplacedLognomalModelExperimental.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
VarianceGammaModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
VarianceGammaModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BlackScholesModelWithCurves.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
BlackScholesModelWithCurves.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
InhomogenousBachelierModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
InhomogeneousDisplacedLognomalModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
MertonModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HestonModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BlackScholesModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BachelierModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
DisplacedLognomalModelExperimental.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
VarianceGammaModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BlackScholesModelWithCurves.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
Constructor and Description |
---|
BlackScholesModel(RandomVariable initialValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
RandomVariableFactory abstractRandomVariableFactory)
Create a Black-Scholes specification implementing AbstractProcessModel.
|
BlackScholesModelWithCurves(RandomVariable initialValue,
DiscountCurve discountCurveForForwardRate,
RandomVariable volatility,
DiscountCurve discountCurveForDiscountRate,
RandomVariableFactory abstractRandomVariableFactory)
Create a Black-Scholes specification implementing AbstractProcessModel.
|
HestonModel(RandomVariable initialValue,
DiscountCurve discountCurveForForwardRate,
RandomVariable volatility,
DiscountCurve discountCurveForDiscountRate,
RandomVariable theta,
RandomVariable kappa,
RandomVariable xi,
RandomVariable rho,
HestonModel.Scheme scheme,
RandomVariableFactory abstractRandomVariableFactory)
Create a Heston model.
|
HestonModel(RandomVariable initialValue,
RandomVariable riskFreeRate,
RandomVariable volatility,
RandomVariable discountRate,
RandomVariable theta,
RandomVariable kappa,
RandomVariable xi,
RandomVariable rho,
HestonModel.Scheme scheme,
RandomVariableFactory abstractRandomVariableFactory)
Create a Heston model.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
EuropeanOptionWithBoundary.getBoundaryAdjustment(double fromTime,
double toTime,
AssetModelMonteCarloSimulationModel model,
RandomVariable continuationValues) |
RandomVariable |
BermudanOption.getLastValuationExerciseTime() |
RandomVariable |
BermudanDigitalOption.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model,
evaluated at a given evalutationTime.
|
RandomVariable |
BermudanOption.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model,
evaluated at a given evalutationTime.
|
RandomVariable |
EuropeanOptionThetaPathwise.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
FiniteDifferenceDeltaHedgedPortfolio.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
BlackScholesDeltaHedgedPortfolio.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
abstract RandomVariable |
AbstractAssetMonteCarloProduct.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
DigitalOption.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
DeltaHedgedPortfolioWithAAD.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
AsianOption.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
FiniteDifferenceHedgedPortfolio.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
BlackScholesHedgedPortfolio.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
AssetMonteCarloProduct.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
BasketOption.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
EuropeanOptionDeltaPathwiseForGeometricModel.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
EuropeanOptionVegaPathwise.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
EuropeanOptionDeltaLikelihood.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
LocalRiskMinimizingHedgePortfolio.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model) |
RandomVariable |
EuropeanOptionWithBoundary.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
EuropeanOptionDeltaPathwise.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
EuropeanOption.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
DigitalOptionDeltaLikelihood.getValue(double evaluationTime,
AssetModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
AbstractAssetMonteCarloProduct.getValue(double evaluationTime,
MonteCarloSimulationModel model) |
Modifier and Type | Method and Description |
---|---|
RandomVariableFromDoubleArray[] |
EuropeanOptionWithBoundary.ConstantBarrier.getBarrierDirection(int timeIndex,
RandomVariable[] realizationPredictor) |
RandomVariableFromDoubleArray |
EuropeanOptionWithBoundary.ConstantBarrier.getBarrierLevel(int timeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable |
EuropeanOptionWithBoundary.getBoundaryAdjustment(double fromTime,
double toTime,
AssetModelMonteCarloSimulationModel model,
RandomVariable continuationValues) |
Modifier and Type | Interface and Description |
---|---|
interface |
RandomVariableDifferentiable
Interface providing additional methods for
random variable implementing
RandomVariable
allowing automatic differentiation. |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
AbstractRandomVariableDifferentiableFactory.createRandomVariableNonDifferentiable(double time,
double value) |
RandomVariable |
AbstractRandomVariableDifferentiableFactory.createRandomVariableNonDifferentiable(double time,
double[] values) |
Modifier and Type | Method and Description |
---|---|
default Map<Long,RandomVariable> |
RandomVariableDifferentiable.getGradient()
Returns the gradient of this random variable with respect to all its leaf nodes.
|
Map<Long,RandomVariable> |
RandomVariableDifferentiable.getGradient(Set<Long> independentIDs)
Returns the gradient of this random variable with respect to the given IDs.
|
default Map<String,RandomVariable> |
IndependentModelParameterProvider.getModelParameters()
Returns a map of independent model parameters of this model.
|
default Map<Long,RandomVariable> |
RandomVariableDifferentiable.getTangents()
Returns the tangents of this random variable with respect to all its dependent nodes.
|
Map<Long,RandomVariable> |
RandomVariableDifferentiable.getTangents(Set<Long> dependentIDs)
Returns the tangents of this random variable with respect to the given dependent node IDs (if dependent).
|
Modifier and Type | Class and Description |
---|---|
class |
RandomVariableDifferentiableAAD
Implementation of
RandomVariableDifferentiable using
the backward algorithmic differentiation (adjoint algorithmic differentiation, AAD). |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableDifferentiableAAD.abs() |
RandomVariable |
RandomVariableDifferentiableAAD.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAAD.add(double value) |
RandomVariable |
RandomVariableDifferentiableAAD.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableDifferentiableAAD.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableDifferentiableAAD.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAAD.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableDifferentiableAAD.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableDifferentiableAAD.apply(DoubleUnaryOperator operator) |
RandomVariable |
RandomVariableDifferentiableAAD.average() |
RandomVariable |
RandomVariableDifferentiableAAD.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.cache() |
RandomVariable |
RandomVariableDifferentiableAAD.cap(double cap) |
RandomVariable |
RandomVariableDifferentiableAAD.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableDifferentiableAAD.cos() |
RandomVariable |
RandomVariableDifferentiableAAD.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAAD.div(double value) |
RandomVariable |
RandomVariableDifferentiableAAD.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.exp() |
RandomVariable |
RandomVariableDifferentiableAAD.floor(double floor) |
RandomVariable |
RandomVariableDifferentiableAAD.floor(RandomVariable floor) |
RandomVariable |
RandomVariableDifferentiableAAD.getConditionalExpectation(ConditionalExpectationEstimator estimator) |
RandomVariable |
RandomVariableDifferentiableAAD.getMaxAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAAD.getMinAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAAD.getSampleVarianceAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAAD.getStandardDeviationAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAAD.getStandardErrorAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAAD.getValues()
Returns the underlying values.
|
RandomVariable |
RandomVariableDifferentiableAAD.getVarianceAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAAD.invert() |
RandomVariable |
RandomVariableDifferentiableAAD.isNaN() |
RandomVariable |
RandomVariableDifferentiableAAD.log() |
RandomVariable |
RandomVariableDifferentiableAAD.mult(double value) |
RandomVariable |
RandomVariableDifferentiableAAD.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.pow(double exponent) |
RandomVariable |
RandomVariableDifferentiableAAD.sin() |
RandomVariable |
RandomVariableDifferentiableAAD.sqrt() |
RandomVariable |
RandomVariableDifferentiableAAD.squared() |
RandomVariable |
RandomVariableDifferentiableAAD.sub(double value) |
RandomVariable |
RandomVariableDifferentiableAAD.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAAD.vid(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
Map<Long,RandomVariable> |
RandomVariableDifferentiableAAD.getGradient(Set<Long> independentIDs)
Returns the gradient of this random variable with respect to all its leaf nodes.
|
Map<Long,RandomVariable> |
RandomVariableDifferentiableAAD.getTangents(Set<Long> dependentIDs) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableDifferentiableAAD.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAAD.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableDifferentiableAAD.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableDifferentiableAAD.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAAD.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableDifferentiableAAD.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableDifferentiableAAD.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableDifferentiableAAD.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAAD.div(RandomVariable randomVariable) |
boolean |
RandomVariableDifferentiableAAD.equals(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.floor(RandomVariable floor) |
double |
RandomVariableDifferentiableAAD.getAverage(RandomVariable probabilities) |
double |
RandomVariableDifferentiableAAD.getQuantile(double quantile,
RandomVariable probabilities) |
double |
RandomVariableDifferentiableAAD.getStandardDeviation(RandomVariable probabilities) |
double |
RandomVariableDifferentiableAAD.getStandardError(RandomVariable probabilities) |
double |
RandomVariableDifferentiableAAD.getVariance(RandomVariable probabilities) |
RandomVariable |
RandomVariableDifferentiableAAD.mult(RandomVariable randomVariable) |
static RandomVariableDifferentiableAAD |
RandomVariableDifferentiableAAD.of(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAAD.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAAD.vid(RandomVariable randomVariable) |
Constructor and Description |
---|
RandomVariableDifferentiableAAD(RandomVariable randomVariable) |
RandomVariableDifferentiableAAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorType operator,
RandomVariableDifferentiableAADFactory factory) |
RandomVariableDifferentiableAAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorType operator,
RandomVariableDifferentiableAADFactory factory,
int methodArgumentTypePriority) |
RandomVariableDifferentiableAAD(RandomVariable values,
List<net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorTreeNode> argumentOperatorTreeNodes,
List<RandomVariable> argumentValues,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorType operator,
RandomVariableDifferentiableAADFactory factory,
int methodArgumentTypePriority) |
RandomVariableDifferentiableAAD(RandomVariable values,
RandomVariableDifferentiableAADFactory factory) |
Constructor and Description |
---|
RandomVariableDifferentiableAAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorType operator,
RandomVariableDifferentiableAADFactory factory) |
RandomVariableDifferentiableAAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorType operator,
RandomVariableDifferentiableAADFactory factory,
int methodArgumentTypePriority) |
RandomVariableDifferentiableAAD(RandomVariable values,
List<net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorTreeNode> argumentOperatorTreeNodes,
List<RandomVariable> argumentValues,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.backward.RandomVariableDifferentiableAAD.OperatorType operator,
RandomVariableDifferentiableAADFactory factory,
int methodArgumentTypePriority) |
Modifier and Type | Class and Description |
---|---|
class |
RandomVariableDifferentiableAD
Implementation of
RandomVariableDifferentiable using
the forward algorithmic differentiation (AD). |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableDifferentiableAD.abs() |
RandomVariable |
RandomVariableDifferentiableAD.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAD.add(double value) |
RandomVariable |
RandomVariableDifferentiableAD.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableDifferentiableAD.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableDifferentiableAD.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAD.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableDifferentiableAD.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableDifferentiableAD.apply(DoubleUnaryOperator operator) |
RandomVariable |
RandomVariableDifferentiableAD.average() |
RandomVariable |
RandomVariableDifferentiableAD.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.cache() |
RandomVariable |
RandomVariableDifferentiableAD.cap(double cap) |
RandomVariable |
RandomVariableDifferentiableAD.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableDifferentiableAD.cos() |
RandomVariable |
RandomVariableDifferentiableAD.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAD.div(double value) |
RandomVariable |
RandomVariableDifferentiableAD.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.exp() |
RandomVariable |
RandomVariableDifferentiableAD.floor(double floor) |
RandomVariable |
RandomVariableDifferentiableAD.floor(RandomVariable floor) |
RandomVariable |
RandomVariableDifferentiableAD.getConditionalExpectation(ConditionalExpectationEstimator estimator) |
RandomVariable |
RandomVariableDifferentiableAD.getMaxAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAD.getMinAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAD.getSampleVarianceAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAD.getStandardDeviationAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAD.getStandardErrorAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAD.getValues()
Returns the underlying values.
