Module net.finmath.lib
Class BlackScholesModelWithCurves
java.lang.Object
net.finmath.montecarlo.model.AbstractProcessModel
net.finmath.montecarlo.assetderivativevaluation.models.BlackScholesModelWithCurves
- All Implemented Interfaces:
ProcessModel
public class BlackScholesModelWithCurves extends AbstractProcessModel
This class implements a Black Scholes Model, that is, it provides the drift and volatility specification
and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
The model is
\[
dS = r S dt + \sigma S dW, \quad S(0) = S_{0},
\]
\[
dN = r N dt, \quad N(0) = N_{0},
\]
The class provides the model of S to an
MonteCarloProcess via the specification of
\( f = exp \), \( \mu = r - \frac{1}{2} \sigma^2 \), \( \lambda_{1,1} = \sigma \), i.e.,
of the SDE
\[
dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = \log(S_{0}),
\]
with \( S = f(X) \). See MonteCarloProcess for the notation.- Version:
- 1.0
- Author:
- Christian Fries
- See Also:
The interface for numerical schemes.,The interface for models provinding parameters to numerical schemes.
-
Constructor Summary
Constructors Constructor Description BlackScholesModelWithCurves(Double initialValue, DiscountCurve discountCurveForForwardRate, Double volatility, DiscountCurve discountCurveForDiscountRate, RandomVariableFactory abstractRandomVariableFactory)Create a Black-Scholes specification implementing AbstractProcessModel.BlackScholesModelWithCurves(RandomVariable initialValue, DiscountCurve discountCurveForForwardRate, RandomVariable volatility, DiscountCurve discountCurveForDiscountRate, RandomVariableFactory abstractRandomVariableFactory)Create a Black-Scholes specification implementing AbstractProcessModel. -
Method Summary
Modifier and Type Method Description RandomVariableapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.RandomVariableapplyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.BlackScholesModelWithCurvesgetCloneWithModifiedData(Map<String,Object> dataModified)Returns a clone of this model where the specified properties have been modified.RandomVariable[]getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)This method has to be implemented to return the drift, i.e.RandomVariable[]getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)This method has to be implemented to return the factor loadings, i.e.RandomVariable[]getInitialState(MonteCarloProcess process)Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.RandomVariable[]getInitialValue(MonteCarloProcess process)Return the initial value of this model.intgetNumberOfComponents()Returns the number of componentsintgetNumberOfFactors()Returns the number of factors m, i.e., the number of independent Brownian drivers.RandomVariablegetNumeraire(MonteCarloProcess process, double time)Return the numeraire at a given time index.RandomVariablegetRandomVariableForConstant(double value)Return a random variable initialized with a constant using the models random variable factory.RandomVariablegetVolatility()Returns the volatility parameter of this model.StringtoString()
-
Constructor Details
-
BlackScholesModelWithCurves
public BlackScholesModelWithCurves(RandomVariable initialValue, DiscountCurve discountCurveForForwardRate, RandomVariable volatility, DiscountCurve discountCurveForDiscountRate, RandomVariableFactory abstractRandomVariableFactory)Create a Black-Scholes specification implementing AbstractProcessModel.- Parameters:
initialValue- Spot value.discountCurveForForwardRate- The curve used for calcuation of the forward.volatility- The log volatility.discountCurveForDiscountRate- The curve used for calcualtion of the disocunt factor / numeraire.abstractRandomVariableFactory- The random variable factory used to create random variables from constants.
-
BlackScholesModelWithCurves
public BlackScholesModelWithCurves(Double initialValue, DiscountCurve discountCurveForForwardRate, Double volatility, DiscountCurve discountCurveForDiscountRate, RandomVariableFactory abstractRandomVariableFactory)Create a Black-Scholes specification implementing AbstractProcessModel.- Parameters:
initialValue- Spot value.discountCurveForForwardRate- The curve used for calcuation of the forward.volatility- The log volatility.discountCurveForDiscountRate- The curve used for calcualtion of the disocunt factor / numeraire.abstractRandomVariableFactory- The random variable factory used to create random variables from constants.
-
-
Method Details
-
getInitialState
Description copied from interface:ProcessModelReturns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getDrift
public RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)Description copied from interface:ProcessModelThis method has to be implemented to return the drift, i.e. the coefficient vector
μ = (μ1, ..., μn) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).realizationAtTimeIndex- The given realization at timeIndexrealizationPredictor- The given realization attimeIndex+1or null if no predictor is available.- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
-
getFactorLoading
public RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int component, RandomVariable[] realizationAtTimeIndex)Description copied from interface:ProcessModelThis method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).component- The index j of the driven component.realizationAtTimeIndex- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
applyStateSpaceTransform
public RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
public RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Description copied from interface:ProcessModelApplies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getNumeraire
Description copied from interface:ProcessModelReturn the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time- The time t for which the numeraire N(t) should be returned.- Returns:
- The numeraire at the specified time as
RandomVariable
-
getNumberOfComponents
public int getNumberOfComponents()Description copied from interface:ProcessModelReturns the number of components- Returns:
- The number of components
-
getNumberOfFactors
public int getNumberOfFactors()Description copied from interface:ProcessModelReturns the number of factors m, i.e., the number of independent Brownian drivers.- Returns:
- The number of factors.
-
getRandomVariableForConstant
Description copied from interface:ProcessModelReturn a random variable initialized with a constant using the models random variable factory.- Parameters:
value- The constant value.- Returns:
- A new random variable initialized with a constant value.
-
getCloneWithModifiedData
Description copied from interface:ProcessModelReturns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter mapdataModified. If data is provided which is ignored by the model no exception may be thrown.- Parameters:
dataModified- Key-value-map of parameters to modify.- Returns:
- A clone of this model (or this model if no parameter was modified).
-
toString
-
getInitialValue
Return the initial value of this model.- Overrides:
getInitialValuein classAbstractProcessModel- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- the initial value of this model.
-
getVolatility
Returns the volatility parameter of this model.- Returns:
- Returns the volatility.
-