Class LIBORVolatilityModelTimeHomogenousPiecewiseConstant

java.lang.Object
net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModel
net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelTimeHomogenousPiecewiseConstant
All Implemented Interfaces:
Serializable

public class LIBORVolatilityModelTimeHomogenousPiecewiseConstant
extends LIBORVolatilityModel
Implements a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
Version:
1.0
Author:
Christian Fries
See Also:
Serialized Form
  • Constructor Details

    • LIBORVolatilityModelTimeHomogenousPiecewiseConstant

      public LIBORVolatilityModelTimeHomogenousPiecewiseConstant​(RandomVariableFactory abstractRandomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility)
      Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
      Parameters:
      abstractRandomVariableFactory - The random variable factor used to construct random variables from the parameters.
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      timeToMaturityDiscretization - The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
      volatility - The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
    • LIBORVolatilityModelTimeHomogenousPiecewiseConstant

      public LIBORVolatilityModelTimeHomogenousPiecewiseConstant​(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility)
      Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
      Parameters:
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      timeToMaturityDiscretization - The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
      volatility - The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
    • LIBORVolatilityModelTimeHomogenousPiecewiseConstant

      public LIBORVolatilityModelTimeHomogenousPiecewiseConstant​(RandomVariableFactory abstractRandomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility)
      Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
      Parameters:
      abstractRandomVariableFactory - The random variable factor used to construct random variables from the parameters.
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      timeToMaturityDiscretization - The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
      volatility - The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
    • LIBORVolatilityModelTimeHomogenousPiecewiseConstant

      public LIBORVolatilityModelTimeHomogenousPiecewiseConstant​(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility)
      Create a piecewise constant volatility model, where \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
      Parameters:
      timeDiscretization - The simulation time discretization tj.
      liborPeriodDiscretization - The period time discretization Ti.
      timeToMaturityDiscretization - The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
      volatility - The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
  • Method Details