|
RandomVariable |
RandomVariableDifferentiableAD.getVarianceAsRandomVariableAAD() |
RandomVariable |
RandomVariableDifferentiableAD.invert() |
RandomVariable |
RandomVariableDifferentiableAD.isNaN() |
RandomVariable |
RandomVariableDifferentiableAD.log() |
RandomVariable |
RandomVariableDifferentiableAD.mult(double value) |
RandomVariable |
RandomVariableDifferentiableAD.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.pow(double exponent) |
RandomVariable |
RandomVariableDifferentiableAD.sin() |
RandomVariable |
RandomVariableDifferentiableAD.sqrt() |
RandomVariable |
RandomVariableDifferentiableAD.squared() |
RandomVariable |
RandomVariableDifferentiableAD.sub(double value) |
RandomVariable |
RandomVariableDifferentiableAD.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAD.vid(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
Map<Long,RandomVariable> |
RandomVariableDifferentiableAD.getGradient(Set<Long> independentIDs)
Returns the gradient of this random variable with respect to all its leaf nodes.
|
Map<Long,RandomVariable> |
RandomVariableDifferentiableAD.getTangents() |
Map<Long,RandomVariable> |
RandomVariableDifferentiableAD.getTangents(Set<Long> dependentIDs) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariableDifferentiableAD.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAD.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariableDifferentiableAD.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariableDifferentiableAD.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAD.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariableDifferentiableAD.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariableDifferentiableAD.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.cap(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariableDifferentiableAD.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariableDifferentiableAD.div(RandomVariable randomVariable) |
boolean |
RandomVariableDifferentiableAD.equals(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.floor(RandomVariable floor) |
double |
RandomVariableDifferentiableAD.getAverage(RandomVariable probabilities) |
double |
RandomVariableDifferentiableAD.getQuantile(double quantile,
RandomVariable probabilities) |
double |
RandomVariableDifferentiableAD.getStandardDeviation(RandomVariable probabilities) |
double |
RandomVariableDifferentiableAD.getStandardError(RandomVariable probabilities) |
double |
RandomVariableDifferentiableAD.getVariance(RandomVariable probabilities) |
RandomVariable |
RandomVariableDifferentiableAD.mult(RandomVariable randomVariable) |
static RandomVariableDifferentiableAD |
RandomVariableDifferentiableAD.of(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariableDifferentiableAD.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableDifferentiableAD.vid(RandomVariable randomVariable) |
Constructor and Description |
---|
RandomVariableDifferentiableAD(RandomVariable randomVariable) |
RandomVariableDifferentiableAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.forward.RandomVariableDifferentiableAD.OperatorType operator) |
RandomVariableDifferentiableAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.forward.RandomVariableDifferentiableAD.OperatorType operator,
int methodArgumentTypePriority) |
Constructor and Description |
---|
RandomVariableDifferentiableAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.forward.RandomVariableDifferentiableAD.OperatorType operator) |
RandomVariableDifferentiableAD(RandomVariable values,
List<RandomVariable> arguments,
ConditionalExpectationEstimator estimator,
net.finmath.montecarlo.automaticdifferentiation.forward.RandomVariableDifferentiableAD.OperatorType operator,
int methodArgumentTypePriority) |
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
MonteCarloConditionalExpectationRegression.RegressionBasisFunctions.getBasisFunctions() |
RandomVariable[] |
MonteCarloConditionalExpectationRegression.RegressionBasisFunctionsGiven.getBasisFunctions() |
RandomVariable[] |
RegressionBasisFunctionsProvider.getBasisFunctions(double evaluationTime,
MonteCarloSimulationModel model)
Provides a set of \( \mathcal{F}_{t} \)-measurable random variables which can serve as regression basis functions.
|
RandomVariable[] |
RegressionBasisFunctionsFromProducts.getBasisFunctions(double evaluationTime,
MonteCarloSimulationModel model) |
RandomVariable |
MonteCarloConditionalExpectationRegression.getConditionalExpectation(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloConditionalExpectationRegression.getConditionalExpectation(RandomVariable randomVariable) |
ConditionalExpectationEstimator |
MonteCarloConditionalExpectationRegressionFactory.getConditionalExpectationEstimator(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor)
Creates an object implementing a
ConditionalExpectationEstimator for conditional expectation estimation. |
ConditionalExpectationEstimator |
MonteCarloConditionalExpectationRegressionFactory.getConditionalExpectationEstimator(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor)
Creates an object implementing a
ConditionalExpectationEstimator for conditional expectation estimation. |
ConditionalExpectationEstimator |
MonteCarloConditionalExpectationLinearRegressionFactory.getConditionalExpectationEstimator(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor) |
ConditionalExpectationEstimator |
MonteCarloConditionalExpectationLinearRegressionFactory.getConditionalExpectationEstimator(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor) |
ConditionalExpectationEstimator |
MonteCarloConditionalExpectationLocalizedOnDependentRegressionFactory.getConditionalExpectationEstimator(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor) |
ConditionalExpectationEstimator |
MonteCarloConditionalExpectationLocalizedOnDependentRegressionFactory.getConditionalExpectationEstimator(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor) |
double[] |
MonteCarloConditionalExpectationRegressionLocalizedOnDependents.getLinearRegressionParameters(RandomVariable dependents)
Return the solution x of XTX x = XT y for a given y.
|
double[] |
MonteCarloConditionalExpectationRegression.getLinearRegressionParameters(RandomVariable dependents)
Return the solution x of XTX x = XT y for a given y.
|
double[] |
LinearRegression.getRegressionCoefficients(RandomVariable value)
Get the vector of regression coefficients.
|
Constructor and Description |
---|
LinearRegression(RandomVariable[] basisFunctions)
Create the linear regression with a set of basis functions.
|
MonteCarloConditionalExpectationRegression(RandomVariable[] basisFunctions)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegression(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegression(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegressionLocalizedOnDependents(RandomVariable[] basisFunctions)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegressionLocalizedOnDependents(RandomVariable[] basisFunctionsEstimator,
double standardDeviations)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegressionLocalizedOnDependents(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegressionLocalizedOnDependents(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegressionLocalizedOnDependents(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor,
double standardDeviations)
Creates a class for conditional expectation estimation.
|
MonteCarloConditionalExpectationRegressionLocalizedOnDependents(RandomVariable[] basisFunctionsEstimator,
RandomVariable[] basisFunctionsPredictor,
double standardDeviations)
Creates a class for conditional expectation estimation.
|
RegressionBasisFunctionsGiven(RandomVariable[] basisFunctions) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
CrossCurrencyTermStructureMonteCarloSimulationModel.getExchangeRate(String fromCurve,
String toCurve,
double time)
Return the (cross curve or currency) exchange rate for a given simulation time.
|
RandomVariable |
CrossCurrencyTermStructureMonteCarloSimulationModel.getForwardRate(String curve,
double time,
double periodStart,
double periodEnd)
Return the forward rate for a given simulation time and a given period start and period end.
|
RandomVariable |
CrossCurrencyTermStructureMonteCarloSimulationModel.getNumeraire(double time)
Return the numeraire at a given time.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getAssetValue(double time,
int assetIndex) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable[] |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getLIBORs(int timeIndex) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getMonteCarloWeights(double time) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getMonteCarloWeights(int timeIndex) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getNumeraire(double time) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getNumeraire(int timeIndex) |
RandomVariable |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getRandomVariableForConstant(double value) |
Modifier and Type | Method and Description |
---|---|
Map<String,RandomVariable> |
HybridAssetLIBORModelMonteCarloSimulationFromModels.getModelParameters() |
Modifier and Type | Method and Description |
---|---|
default RandomVariable |
TermStructureModel.getForwardDiscountBond(double time,
double maturity)
Returns the time \( t \) forward bond derived from the numeraire, i.e., \( P(T;t) = E( \frac{N(t)}{N(T)} \vert \mathcal{F}_{t} ) \).
|
RandomVariable |
TermStructureModel.getLIBOR(double time,
double periodStart,
double periodEnd)
Returns the time \( t \) forward rate on the models forward curve.
|
RandomVariable |
LIBORMonteCarloSimulationFromTermStructureModel.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMonteCarloSimulationFromLIBORModel.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
TermStructureMonteCarloSimulationModel.getLIBOR(double time,
double periodStart,
double periodEnd)
Return the forward rate for a given simulation time and a given period start and period end.
|
RandomVariable |
LIBORModel.getLIBOR(int timeIndex,
int liborIndex)
Return the forward rate at a given timeIndex and for a given liborIndex.
|
RandomVariable |
LIBORMonteCarloSimulationFromTermStructureModel.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORMonteCarloSimulationFromLIBORModel.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORModelMonteCarloSimulationModel.getLIBOR(int timeIndex,
int liborIndex)
Return the forward rate for a given simulation time index and a given forward rate index.
|
default RandomVariable |
TermStructureMonteCarloSimulationModel.getLIBOR(LocalDateTime date,
LocalDateTime periodStartDate,
LocalDateTime periodEndDate)
Return the forward rate for a given simulation time and a given period start and period end.
|
RandomVariable[] |
LIBORMonteCarloSimulationFromTermStructureModel.getLIBORs(int timeIndex) |
RandomVariable[] |
LIBORMonteCarloSimulationFromLIBORModel.getLIBORs(int timeIndex) |
RandomVariable[] |
LIBORModelMonteCarloSimulationModel.getLIBORs(int timeIndex)
Return the forward rate curve for a given simulation time index.
