Class LIBORVolatilityModelFourParameterExponentialFormIntegrated

java.lang.Object
net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModel
net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelFourParameterExponentialFormIntegrated
All Implemented Interfaces:
Serializable

public class LIBORVolatilityModelFourParameterExponentialFormIntegrated
extends LIBORVolatilityModel
Implements the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \] The parameters here have some interpretation:
  • The parameter a: an initial volatility level.
  • The parameter b: the slope at the short end (shortly before maturity).
  • The parameter c: exponential decay of the volatility in time-to-maturity.
  • The parameter d: if c > 0 this is the very long term volatility level.
Note that this model results in a terminal (Black 76) volatility which is given by \[ \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k} \int_{0}^{t_{k}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t \text{.} \]
Version:
1.1
Author:
Christian Fries
See Also:
Serialized Form
  • Constructor Details

    • LIBORVolatilityModelFourParameterExponentialFormIntegrated

      public LIBORVolatilityModelFourParameterExponentialFormIntegrated​(RandomVariableFactory abstractRandomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable)
      Creates the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \]
      Parameters:
      abstractRandomVariableFactory - The random variable factor used to construct random variables from the parameters.
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      a - The parameter a: an initial volatility level.
      b - The parameter b: the slope at the short end (shortly before maturity).
      c - The parameter c: exponential decay of the volatility in time-to-maturity.
      d - The parameter d: if c > 0 this is the very long term volatility level.
      isCalibrateable - Set this to true, if the parameters are available for calibration.
    • LIBORVolatilityModelFourParameterExponentialFormIntegrated

      public LIBORVolatilityModelFourParameterExponentialFormIntegrated​(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, RandomVariable c, RandomVariable d, boolean isCalibrateable)
      Creates the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \]
      Parameters:
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      a - The parameter a: an initial volatility level.
      b - The parameter b: the slope at the short end (shortly before maturity).
      c - The parameter c: exponential decay of the volatility in time-to-maturity.
      d - The parameter d: if c > 0 this is the very long term volatility level.
      isCalibrateable - Set this to true, if the parameters are available for calibration.
    • LIBORVolatilityModelFourParameterExponentialFormIntegrated

      public LIBORVolatilityModelFourParameterExponentialFormIntegrated​(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable)
      Creates the volatility model \[ \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} \]
      Parameters:
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      a - The parameter a: an initial volatility level.
      b - The parameter b: the slope at the short end (shortly before maturity).
      c - The parameter c: exponential decay of the volatility in time-to-maturity.
      d - The parameter d: if c > 0 this is the very long term volatility level.
      isCalibrateable - Set this to true, if the parameters are available for calibration.
  • Method Details