public class HestonModel extends Object implements CharacteristicFunctionModel
Constructor and Description |
---|
HestonModel(double initialValue,
DiscountCurve discountCurveForForwardRate,
DiscountCurve discountCurveForDiscountRate,
double volatility,
double theta,
double kappa,
double xi,
double rho)
Create a Heston model (characteristic function)
|
HestonModel(double initialValue,
double riskFreeRate,
double volatility,
double theta,
double kappa,
double xi,
double rho) |
HestonModel(double initialValue,
double riskFreeRate,
double volatility,
double discountRate,
double theta,
double kappa,
double xi,
double rho)
Create a Heston model (characteristic function)
|
HestonModel(LocalDate referenceDate,
double initialValue,
DiscountCurve discountCurveForForwardRate,
DiscountCurve discountCurveForDiscountRate,
double volatility,
double theta,
double kappa,
double xi,
double rho)
Create a Heston model (characteristic function)
|
Modifier and Type | Method and Description |
---|---|
CharacteristicFunction |
apply(double time)
Returns the characteristic function of X(t), where X is
this stochastic process. |
DiscountCurve |
getDiscountCurveForDiscountRate() |
DiscountCurve |
getDiscountCurveForForwardRate() |
double |
getDiscountRate() |
double |
getInitialValue() |
double |
getKappa() |
LocalDate |
getReferenceDate() |
double |
getRho() |
double |
getRiskFreeRate() |
double |
getTheta() |
double |
getVolatility() |
double |
getXi() |
String |
toString() |
public HestonModel(LocalDate referenceDate, double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double volatility, double theta, double kappa, double xi, double rho)
referenceDate
- The date representing the time t = 0. All other double times are following FloatingpointDate
.initialValue
- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratevolatility
- \( \sigma \) the initial volatility leveltheta
- \( \theta \) - the mean reversion level of the stochastic volatilitykappa
- \( \kappa \) - the mean reversion speed of the stochastic volatilityxi
- \( \xi \) - the volatility of volatilityrho
- \( \rho \) - the correlation of the Brownian driverspublic HestonModel(double initialValue, DiscountCurve discountCurveForForwardRate, DiscountCurve discountCurveForDiscountRate, double volatility, double theta, double kappa, double xi, double rho)
initialValue
- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate
- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratediscountCurveForDiscountRate
- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratevolatility
- \( \sigma \) the initial volatility leveltheta
- \( \theta \) - the mean reversion level of the stochastic volatilitykappa
- \( \kappa \) - the mean reversion speed of the stochastic volatilityxi
- \( \xi \) - the volatility of volatilityrho
- \( \rho \) - the correlation of the Brownian driverspublic HestonModel(double initialValue, double riskFreeRate, double volatility, double discountRate, double theta, double kappa, double xi, double rho)
initialValue
- \( S_{0} \) - spot - initial value of SriskFreeRate
- \( r^{\text{c}} \) - the risk free ratevolatility
- \( \sigma \) the initial volatility leveldiscountRate
- \( r^{\text{d}} \) - the discount ratetheta
- \( \theta \) - the mean reversion level of the stochastic volatilitykappa
- \( \kappa \) - the mean reversion speed of the stochastic volatilityxi
- \( \xi \) - the volatility of volatilityrho
- \( \rho \) - the correlation of the Brownian driverspublic HestonModel(double initialValue, double riskFreeRate, double volatility, double theta, double kappa, double xi, double rho)
public CharacteristicFunction apply(double time)
CharacteristicFunctionModel
this
stochastic process.apply
in interface CharacteristicFunctionModel
time
- The time at which the stochastic process is observed.public LocalDate getReferenceDate()
public double getInitialValue()
public DiscountCurve getDiscountCurveForForwardRate()
public double getRiskFreeRate()
public DiscountCurve getDiscountCurveForDiscountRate()
public double getDiscountRate()
public double getVolatility()
public double getTheta()
public double getKappa()
public double getXi()
public double getRho()
Copyright © 2020. All rights reserved.