|
RandomVariable |
LIBORMonteCarloSimulationFromTermStructureModel.getMonteCarloWeights(double time) |
RandomVariable |
LIBORMonteCarloSimulationFromLIBORModel.getMonteCarloWeights(double time) |
RandomVariable |
LIBORMonteCarloSimulationFromTermStructureModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
LIBORMonteCarloSimulationFromLIBORModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
LIBORMonteCarloSimulationFromTermStructureModel.getNumeraire(double time) |
RandomVariable |
LIBORMonteCarloSimulationFromLIBORModel.getNumeraire(double time) |
RandomVariable |
TermStructureMonteCarloSimulationModel.getNumeraire(double time)
Return the numeraire at a given time.
|
default RandomVariable |
TermStructureMonteCarloSimulationModel.getNumeraire(LocalDateTime date)
Return the numeraire at a given time.
|
RandomVariable |
LIBORMonteCarloSimulationFromTermStructureModel.getRandomVariableForConstant(double value) |
RandomVariable |
LIBORMonteCarloSimulationFromLIBORModel.getRandomVariableForConstant(double value) |
RandomVariable |
CalibrationProduct.getTargetValue() |
Modifier and Type | Method and Description |
---|---|
Map<String,RandomVariable> |
LIBORMonteCarloSimulationFromTermStructureModel.getModelParameters() |
Map<String,RandomVariable> |
LIBORMonteCarloSimulationFromLIBORModel.getModelParameters() |
Constructor and Description |
---|
CalibrationProduct(AbstractLIBORMonteCarloProduct product,
RandomVariable targetValue,
double weight) |
CalibrationProduct(String name,
AbstractLIBORMonteCarloProduct product,
RandomVariable targetValue,
double weight) |
CalibrationProduct(String name,
AbstractLIBORMonteCarloProduct product,
RandomVariable targetValue,
double weight,
int priority)
Construct a calibration product.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
HullWhiteModelWithDirectSimulation.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithShiftExtension.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithConstantCoeff.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelStandard.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithDirectSimulation.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithShiftExtension.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithConstantCoeff.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelStandard.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
HullWhiteModelWithDirectSimulation.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
LIBORMarketModelFromCovarianceModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
LIBORMarketModelWithTenorRefinement.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
HullWhiteModelWithShiftExtension.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModelWithConstantCoeff.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
LIBORMarketModelStandard.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
protected RandomVariable |
LIBORMarketModelStandard.getDriftEuler(int timeIndex,
int componentIndex,
RandomVariable[] liborVectorStart) |
RandomVariable[] |
HullWhiteModelWithDirectSimulation.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORMarketModelFromCovarianceModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORMarketModelWithTenorRefinement.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteModelWithShiftExtension.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteModelWithConstantCoeff.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORMarketModelStandard.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.getForwardDiscountBond(double time,
double maturity) |
RandomVariable |
HullWhiteModel.getForwardDiscountBond(double time,
double maturity) |
RandomVariable[] |
HullWhiteModelWithDirectSimulation.getInitialState() |
RandomVariable[] |
LIBORMarketModelFromCovarianceModel.getInitialState() |
RandomVariable[] |
LIBORMarketModelWithTenorRefinement.getInitialState() |
RandomVariable[] |
HullWhiteModelWithShiftExtension.getInitialState() |
RandomVariable[] |
HullWhiteModel.getInitialState() |
RandomVariable[] |
HullWhiteModelWithConstantCoeff.getInitialState() |
RandomVariable[] |
LIBORMarketModelStandard.getInitialState() |
RandomVariable |
HullWhiteModel.getIntegratedBondSquaredVolatility(double time,
double maturity) |
RandomVariable |
HullWhiteModelWithDirectSimulation.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
HullWhiteModelWithShiftExtension.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
HullWhiteModel.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
HullWhiteModelWithConstantCoeff.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMarketModelStandard.getLIBOR(double time,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getLIBOR(int timeIndex,
double periodStart,
double periodEnd) |
RandomVariable |
HullWhiteModelWithDirectSimulation.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
HullWhiteModelWithShiftExtension.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
HullWhiteModel.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
HullWhiteModelWithConstantCoeff.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORMarketModelStandard.getLIBOR(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getLIBORForStateVariable(TimeDiscretization liborPeriodDiscretization,
RandomVariable[] stateVariables,
double periodStart,
double periodEnd) |
RandomVariable |
HullWhiteModelWithDirectSimulation.getNumeraire(double time) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.getNumeraire(double time)
Return the numeraire at a given time.
|
RandomVariable |
LIBORMarketModelWithTenorRefinement.getNumeraire(double time)
Return the numeraire at a given time.
|
RandomVariable |
HullWhiteModelWithShiftExtension.getNumeraire(double time) |
RandomVariable |
HullWhiteModel.getNumeraire(double time) |
RandomVariable |
HullWhiteModelWithConstantCoeff.getNumeraire(double time) |
RandomVariable |
LIBORMarketModelStandard.getNumeraire(double time)
Return the numeraire at a given time.
|
protected RandomVariable |
LIBORMarketModelFromCovarianceModel.getNumerairetUnAdjusted(double time) |
protected RandomVariable |
LIBORMarketModelFromCovarianceModel.getNumerairetUnAdjustedAtLIBORIndex(int liborTimeIndex) |
RandomVariable |
HullWhiteModelWithDirectSimulation.getRandomVariableForConstant(double value) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.getRandomVariableForConstant(double value) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getRandomVariableForConstant(double value) |
RandomVariable |
HullWhiteModelWithShiftExtension.getRandomVariableForConstant(double value) |
RandomVariable |
HullWhiteModel.getRandomVariableForConstant(double value) |
RandomVariable |
HullWhiteModelWithConstantCoeff.getRandomVariableForConstant(double value) |
RandomVariable |
LIBORMarketModelStandard.getRandomVariableForConstant(double value) |
RandomVariable |
HullWhiteModel.getShortRateConditionalVariance(double time,
double maturity)
Calculates the variance \( \mathop{Var}(r(t) \vert r(s) ) \), that is
\(
\int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau
\) where \( a \) is the meanReversion and \( \sigma \) is the short rate instantaneous volatility.
|
RandomVariable |
LIBORMarketModelWithTenorRefinement.getStateVariable(int timeIndex,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getStateVariableForPeriod(TimeDiscretization liborPeriodDiscretization,
RandomVariable[] stateVariables,
double periodStart,
double periodEnd) |
Modifier and Type | Method and Description |
---|---|
Map<String,RandomVariable> |
HullWhiteModelWithDirectSimulation.getModelParameters() |
Map<String,RandomVariable> |
LIBORMarketModelFromCovarianceModel.getModelParameters() |
Map<String,RandomVariable> |
HullWhiteModelWithShiftExtension.getModelParameters() |
Map<String,RandomVariable> |
HullWhiteModel.getModelParameters() |
Map<String,RandomVariable> |
HullWhiteModelWithConstantCoeff.getModelParameters() |
Map<String,RandomVariable> |
LIBORMarketModelStandard.getModelParameters() |
Map<Double,RandomVariable> |
LIBORMarketModelFromCovarianceModel.getNumeraireAdjustments() |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
HullWhiteModelWithDirectSimulation.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithShiftExtension.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithConstantCoeff.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelStandard.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithDirectSimulation.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelFromCovarianceModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithShiftExtension.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
HullWhiteModelWithConstantCoeff.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
LIBORMarketModelStandard.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
HullWhiteModelWithDirectSimulation.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModelWithDirectSimulation.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
LIBORMarketModelFromCovarianceModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
LIBORMarketModelFromCovarianceModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
LIBORMarketModelWithTenorRefinement.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
LIBORMarketModelWithTenorRefinement.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
HullWhiteModelWithShiftExtension.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModelWithShiftExtension.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModelWithConstantCoeff.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
HullWhiteModelWithConstantCoeff.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
LIBORMarketModelStandard.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
RandomVariable[] |
LIBORMarketModelStandard.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Return the complete vector of the drift for the time index timeIndex, given that current state is realizationAtTimeIndex.
|
protected RandomVariable |
LIBORMarketModelStandard.getDriftEuler(int timeIndex,
int componentIndex,
RandomVariable[] liborVectorStart) |
RandomVariable[] |
HullWhiteModelWithDirectSimulation.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORMarketModelFromCovarianceModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORMarketModelWithTenorRefinement.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteModelWithShiftExtension.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteModelWithConstantCoeff.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORMarketModelStandard.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getLIBORForStateVariable(TimeDiscretization liborPeriodDiscretization,
RandomVariable[] stateVariables,
double periodStart,
double periodEnd) |
RandomVariable |
LIBORMarketModelWithTenorRefinement.getStateVariableForPeriod(TimeDiscretization liborPeriodDiscretization,
RandomVariable[] stateVariables,
double periodStart,
double periodEnd) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
LIBORCovarianceModel.getCovariance(double time,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex)
Returns the instantaneous covariance calculated from factor loadings.
|
RandomVariable |
AbstractLIBORCovarianceModel.getCovariance(double time,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModelFromVolatilityAndCorrelation.getCovariance(int timeIndex,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModel.getCovariance(int timeIndex,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex)
Returns the instantaneous covariance calculated from factor loadings.
|
RandomVariable |
AbstractLIBORCovarianceModel.getCovariance(int timeIndex,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
ExponentialDecayLocalVolatilityModel.getDisplacement() |
RandomVariable |
DisplacedLocalVolatilityModel.getDisplacement() |
RandomVariable[] |
TermStructureFactorLoadingsModelInterface.getFactorLoading(double time,
double periodStart,
double periodEnd,
TimeDiscretization periodDiscretization,
RandomVariable[] realizationAtTimeIndex,
TermStructureModel model)
Return the factor loading for a given time and a term structure period.
|
RandomVariable[] |
TermStructCovarianceModelFromLIBORCovarianceModelParametric.getFactorLoading(double time,
double periodStart,
double periodEnd,
TimeDiscretization periodDiscretization,
RandomVariable[] realizationAtTimeIndex,
TermStructureModel model) |
RandomVariable[] |
TermStructCovarianceModelFromLIBORCovarianceModel.getFactorLoading(double time,
double periodStart,
double periodEnd,
TimeDiscretization periodDiscretization,
RandomVariable[] realizationAtTimeIndex,
TermStructureModel model) |
RandomVariable[] |
LIBORCovarianceModel.getFactorLoading(double time,
double component,
RandomVariable[] realizationAtTimeIndex)
Return the factor loading for a given time and a given component.
|
RandomVariable[] |
AbstractLIBORCovarianceModel.getFactorLoading(double time,
double component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModel.getFactorLoading(double time,
int component,
RandomVariable[] realizationAtTimeIndex)
Return the factor loading for a given time and component index.
|
RandomVariable[] |
AbstractLIBORCovarianceModel.getFactorLoading(double time,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
ExponentialDecayLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelFromVolatilityAndCorrelation.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelExponentialForm7Param.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BlendedLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelExponentialForm5Param.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex)
Return the factor loading for a given time index and component index.
