Package net.finmath.montecarlo.process

Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme. The Euler scheme implementation is more generic and can be configured for log-Euler scheme or predictor corrector scheme. The parameters have to be provided by a process model.
Author:
Christian Fries
See Also:
net.finmath.montecarlo.model
  • Interface Summary 
    Interface Description
    MonteCarloProcess
    The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
    \[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementing ProcessModel: The value of Y(0) is provided by the method ProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess).
    Process
    The interface for a stochastic process X.
    ProcessTimeDiscretizationProvider
    An object implementing this interfaces provides a suggestion for an optimal time-discretization associated with this object.
  • Class Summary 
    Class Description
    EulerSchemeFromProcessModel
    This class implements some numerical schemes for multi-dimensional multi-factor Ito process.
    LinearInterpolatedTimeDiscreteProcess
    A linear interpolated time discrete process, that is, given a collection of tuples (Double, RandomVariableFromDoubleArray) representing realizations \( X(t_{i}) \) this class implements the Process and creates a stochastic process \( t \mapsto X(t) \) where \[ X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1}) \] with \( t_{i} \leq t \leq t_{i+1} \).
    MonteCarloProcessFromProcessModel
    This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.
  • Enum Summary 
    Enum Description
    EulerSchemeFromProcessModel.Scheme