|
RandomVariable[] |
LIBORCovarianceModelStochasticHestonVolatility.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelStochasticVolatility.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelBH.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
abstract RandomVariable[] |
AbstractLIBORCovarianceModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
DisplacedLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
ExponentialDecayLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModelFromVolatilityAndCorrelation.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
BlendedLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
HullWhiteLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex)
Returns the pseudo inverse of the factor matrix.
|
RandomVariable |
LIBORCovarianceModelStochasticHestonVolatility.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModelStochasticVolatility.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
abstract RandomVariable |
AbstractLIBORCovarianceModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
DisplacedLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
ShortRateVolatilityModelHoLee.getMeanReversion(int timeIndex) |
RandomVariable |
ShortRateVolatilityModel.getMeanReversion(int timeIndex)
Returns the value of \( a(t) \) for \( t_{i} \leq t < t_{i+1} \).
|
RandomVariable |
ShortRateVolatilityModelAsGiven.getMeanReversion(int timeIndex) |
RandomVariable |
ShortRateVolatilityModelPiecewiseConstant.getMeanReversion(int timeIndex) |
abstract RandomVariable[] |
AbstractShortRateVolatilityModelParametric.getParameter()
Get the parameters of determining this parametric
volatility model.
|
RandomVariable[] |
ExponentialDecayLocalVolatilityModel.getParameter() |
RandomVariable[] |
LIBORVolatilityModelPiecewiseConstant.getParameter() |
RandomVariable[] |
LIBORCovarianceModelFromVolatilityAndCorrelation.getParameter() |
RandomVariable[] |
BlendedLocalVolatilityModel.getParameter() |
RandomVariable[] |
LIBORVolatilityModelTwoParameterExponentialForm.getParameter() |
RandomVariable[] |
ShortRateVolatilityModelParametric.getParameter()
Get the parameters of determining this parametric
volatility model.
|
abstract RandomVariable[] |
LIBORVolatilityModel.getParameter() |
RandomVariable[] |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm.getParameter() |
RandomVariable[] |
LIBORVolatilityModelTimeHomogenousPiecewiseConstant.getParameter() |
RandomVariable[] |
LIBORCovarianceModelExponentialForm5Param.getParameter() |
abstract RandomVariable[] |
LIBORCorrelationModel.getParameter() |
RandomVariable[] |
LIBORCorrelationModelExponentialDecay.getParameter() |
RandomVariable[] |
AbstractLIBORCovarianceModelParametric.getParameter()
Get the parameters of determining this parametric
covariance model.
|
RandomVariable[] |
LIBORCorrelationModelThreeParameterExponentialDecay.getParameter() |
RandomVariable[] |
LIBORCovarianceModelStochasticHestonVolatility.getParameter() |
RandomVariable[] |
LIBORVolatilityModelFromGivenMatrix.getParameter() |
RandomVariable[] |
LIBORCovarianceModelStochasticVolatility.getParameter() |
RandomVariable[] |
ShortRateVolatilityModelPiecewiseConstant.getParameter() |
RandomVariable[] |
LIBORVolatilityModelFourParameterExponentialFormIntegrated.getParameter() |
RandomVariable[] |
LIBORVolatilityModelFourParameterExponentialForm.getParameter() |
RandomVariable[] |
DisplacedLocalVolatilityModel.getParameter() |
RandomVariable |
ShortRateVolatilityModelPiecewiseConstant.getVolatility(double time) |
RandomVariable |
ShortRateVolatilityModelHoLee.getVolatility(int timeIndex) |
RandomVariable |
ShortRateVolatilityModel.getVolatility(int timeIndex)
Returns the value of \( \sigma(t) \) for \( t_{i} \leq t < t_{i+1} \).
|
RandomVariable |
ShortRateVolatilityModelAsGiven.getVolatility(int timeIndex) |
RandomVariable |
ShortRateVolatilityModelPiecewiseConstant.getVolatility(int timeIndex) |
RandomVariable |
LIBORVolatilityModelPiecewiseConstant.getVolatility(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORVolatilityModelTwoParameterExponentialForm.getVolatility(int timeIndex,
int liborIndex) |
abstract RandomVariable |
LIBORVolatilityModel.getVolatility(int timeIndex,
int component)
Implement this method to complete the implementation.
|
RandomVariable |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm.getVolatility(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORVolatilityModelTimeHomogenousPiecewiseConstant.getVolatility(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORVolatilityModelFromGivenMatrix.getVolatility(int timeIndex,
int component) |
RandomVariable |
LIBORVolatilityModelFourParameterExponentialFormIntegrated.getVolatility(int timeIndex,
int liborIndex) |
RandomVariable |
LIBORVolatilityModelFourParameterExponentialForm.getVolatility(int timeIndex,
int liborIndex) |
Modifier and Type | Method and Description |
---|---|
LIBORVolatilityModel |
LIBORVolatilityModelPiecewiseConstant.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORVolatilityModelTwoParameterExponentialForm |
LIBORVolatilityModelTwoParameterExponentialForm.getCloneWithModifiedParameter(RandomVariable[] parameter) |
abstract LIBORVolatilityModel |
LIBORVolatilityModel.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORVolatilityModelTimeHomogenousPiecewiseConstant |
LIBORVolatilityModelTimeHomogenousPiecewiseConstant.getCloneWithModifiedParameter(RandomVariable[] parameter) |
abstract LIBORCorrelationModel |
LIBORCorrelationModel.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORCorrelationModelExponentialDecay |
LIBORCorrelationModelExponentialDecay.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORCorrelationModelThreeParameterExponentialDecay |
LIBORCorrelationModelThreeParameterExponentialDecay.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORVolatilityModelFromGivenMatrix |
LIBORVolatilityModelFromGivenMatrix.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORVolatilityModelFourParameterExponentialFormIntegrated |
LIBORVolatilityModelFourParameterExponentialFormIntegrated.getCloneWithModifiedParameter(RandomVariable[] parameter) |
LIBORVolatilityModelFourParameterExponentialForm |
LIBORVolatilityModelFourParameterExponentialForm.getCloneWithModifiedParameter(RandomVariable[] parameter) |
abstract AbstractShortRateVolatilityModelParametric |
AbstractShortRateVolatilityModelParametric.getCloneWithModifiedParameters(RandomVariable[] parameters)
Return an instance of this model using a new set of parameters.
|
AbstractLIBORCovarianceModelParametric |
ExponentialDecayLocalVolatilityModel.getCloneWithModifiedParameters(RandomVariable[] parameters) |
AbstractLIBORCovarianceModelParametric |
LIBORCovarianceModelFromVolatilityAndCorrelation.getCloneWithModifiedParameters(RandomVariable[] parameters) |
AbstractLIBORCovarianceModelParametric |
BlendedLocalVolatilityModel.getCloneWithModifiedParameters(RandomVariable[] parameters) |
ShortRateVolatilityModelParametric |
ShortRateVolatilityModelParametric.getCloneWithModifiedParameters(RandomVariable[] parameters)
Return an instance of this model using a new set of parameters.
|
AbstractLIBORCovarianceModelParametric |
LIBORCovarianceModelExponentialForm5Param.getCloneWithModifiedParameters(RandomVariable[] parameters) |
AbstractLIBORCovarianceModelParametric |
AbstractLIBORCovarianceModelParametric.getCloneWithModifiedParameters(RandomVariable[] parameters)
Return an instance of this model using a new set of parameters.
|
AbstractLIBORCovarianceModelParametric |
LIBORCovarianceModelStochasticHestonVolatility.getCloneWithModifiedParameters(RandomVariable[] parameters) |
AbstractLIBORCovarianceModelParametric |
LIBORCovarianceModelStochasticVolatility.getCloneWithModifiedParameters(RandomVariable[] parameters) |
AbstractShortRateVolatilityModelParametric |
ShortRateVolatilityModelPiecewiseConstant.getCloneWithModifiedParameters(RandomVariable[] parameters) |
AbstractLIBORCovarianceModelParametric |
DisplacedLocalVolatilityModel.getCloneWithModifiedParameters(RandomVariable[] parameters) |
RandomVariable |
LIBORCovarianceModel.getCovariance(double time,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex)
Returns the instantaneous covariance calculated from factor loadings.
|
RandomVariable |
AbstractLIBORCovarianceModel.getCovariance(double time,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModelFromVolatilityAndCorrelation.getCovariance(int timeIndex,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModel.getCovariance(int timeIndex,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex)
Returns the instantaneous covariance calculated from factor loadings.
|
RandomVariable |
AbstractLIBORCovarianceModel.getCovariance(int timeIndex,
int component1,
int component2,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
TermStructureFactorLoadingsModelInterface.getFactorLoading(double time,
double periodStart,
double periodEnd,
TimeDiscretization periodDiscretization,
RandomVariable[] realizationAtTimeIndex,
TermStructureModel model)
Return the factor loading for a given time and a term structure period.
|
RandomVariable[] |
TermStructCovarianceModelFromLIBORCovarianceModelParametric.getFactorLoading(double time,
double periodStart,
double periodEnd,
TimeDiscretization periodDiscretization,
RandomVariable[] realizationAtTimeIndex,
TermStructureModel model) |
RandomVariable[] |
TermStructCovarianceModelFromLIBORCovarianceModel.getFactorLoading(double time,
double periodStart,
double periodEnd,
TimeDiscretization periodDiscretization,
RandomVariable[] realizationAtTimeIndex,
TermStructureModel model) |
RandomVariable[] |
LIBORCovarianceModel.getFactorLoading(double time,
double component,
RandomVariable[] realizationAtTimeIndex)
Return the factor loading for a given time and a given component.
|
RandomVariable[] |
AbstractLIBORCovarianceModel.getFactorLoading(double time,
double component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModel.getFactorLoading(double time,
int component,
RandomVariable[] realizationAtTimeIndex)
Return the factor loading for a given time and component index.
|
RandomVariable[] |
AbstractLIBORCovarianceModel.getFactorLoading(double time,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
ExponentialDecayLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelFromVolatilityAndCorrelation.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelExponentialForm7Param.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
BlendedLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
HullWhiteLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelExponentialForm5Param.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex)
Return the factor loading for a given time index and component index.
|
RandomVariable[] |
LIBORCovarianceModelStochasticHestonVolatility.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelStochasticVolatility.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
LIBORCovarianceModelBH.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
abstract RandomVariable[] |
AbstractLIBORCovarianceModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
DisplacedLocalVolatilityModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
ExponentialDecayLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModelFromVolatilityAndCorrelation.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariableFromDoubleArray |
LIBORCovarianceModelExponentialForm7Param.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
BlendedLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
HullWhiteLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariableFromDoubleArray |
LIBORCovarianceModelExponentialForm5Param.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex)
Returns the pseudo inverse of the factor matrix.
|
RandomVariable |
LIBORCovarianceModelStochasticHestonVolatility.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
LIBORCovarianceModelStochasticVolatility.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariableFromDoubleArray |
LIBORCovarianceModelBH.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
abstract RandomVariable |
AbstractLIBORCovarianceModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable |
DisplacedLocalVolatilityModel.getFactorLoadingPseudoInverse(int timeIndex,
int component,
int factor,
RandomVariable[] realizationAtTimeIndex) |
Constructor and Description |
---|
BlendedLocalVolatilityModel(AbstractLIBORCovarianceModelParametric covarianceModel,
ForwardCurve forwardCurve,
RandomVariable displacement,
boolean isCalibrateable)
Displaced diffusion model build on top of a standard covariance model.
|
DisplacedLocalVolatilityModel(AbstractLIBORCovarianceModelParametric covarianceModel,
RandomVariable displacement,
boolean isCalibrateable)
Displaced model build on top of a standard covariance model.
|
ExponentialDecayLocalVolatilityModel(RandomVariableFactory abstractRandomVariableFactory,
AbstractLIBORCovarianceModelParametric covarianceModel,
RandomVariable decay,
boolean isCalibrateable)
Exponential decay model build on top of a standard covariance model.
|
LIBORCovarianceModelExponentialForm5Param(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
int numberOfFactors,
RandomVariable[] parameters) |
LIBORCovarianceModelStochasticHestonVolatility(AbstractLIBORCovarianceModelParametric covarianceModel,
BrownianMotion brownianMotion,
RandomVariable kappa,
RandomVariable theta,
RandomVariable xi,
boolean isCalibrateable)
Create a modification of a given
AbstractLIBORCovarianceModelParametric with a stochastic volatility scaling. |
LIBORCovarianceModelStochasticVolatility(AbstractLIBORCovarianceModelParametric covarianceModel,
BrownianMotion brownianMotion,
RandomVariable nu,
RandomVariable rho,
boolean isCalibrateable)
Create a modification of a given
AbstractLIBORCovarianceModelParametric with a stochastic volatility scaling. |
LIBORVolatilityModelFourParameterExponentialForm(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable a,
RandomVariable b,
RandomVariable c,
RandomVariable d,
boolean isCalibrateable)
Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
|
LIBORVolatilityModelFourParameterExponentialForm(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable a,
RandomVariable b,
RandomVariable c,
RandomVariable d,
boolean isCalibrateable)
Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
|
LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable a,
RandomVariable b,
RandomVariable c,
RandomVariable d,
boolean isCalibrateable)
Creates the volatility model
\[
\sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{
|
LIBORVolatilityModelFromGivenMatrix(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[][] volatility,
boolean isCalibrateable)
Creates a simple volatility model using given piece-wise constant values on
a given discretization grid.
|
LIBORVolatilityModelFromGivenMatrix(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[][] volatility)
Creates a simple volatility model using given piece-wise constant values on
a given discretization grid.
|
LIBORVolatilityModelFromGivenMatrix(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[][] volatility,
boolean isCalibrateable)
Creates a simple volatility model using given piece-wise constant values on
a given discretization grid.
|
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[] parameterA,
RandomVariable[] parameterB,
RandomVariable[] parameterC,
RandomVariable[] parameterD) |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[] parameterA,
RandomVariable[] parameterB,
RandomVariable[] parameterC,
RandomVariable[] parameterD) |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[] parameterA,
RandomVariable[] parameterB,
RandomVariable[] parameterC,
RandomVariable[] parameterD) |
LIBORVolatilityModelMaturityDependentFourParameterExponentialForm(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable[] parameterA,
RandomVariable[] parameterB,
RandomVariable[] parameterC,
RandomVariable[] parameterD) |
LIBORVolatilityModelPiecewiseConstant(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
TimeDiscretization simulationTimeDiscretization,
TimeDiscretization timeToMaturityDiscretization,
RandomVariable[] volatility,
boolean isCalibrateable) |
LIBORVolatilityModelTimeHomogenousPiecewiseConstant(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
TimeDiscretization timeToMaturityDiscretization,
RandomVariable[] volatility)
Create a piecewise constant volatility model, where
\( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
\( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
|
LIBORVolatilityModelTimeHomogenousPiecewiseConstant(TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
TimeDiscretization timeToMaturityDiscretization,
RandomVariable[] volatility)
Create a piecewise constant volatility model, where
\( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
\( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
|
LIBORVolatilityModelTwoParameterExponentialForm(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization liborPeriodDiscretization,
RandomVariable a,
RandomVariable b,
boolean isCalibrateable)
Creates the volatility model σi(tj) = a * exp(-b (Ti-tj))
|
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization volatilityTimeDiscretization,
RandomVariable[] volatility,
RandomVariable[] meanReversion,
boolean isVolatilityCalibrateable) |
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization volatilityTimeDiscretization,
RandomVariable[] volatility,
RandomVariable[] meanReversion,
boolean isVolatilityCalibrateable) |
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization volatilityTimeDiscretization,
RandomVariable[] volatility,
RandomVariable[] meanReversion,
boolean isVolatilityCalibrateable,
boolean isMeanReversionCalibrateable) |
ShortRateVolatilityModelPiecewiseConstant(RandomVariableFactory abstractRandomVariableFactory,
TimeDiscretization timeDiscretization,
TimeDiscretization volatilityTimeDiscretization,
RandomVariable[] volatility,
RandomVariable[] meanReversion,
boolean isVolatilityCalibrateable,
boolean isMeanReversionCalibrateable) |
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
BermudanSwaptionFromSwapSchedules.getBasisFunctions(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
Provides a set of \( \mathcal{F}_{t} \)-measurable random variables which can serve as regression basis functions.
|
RandomVariable[] |
BermudanSwaption.getBasisFunctions(double fixingDate,
LIBORModelMonteCarloSimulationModel model)
Return the basis functions for the regression suitable for this product.
|
RandomVariable[] |
BermudanSwaptionFromSwapSchedules.getBasisFunctions(double evaluationTime,
MonteCarloSimulationModel model) |
RandomVariable[] |
BermudanSwaption.getBasisFunctions(double fixingDate,
MonteCarloSimulationModel model)
Return the basis functions for the regression suitable for this product.
|
RandomVariable |
Swaption.getExerciseIndicator(LIBORModelMonteCarloSimulationModel model)
Deprecated.
|
RandomVariable |
SwaptionATM.getImpliedBachelierATMOptionVolatility(RandomVariable optionValue,
double optionMaturity,
double swapAnnuity)
Calculates ATM Bachelier implied volatilities.
|
RandomVariable |
SwaprateCovarianceAnalyticApproximation.getValue(double evaluationTime,
LIBORMarketModelFromCovarianceModel model)
Calculates the approximated integrated instantaneous covariance of two swap rates,
using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).
|
RandomVariable |
Caplet.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
Portfolio.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
CMSOption.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SimpleZeroSwap.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
CancelableSwap.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SwaptionGeneralizedAnalyticApproximation.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwaptionSimple.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
DigitalFloorlet.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
FlexiCap.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SwaptionAnalyticApproximation.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwaptionWithComponents.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SimpleSwap.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
MoneyMarketAccount.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
TermStructureMonteCarloProduct.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SwaptionFromSwapSchedules.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
BermudanSwaptionFromSwapSchedules.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
ForwardRateVolatilitySurfaceCurvature.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwaptionSingleCurve.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SwapWithComponents.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
abstract RandomVariable |
AbstractLIBORMonteCarloProduct.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwaptionATM.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
Swap.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwaptionSingleCurveAnalyticApproximation.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SimpleCappedFlooredFloatingRateBond.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwapLeg.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
DigitalCaplet.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
BermudanSwaption.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
LIBORBond.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
Bond.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
Swaption.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
SwaptionAnalyticApproximationRebonato.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
SwaprateCovarianceAnalyticApproximation.getValue(double evaluationTime,
MonteCarloSimulationModel model) |
RandomVariable |
AbstractLIBORMonteCarloProduct.getValue(double evaluationTime,
MonteCarloSimulationModel model) |
RandomVariable |
AbstractLIBORMonteCarloProduct.getValueForModifiedData(double evaluationTime,
MonteCarloSimulationModel monteCarloSimulationModel,
Map<String,Object> dataModified) |
static RandomVariable |
SwaptionFromSwapSchedules.getValueOfLegAnalytic(double evaluationTime,
LIBORModelMonteCarloSimulationModel model,
Schedule schedule,
boolean paysFloatingRate,
double fixRate,
double notional)
Determines the time \( t \)-measurable value of a swap leg (can handle fix or float).
|
RandomVariable |
SwaptionGeneralizedAnalyticApproximation.getValues(double evaluationTime,
LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate,
using the approximation d S/d L (t) = d S/d L (0).
|
RandomVariable |
SwaptionAnalyticApproximation.getValues(double evaluationTime,
LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate,
using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).
|
RandomVariable |
ForwardRateVolatilitySurfaceCurvature.getValues(double evaluationTime,
LIBORMarketModel model)
Calculates the squared curvature of the LIBOR instantaneous variance.
|
RandomVariable |
SwaptionSingleCurveAnalyticApproximation.getValues(double evaluationTime,
LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate,
using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).
|
RandomVariable |
SwaptionAnalyticApproximationRebonato.getValues(double evaluationTime,
LIBORMarketModel model)
Calculates the approximated integrated instantaneous variance of the swap rate,
using the approximation d log(S(t))/d log(L(t)) = d log(S(0))/d log(L(0)).
|
Modifier and Type | Method and Description |
---|---|
double[] |
BermudanSwaptionFromSwapSchedules.getExerciseProbabilitiesFromTimes(LocalDateTime localDateTime,
RandomVariable exerciseTimes)
Determines the vector of exercise probabilities for a given
RandomVariable of exerciseTimes. |
RandomVariable |
SwaptionATM.getImpliedBachelierATMOptionVolatility(RandomVariable optionValue,
double optionMaturity,
double swapAnnuity)
Calculates ATM Bachelier implied volatilities.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
Option.getBasisFunctions(double exerciseDate,
LIBORModelMonteCarloSimulationModel model)
Return the regression basis functions.
|
RandomVariable[] |
Option.getBasisFunctions(double evaluationTime,
MonteCarloSimulationModel model) |
RandomVariable |
Period.getCoupon(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
abstract RandomVariable |
AbstractPeriod.getCoupon(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
AccruingNotional.getNotionalAtPeriodEnd(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
NotionalFromComponent.getNotionalAtPeriodEnd(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
Notional.getNotionalAtPeriodEnd(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model)
Calculates the notional at the end of a period, given a period.
|
RandomVariable |
NotionalFromConstant.getNotionalAtPeriodEnd(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
AccruingNotional.getNotionalAtPeriodStart(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
NotionalFromComponent.getNotionalAtPeriodStart(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
Notional.getNotionalAtPeriodStart(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model)
Calculates the notional at the start of a period, given a period.
|
RandomVariable |
NotionalFromConstant.getNotionalAtPeriodStart(AbstractPeriod period,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
Period.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
ExposureEstimator.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
Numeraire.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
IndexedValue.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
Selector.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
ProductCollection.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
abstract RandomVariable |
AbstractPeriod.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
Option.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
RandomVariable |
AccrualAccount.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model) |
RandomVariable |
Cashflow.getValue(double evaluationTime,
LIBORModelMonteCarloSimulationModel model)
This method returns the value random variable of the product within the specified model, evaluated at a given evalutationTime.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
ProcessModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable)
Applies the state space transform fi to the given state random variable
such that Yi → fi(Yi) =: Xi.
|
default RandomVariable |
ProcessModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
ProcessModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
This method has to be implemented to return the drift, i.e.
|
RandomVariable[] |
ProcessModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex)
This method has to be implemented to return the factor loadings, i.e.
|
RandomVariable[] |
ProcessModel.getInitialState()
Returns the initial value of the state variable of the process Y, not to be
confused with the initial value of the model X (which is the state space transform
applied to this state value.
|
RandomVariable[] |
AbstractProcessModel.getInitialValue()
Returns the initial value of the model.
|
RandomVariable |
AbstractProcessModel.getMonteCarloWeights(int timeIndex) |
RandomVariable |
ProcessModel.getNumeraire(double time)
Return the numeraire at a given time index.
|
RandomVariable |
AbstractProcessModel.getProcessValue(int timeIndex,
int componentIndex) |
default RandomVariable |
ProcessModel.getRandomVariableForConstant(double value)
Return a random variable initialized with a constant using the models random variable factory.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
ProcessModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable)
Applies the state space transform fi to the given state random variable
such that Yi → fi(Yi) =: Xi.
|
default RandomVariable |
ProcessModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
ProcessModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
This method has to be implemented to return the drift, i.e.
|
RandomVariable[] |
ProcessModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
This method has to be implemented to return the drift, i.e.
|
RandomVariable[] |
ProcessModel.getFactorLoading(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex)
This method has to be implemented to return the factor loadings, i.e.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloProcessFromProcessModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MonteCarloProcessFromProcessModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
MonteCarloProcessFromProcessModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MonteCarloProcessFromProcessModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
MonteCarloProcessFromProcessModel.getInitialState() |
RandomVariable |
LinearInterpolatedTimeDiscreteProcess.getMonteCarloWeights(int timeIndex) |
RandomVariable |
EulerSchemeFromProcessModel.getMonteCarloWeights(int timeIndex)
This method returns the weights of a weighted Monte Carlo method (the probability density).
|
RandomVariable |
Process.getMonteCarloWeights(int timeIndex)
This method returns the weights of a weighted Monte Carlo method (the probability density).
|
RandomVariable |
LinearInterpolatedTimeDiscreteProcess.getProcessValue(double time,
int component)
Returns the (possibly interpolated) value of this stochastic process at a given time \( t \).
|
RandomVariable |
LinearInterpolatedTimeDiscreteProcess.getProcessValue(int timeIndex,
int component) |
RandomVariable |
EulerSchemeFromProcessModel.getProcessValue(int timeIndex,
int componentIndex)
This method returns the realization of the process at a certain time index.
|
RandomVariable |
Process.getProcessValue(int timeIndex,
int component)
This method returns the realization of a component of the process for a given time index.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloProcessFromProcessModel.applyStateSpaceTransform(int componentIndex,
RandomVariable randomVariable) |
RandomVariable |
MonteCarloProcessFromProcessModel.applyStateSpaceTransformInverse(int componentIndex,
RandomVariable randomVariable) |
RandomVariable[] |
MonteCarloProcessFromProcessModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MonteCarloProcessFromProcessModel.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
MonteCarloProcessFromProcessModel.getFactorLoading(int timeIndex,
int component,
RandomVariable[] realizationAtTimeIndex) |
Constructor and Description |
---|
LinearInterpolatedTimeDiscreteProcess(Map<Double,RandomVariable> realizations)
Create a time discrete process by linear interpolation of random variables.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
Barrier.getBarrierLevel(int timeIndex,
RandomVariable[] randomVariable)
The barrier level
|
Modifier and Type | Method and Description |
---|---|
RandomVariableFromDoubleArray[] |
Barrier.getBarrierDirection(int timeIndex,
RandomVariable[] randomVariable)
The barrier direction, i.e. a (stochastic) projection vector for the components)
|
RandomVariable |
Barrier.getBarrierLevel(int timeIndex,
RandomVariable[] randomVariable)
The barrier level
|
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
FactorDrift.getFactorDrift(int timeIndex,
RandomVariable[] realizationPredictor)
The interface describes how an additional factor drift may be specified for the generation of a process (see e.g.
|
RandomVariable |
FactorDrift.getFactorDriftDeterminant(int timeIndex,
RandomVariable[] realizationPredictor)
The interface describes how an additional factor drift may be specified for the generation of a process (see e.g.
|
RandomVariable[] |
FactorDrift.getFactorScaling(int timeIndex,
RandomVariable[] realizationPredictor)
The interface describes how an additional factor scaling may be specified for the generation of a process (see e.g.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
FactorDrift.getFactorDrift(int timeIndex,
RandomVariable[] realizationPredictor)
The interface describes how an additional factor drift may be specified for the generation of a process (see e.g.
|
RandomVariable |
FactorDrift.getFactorDriftDeterminant(int timeIndex,
RandomVariable[] realizationPredictor)
The interface describes how an additional factor drift may be specified for the generation of a process (see e.g.
|
RandomVariable[] |
FactorDrift.getFactorScaling(int timeIndex,
RandomVariable[] realizationPredictor)
The interface describes how an additional factor scaling may be specified for the generation of a process (see e.g.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
PortfolioMonteCarloProduct.getValue(double evaluationTime,
MonteCarloSimulationModel model) |
Modifier and Type | Method and Description |
---|---|
abstract RandomVariable |
LogNormalProcess.getDrift(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
LogNormalProcess.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Get the the drift.
|
abstract RandomVariable |
LogNormalProcess.getFactorLoading(int timeIndex,
int factor,
int component,
RandomVariable[] realizationAtTimeIndex)
This method should be overwritten and return the factor loading, i.e.
|
abstract RandomVariable[] |
LogNormalProcess.getInitialValue() |
RandomVariable |
LogNormalProcess.getMonteCarloWeights(int timeIndex)
This method returns the weights of a weighted Monte Carlo method (the probability density).
|
RandomVariable[] |
LogNormalProcess.getProcessValue(int timeIndex)
This method returns the realization of the process at a certain time index.
|
RandomVariable |
LogNormalProcess.getProcessValue(int timeIndex,
int componentIndex)
This method returns the realization of the process at a certain time index.
|
Modifier and Type | Method and Description |
---|---|
abstract RandomVariable |
LogNormalProcess.getDrift(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
abstract RandomVariable |
LogNormalProcess.getDrift(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable[] |
LogNormalProcess.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Get the the drift.
|
RandomVariable[] |
LogNormalProcess.getDrift(int timeIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor)
Get the the drift.
|
abstract RandomVariable |
LogNormalProcess.getFactorLoading(int timeIndex,
int factor,
int component,
RandomVariable[] realizationAtTimeIndex)
This method should be overwritten and return the factor loading, i.e.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloBlackScholesModel2.getAssetValue(double time,
int assetIndex) |
RandomVariable |
MonteCarloBlackScholesModel2.getAssetValue(int timeIndex,
int assetIndex) |
RandomVariable |
MonteCarloBlackScholesModel2.getDrift(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable |
MonteCarloBlackScholesModel2.getFactorLoading(int timeIndex,
int factor,
int component,
RandomVariable[] realizationAtTimeIndex) |
RandomVariable[] |
MonteCarloBlackScholesModel2.getInitialValue() |
RandomVariable |
MonteCarloBlackScholesModel2.getMonteCarloWeights(double time) |
RandomVariable |
MonteCarloBlackScholesModel2.getNumeraire(double time) |
RandomVariable |
MonteCarloBlackScholesModel2.getNumeraire(int timeIndex) |
RandomVariable |
MonteCarloBlackScholesModel2.getRandomVariableForConstant(double value) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
MonteCarloBlackScholesModel2.getDrift(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable |
MonteCarloBlackScholesModel2.getDrift(int timeIndex,
int componentIndex,
RandomVariable[] realizationAtTimeIndex,
RandomVariable[] realizationPredictor) |
RandomVariable |
MonteCarloBlackScholesModel2.getFactorLoading(int timeIndex,
int factor,
int component,
RandomVariable[] realizationAtTimeIndex) |
Modifier and Type | Method and Description |
---|---|
RandomVariable[] |
StochasticOptimizer.getBestFitParameters()
Get the best fit parameter vector.
|
RandomVariable[] |
StochasticLevenbergMarquardt.getBestFitParameters() |
RandomVariable[] |
StochasticPathwiseLevenbergMarquardt.getBestFitParameters() |
RandomVariable |
StochasticPathwiseLevenbergMarquardt.getMeanSquaredError(RandomVariable[] value) |
Modifier and Type | Method and Description |
---|---|
StochasticLevenbergMarquardt |
StochasticLevenbergMarquardt.getCloneWithModifiedTargetValues(RandomVariable[] newTargetVaues,
RandomVariable[] newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
StochasticLevenbergMarquardt |
StochasticLevenbergMarquardt.getCloneWithModifiedTargetValues(RandomVariable[] newTargetVaues,
RandomVariable[] newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
StochasticPathwiseLevenbergMarquardt |
StochasticPathwiseLevenbergMarquardt.getCloneWithModifiedTargetValues(RandomVariable[] newTargetVaues,
RandomVariable[] newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
StochasticPathwiseLevenbergMarquardt |
StochasticPathwiseLevenbergMarquardt.getCloneWithModifiedTargetValues(RandomVariable[] newTargetVaues,
RandomVariable[] newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
double |
StochasticLevenbergMarquardt.getMeanSquaredError(RandomVariable[] value) |
RandomVariable |
StochasticPathwiseLevenbergMarquardt.getMeanSquaredError(RandomVariable[] value) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] targetValues) |
default StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] targetValues) |
default StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
default StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
default StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
default StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
default StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticPathwiseOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryLevenbergMarquardt.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterSteps,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterStep,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterStep,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterStep,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterStep,
RandomVariable[] targetValues) |
StochasticOptimizer |
StochasticOptimizerFactory.getOptimizer(StochasticOptimizer.ObjectiveFunction objectiveFunction,
RandomVariable[] initialParameters,
RandomVariable[] lowerBound,
RandomVariable[] upperBound,
RandomVariable[] parameterStep,
RandomVariable[] targetValues) |
protected void |
StochasticLevenbergMarquardtAD.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticLevenbergMarquardtAD.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticLevenbergMarquardtAD.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticPathwiseLevenbergMarquardtAD.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticPathwiseLevenbergMarquardtAD.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticPathwiseLevenbergMarquardtAD.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticLevenbergMarquardt.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticLevenbergMarquardt.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticLevenbergMarquardt.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticPathwiseLevenbergMarquardt.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticPathwiseLevenbergMarquardt.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticPathwiseLevenbergMarquardt.prepareAndSetDerivatives(RandomVariable[] parameters,
RandomVariable[] values,
RandomVariable[][] derivatives) |
protected void |
StochasticLevenbergMarquardtAD.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticLevenbergMarquardtAD.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticPathwiseLevenbergMarquardtAD.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticPathwiseLevenbergMarquardtAD.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticLevenbergMarquardt.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticLevenbergMarquardt.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticPathwiseLevenbergMarquardt.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
protected void |
StochasticPathwiseLevenbergMarquardt.prepareAndSetValues(RandomVariable[] parameters,
RandomVariable[] values) |
void |
StochasticLevenbergMarquardt.setDerivatives(RandomVariable[] parameters,
RandomVariable[][] derivatives)
The derivative of the objective function.
|
void |
StochasticLevenbergMarquardt.setDerivatives(RandomVariable[] parameters,
RandomVariable[][] derivatives)
The derivative of the objective function.
|
void |
StochasticPathwiseLevenbergMarquardt.setDerivatives(RandomVariable[] parameters,
RandomVariable[][] derivatives)
The derivative of the objective function.
|
void |
StochasticPathwiseLevenbergMarquardt.setDerivatives(RandomVariable[] parameters,
RandomVariable[][] derivatives)
The derivative of the objective function.
|
void |
StochasticPathwiseLevenbergMarquardt.setErrorMeanSquaredCurrent(RandomVariable errorMeanSquaredCurrent) |
void |
StochasticOptimizer.ObjectiveFunction.setValues(RandomVariable[] parameters,
RandomVariable[] values) |
void |
StochasticOptimizer.ObjectiveFunction.setValues(RandomVariable[] parameters,
RandomVariable[] values) |
abstract void |
StochasticLevenbergMarquardt.setValues(RandomVariable[] parameters,
RandomVariable[] values)
The objective function.
|
abstract void |
StochasticLevenbergMarquardt.setValues(RandomVariable[] parameters,
RandomVariable[] values)
The objective function.
|
abstract void |
StochasticPathwiseLevenbergMarquardt.setValues(RandomVariable[] parameters,
RandomVariable[] values)
The objective function.
|
abstract void |
StochasticPathwiseLevenbergMarquardt.setValues(RandomVariable[] parameters,
RandomVariable[] values)
The objective function.
|
Modifier and Type | Method and Description |
---|---|
StochasticLevenbergMarquardt |
StochasticLevenbergMarquardt.getCloneWithModifiedTargetValues(List<RandomVariable> newTargetVaues,
List<RandomVariable> newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
StochasticLevenbergMarquardt |
StochasticLevenbergMarquardt.getCloneWithModifiedTargetValues(List<RandomVariable> newTargetVaues,
List<RandomVariable> newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
StochasticPathwiseLevenbergMarquardt |
StochasticPathwiseLevenbergMarquardt.getCloneWithModifiedTargetValues(List<RandomVariable> newTargetVaues,
List<RandomVariable> newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
StochasticPathwiseLevenbergMarquardt |
StochasticPathwiseLevenbergMarquardt.getCloneWithModifiedTargetValues(List<RandomVariable> newTargetVaues,
List<RandomVariable> newWeights,
boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
Constructor and Description |
---|
StochasticLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService) |
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService) |
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService) |
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService,
boolean isGradientValuationParallel) |
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService,
boolean isGradientValuationParallel) |
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod,
RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] parameterSteps,
int maxIteration,
double errorTolerance,
ExecutorService executorService,
boolean isGradientValuationParallel) |
StochasticOptimizerFactoryPathwiseLevenbergMarquardtAD(int maxIterations,
RandomVariable errorTolerance,
int maxThreads) |
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
int maxIteration,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
int maxIteration,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
int maxIteration,
int numberOfThreads) |
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
int maxIteration,
int numberOfThreads) |
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService) |
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService) |
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService) |
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService) |
StochasticPathwiseLevenbergMarquardtAD(RandomVariable[] initialParameters,
RandomVariable[] targetValues,
RandomVariable[] weights,
RandomVariable[] parameterSteps,
int maxIteration,
RandomVariable errorTolerance,
ExecutorService executorService) |
Constructor and Description |
---|
StochasticPathwiseLevenbergMarquardt(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
ExecutorService executorService)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardt(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
int numberOfThreads)
Create a Levenberg-Marquardt solver.
|
StochasticPathwiseLevenbergMarquardtAD(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
ExecutorService executorService) |
StochasticPathwiseLevenbergMarquardtAD(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
ExecutorService executorService) |
StochasticPathwiseLevenbergMarquardtAD(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
int numberOfThreads) |
StochasticPathwiseLevenbergMarquardtAD(List<RandomVariable> initialParameters,
List<RandomVariable> targetValues,
int maxIteration,
int numberOfThreads) |
Modifier and Type | Interface and Description |
---|---|
interface |
RandomVariableAccumulator
The interface implemented by a mutable random variable accumulator.
|
interface |
RandomVariableArray
An array of
RandomVariable objects, implementing the RandomVariable interface. |
Modifier and Type | Class and Description |
---|---|
class |
RandomVariableArrayImplementation
An implementation of
RandomVariableArray implementing an array of RandomVariable objects,
implementing the RandomVariable interface. |
class |
Scalar
A scalar value implementing the RandomVariable.
|
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariable.abs()
Applies x → Math.abs(x), i.e. x → |x| to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.abs() |
RandomVariable |
Scalar.abs() |
RandomVariable |
RandomVariable.accrue(RandomVariable rate,
double periodLength)
Applies x → x * (1.0 + rate * periodLength) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
Scalar.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariable.add(double value)
Applies x → x + value to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.add(double value) |
RandomVariable |
Scalar.add(double value) |
RandomVariable |
RandomVariable.add(RandomVariable randomVariable)
Applies x → x+randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.add(RandomVariable randomVariable) |
RandomVariable |
Scalar.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.addProduct(RandomVariable factor1,
double factor2)
Applies x → x + factor1 * factor2
|
RandomVariable |
RandomVariableArrayImplementation.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
Scalar.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariable.addProduct(RandomVariable factor1,
RandomVariable factor2)
Applies x → x + factor1 * factor2
|
RandomVariable |
RandomVariableArrayImplementation.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
Scalar.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariable.addRatio(RandomVariable numerator,
RandomVariable denominator)
Applies x → x + numerator / denominator
|
RandomVariable |
RandomVariableArrayImplementation.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
Scalar.addRatio(RandomVariable numerator,
RandomVariable denominator) |
default RandomVariable |
RandomVariable.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2)
Applies \( x \mapsto x + \sum_{i=0}^{n-1} factor1_{i} * factor2_{i}
|
default RandomVariable |
RandomVariable.addSumProduct(RandomVariable[] factor1,
RandomVariable[] factor2)
Applies \( x \mapsto x + \sum_{i=0}^{n-1} factor1_{i} * factor2_{i}
|
RandomVariable |
RandomVariable.apply(DoubleBinaryOperator operator,
RandomVariable argument)
Applies x → operator(x,y) to this random variable, where x is this random variable and y is a given random variable.
|
RandomVariable |
RandomVariableArrayImplementation.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
Scalar.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariable.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2)
Applies x → operator(x,y,z) to this random variable, where x is this random variable and y and z are given random variable.
|
RandomVariable |
RandomVariableArrayImplementation.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
Scalar.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariable.apply(DoubleUnaryOperator operator)
Applies x → operator(x) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.apply(DoubleUnaryOperator operator) |
RandomVariable |
Scalar.apply(DoubleUnaryOperator operator) |
RandomVariable |
RandomVariable.average()
Returns a random variable which is deterministic and corresponds
the expectation of this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.average() |
RandomVariable |
Scalar.average() |
RandomVariable |
RandomVariable.bus(RandomVariable randomVariable)
Applies x → randomVariable-x to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.bus(RandomVariable randomVariable) |
RandomVariable |
Scalar.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.cache()
Return a cacheable version of this object (often a self-reference).
|
RandomVariable |
RandomVariableArrayImplementation.cache() |
RandomVariable |
Scalar.cache() |
RandomVariable |
RandomVariable.cap(double cap)
Applies x → min(x,cap) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.cap(double cap) |
RandomVariable |
Scalar.cap(double cap) |
RandomVariable |
RandomVariable.cap(RandomVariable cap)
Applies x → min(x,cap) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.cap(RandomVariable cap) |
RandomVariable |
Scalar.cap(RandomVariable cap) |
RandomVariable |
RandomVariable.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative)
Applies x → (x ≥ 0 ?
|
RandomVariable |
RandomVariableArrayImplementation.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
Scalar.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariable.cos()
Applies x → cos(x) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.cos() |
RandomVariable |
Scalar.cos() |
RandomVariable |
RandomVariable.discount(RandomVariable rate,
double periodLength)
Applies x → x / (1.0 + rate * periodLength) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
Scalar.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariable.div(double value)
Applies x → x / value to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.div(double value) |
RandomVariable |
Scalar.div(double value) |
RandomVariable |
RandomVariable.div(RandomVariable randomVariable)
Applies x → x/randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.div(RandomVariable randomVariable) |
RandomVariable |
Scalar.div(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.exp()
Applies x → exp(x) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.exp() |
RandomVariable |
Scalar.exp() |
default RandomVariable |
RandomVariable.expm1()
Applies x → expm1(x) (that is x → exp(x)-1.0) to this random variable.
|
RandomVariable |
Scalar.expm1() |
RandomVariable |
RandomVariable.floor(double floor)
Applies x → max(x,floor) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.floor(double floor) |
RandomVariable |
Scalar.floor(double floor) |
RandomVariable |
RandomVariable.floor(RandomVariable floor)
Applies x → max(x,floor) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.floor(RandomVariable floor) |
RandomVariable |
Scalar.floor(RandomVariable floor) |
RandomVariable |
RandomVariableAccumulator.get() |
RandomVariable |
RandomVariableAccumulator.get(double fromTime,
double toTime) |
default RandomVariable |
RandomVariable.getConditionalExpectation(ConditionalExpectationEstimator conditionalExpectationOperator)
Returns the conditional expectation using a given conditional expectation estimator.
|
RandomVariable |
ConditionalExpectationEstimator.getConditionalExpectation(RandomVariable randomVariable)
Return the conditional expectation of a given random variable.
|
RandomVariable |
RandomVariableArray.getElement(int index) |
RandomVariable |
RandomVariableArrayImplementation.getElement(int index) |
default RandomVariable |
RandomVariable.getValues()
Returns the underlying values and a random variable.
|
RandomVariable |
RandomVariable.invert()
Applies x → 1/x to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.invert() |
RandomVariable |
Scalar.invert() |
RandomVariable |
RandomVariable.isNaN()
Applies x → (Double.isNaN(x) ?
|
RandomVariable |
RandomVariableArrayImplementation.isNaN() |
RandomVariable |
Scalar.isNaN() |
RandomVariable |
RandomVariable.log()
Applies x → log(x) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.log() |
RandomVariable |
Scalar.log() |
RandomVariable |
RandomVariable.mult(double value)
Applies x → x * value to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.mult(double value) |
RandomVariable |
Scalar.mult(double value) |
RandomVariable |
RandomVariable.mult(RandomVariable randomVariable)
Applies x → x*randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.mult(RandomVariable randomVariable) |
RandomVariable |
Scalar.mult(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.pow(double exponent)
Applies x → pow(x,exponent) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.pow(double exponent) |
RandomVariable |
Scalar.pow(double exponent) |
RandomVariable |
RandomVariable.sin()
Applies x → sin(x) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.sin() |
RandomVariable |
Scalar.sin() |
RandomVariable |
RandomVariable.sqrt()
Applies x → sqrt(x) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.sqrt() |
RandomVariable |
Scalar.sqrt() |
RandomVariable |
RandomVariable.squared()
Applies x → x * x to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.squared() |
RandomVariable |
Scalar.squared() |
RandomVariable |
RandomVariable.sub(double value)
Applies x → x - value to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.sub(double value) |
RandomVariable |
Scalar.sub(double value) |
RandomVariable |
RandomVariable.sub(RandomVariable randomVariable)
Applies x → x-randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.sub(RandomVariable randomVariable) |
RandomVariable |
Scalar.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.subRatio(RandomVariable numerator,
RandomVariable denominator)
Applies x → x - numerator / denominator
|
RandomVariable |
RandomVariableArrayImplementation.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
Scalar.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariableArray.sumProduct(RandomVariableArray array)
Components wise product followed by sum of all elements.
|
RandomVariable |
RandomVariableArrayImplementation.sumProduct(RandomVariableArray array) |
RandomVariable |
RandomVariable.vid(RandomVariable randomVariable)
Applies x → randomVariable/x to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.vid(RandomVariable randomVariable) |
RandomVariable |
Scalar.vid(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
RandomVariable |
RandomVariable.accrue(RandomVariable rate,
double periodLength)
Applies x → x * (1.0 + rate * periodLength) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.accrue(RandomVariable rate,
double periodLength) |
RandomVariable |
Scalar.accrue(RandomVariable rate,
double periodLength) |
void |
RandomVariableAccumulator.accumulate(double time,
RandomVariable randomVariable) |
void |
RandomVariableAccumulator.accumulate(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.add(RandomVariable randomVariable)
Applies x → x+randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.add(RandomVariable randomVariable) |
RandomVariable |
Scalar.add(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.addProduct(RandomVariable factor1,
double factor2)
Applies x → x + factor1 * factor2
|
RandomVariable |
RandomVariableArrayImplementation.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
Scalar.addProduct(RandomVariable factor1,
double factor2) |
RandomVariable |
RandomVariable.addProduct(RandomVariable factor1,
RandomVariable factor2)
Applies x → x + factor1 * factor2
|
RandomVariable |
RandomVariableArrayImplementation.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
Scalar.addProduct(RandomVariable factor1,
RandomVariable factor2) |
RandomVariable |
RandomVariable.addRatio(RandomVariable numerator,
RandomVariable denominator)
Applies x → x + numerator / denominator
|
RandomVariable |
RandomVariableArrayImplementation.addRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
Scalar.addRatio(RandomVariable numerator,
RandomVariable denominator) |
default RandomVariable |
RandomVariable.addSumProduct(RandomVariable[] factor1,
RandomVariable[] factor2)
Applies \( x \mapsto x + \sum_{i=0}^{n-1} factor1_{i} * factor2_{i}
|
default RandomVariable |
RandomVariable.addSumProduct(RandomVariable[] factor1,
RandomVariable[] factor2)
Applies \( x \mapsto x + \sum_{i=0}^{n-1} factor1_{i} * factor2_{i}
|
RandomVariable |
RandomVariable.apply(DoubleBinaryOperator operator,
RandomVariable argument)
Applies x → operator(x,y) to this random variable, where x is this random variable and y is a given random variable.
|
RandomVariable |
RandomVariableArrayImplementation.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
Scalar.apply(DoubleBinaryOperator operator,
RandomVariable argument) |
RandomVariable |
RandomVariable.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2)
Applies x → operator(x,y,z) to this random variable, where x is this random variable and y and z are given random variable.
|
RandomVariable |
RandomVariableArrayImplementation.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
Scalar.apply(DoubleTernaryOperator operator,
RandomVariable argument1,
RandomVariable argument2) |
RandomVariable |
RandomVariable.bus(RandomVariable randomVariable)
Applies x → randomVariable-x to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.bus(RandomVariable randomVariable) |
RandomVariable |
Scalar.bus(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.cap(RandomVariable cap)
Applies x → min(x,cap) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.cap(RandomVariable cap) |
RandomVariable |
Scalar.cap(RandomVariable cap) |
RandomVariable |
RandomVariable.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative)
Applies x → (x ≥ 0 ?
|
RandomVariable |
RandomVariableArrayImplementation.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
Scalar.choose(RandomVariable valueIfTriggerNonNegative,
RandomVariable valueIfTriggerNegative) |
RandomVariable |
RandomVariable.discount(RandomVariable rate,
double periodLength)
Applies x → x / (1.0 + rate * periodLength) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
Scalar.discount(RandomVariable rate,
double periodLength) |
RandomVariable |
RandomVariable.div(RandomVariable randomVariable)
Applies x → x/randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.div(RandomVariable randomVariable) |
RandomVariable |
Scalar.div(RandomVariable randomVariable) |
boolean |
RandomVariable.equals(RandomVariable randomVariable)
Compare this random variable with a given one
|
boolean |
RandomVariableArrayImplementation.equals(RandomVariable randomVariable) |
boolean |
Scalar.equals(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.floor(RandomVariable floor)
Applies x → max(x,floor) to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.floor(RandomVariable floor) |
RandomVariable |
Scalar.floor(RandomVariable floor) |
double |
RandomVariable.getAverage(RandomVariable probabilities)
Returns the expectation of this random variable for a given probability measure (weight).
|
double |
RandomVariableArrayImplementation.getAverage(RandomVariable probabilities) |
double |
Scalar.getAverage(RandomVariable probabilities) |
RandomVariable |
ConditionalExpectationEstimator.getConditionalExpectation(RandomVariable randomVariable)
Return the conditional expectation of a given random variable.
|
double |
RandomVariable.getQuantile(double quantile,
RandomVariable probabilities)
Returns the quantile value for this given random variable, i.e., the value x such that P(this < x) = quantile,
where P denotes the probability measure.
|
double |
RandomVariableArrayImplementation.getQuantile(double quantile,
RandomVariable probabilities) |
double |
Scalar.getQuantile(double quantile,
RandomVariable probabilities) |
double |
RandomVariable.getStandardDeviation(RandomVariable probabilities)
Returns the standard deviation of this random variable, i.e.,
sqrt(V) where V = ((X-m)^2).getAverage(probabilities) and X = this and m = X.getAverage(probabilities).
|
double |
RandomVariableArrayImplementation.getStandardDeviation(RandomVariable probabilities) |
double |
Scalar.getStandardDeviation(RandomVariable probabilities) |
double |
RandomVariable.getStandardError(RandomVariable probabilities)
Returns the standard error (discretization error) of this random variable.
|
double |
RandomVariableArrayImplementation.getStandardError(RandomVariable probabilities) |
double |
Scalar.getStandardError(RandomVariable probabilities) |
double |
RandomVariable.getVariance(RandomVariable probabilities)
Returns the variance of this random variable, i.e.,
V where V = ((X-m)^2).getAverage(probabilities) and X = this and m = X.getAverage(probabilities).
|
double |
RandomVariableArrayImplementation.getVariance(RandomVariable probabilities) |
double |
Scalar.getVariance(RandomVariable probabilities) |
RandomVariable |
RandomVariable.mult(RandomVariable randomVariable)
Applies x → x*randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.mult(RandomVariable randomVariable) |
RandomVariable |
Scalar.mult(RandomVariable randomVariable) |
static RandomVariableArray |
RandomVariableArrayImplementation.of(RandomVariable[] elements) |
RandomVariable |
RandomVariable.sub(RandomVariable randomVariable)
Applies x → x-randomVariable to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.sub(RandomVariable randomVariable) |
RandomVariable |
Scalar.sub(RandomVariable randomVariable) |
RandomVariable |
RandomVariable.subRatio(RandomVariable numerator,
RandomVariable denominator)
Applies x → x - numerator / denominator
|
RandomVariable |
RandomVariableArrayImplementation.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
Scalar.subRatio(RandomVariable numerator,
RandomVariable denominator) |
RandomVariable |
RandomVariable.vid(RandomVariable randomVariable)
Applies x → randomVariable/x to this random variable.
|
RandomVariable |
RandomVariableArrayImplementation.vid(RandomVariable randomVariable) |
RandomVariable |
Scalar.vid(RandomVariable randomVariable) |
Modifier and Type | Method and Description |
---|---|
default RandomVariable |
RandomVariable.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2)
Applies \( x \mapsto x + \sum_{i=0}^{n-1} factor1_{i} * factor2_{i}
|
default RandomVariable |
RandomVariable.addSumProduct(List<RandomVariable> factor1,
List<RandomVariable> factor2)
Applies \( x \mapsto x + \sum_{i=0}^{n-1} factor1_{i} * factor2_{i}
|
RandomVariableArray |
RandomVariableArray.map(Function<RandomVariable,RandomVariable> operator)
Component wise operation
|
RandomVariableArray |
RandomVariableArray.map(Function<RandomVariable,RandomVariable> operator)
Component wise operation
|
RandomVariableArray |
RandomVariableArrayImplementation.map(Function<RandomVariable,RandomVariable> operator) |
RandomVariableArray |
RandomVariableArrayImplementation.map(Function<RandomVariable,RandomVariable> operator) |
Copyright © 2020. All rights reserved.