Uses of Package
net.finmath.montecarlo.process
Package | Description |
---|---|
net.finmath.montecarlo.assetderivativevaluation |
Monte-Carlo models for asset value processes, like the Black Scholes model.
|
net.finmath.montecarlo.assetderivativevaluation.models |
Equity models implementing
ProcessModel
e.g. by extending AbstractProcessModel . |
net.finmath.montecarlo.crosscurrency |
Provides classes for Cross-Currency models to be implemented via Monte-Carlo
algorithms from
net.finmath.montecarlo.process . |
net.finmath.montecarlo.hybridassetinterestrate |
Provides interfaces and classes needed to generate a Hybrid Asset LIBOR Market Model.
|
net.finmath.montecarlo.interestrate |
Provides classes needed to generate a LIBOR market model (using numerical
algorithms from
net.finmath.montecarlo.process . |
net.finmath.montecarlo.interestrate.models |
Interest rate models implementing
ProcessModel
e.g. by extending AbstractProcessModel . |
net.finmath.montecarlo.interestrate.products |
Provides classes which implement financial products which may be
valued using a
net.finmath.montecarlo.interestrate.LIBORModelMonteCarloSimulationModel . |
net.finmath.montecarlo.model |
Provides an interface and a base class for process models, i.e., models providing the parameters for
stochastic processes.
|
net.finmath.montecarlo.process |
Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme.
|
-
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.assetderivativevaluation Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.assetderivativevaluation.models Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.crosscurrency Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.hybridassetinterestrate Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.interestrate Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.interestrate.models Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.interestrate.products Class Description ProcessTimeDiscretizationProvider An object implementing this interfaces provides a suggestion for an optimal time-discretization associated with this object. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.model Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.process Class Description EulerSchemeFromProcessModel This class implements some numerical schemes for multi-dimensional multi-factor Ito process.EulerSchemeFromProcessModel.Scheme LinearInterpolatedTimeDiscreteProcess A linear interpolated time discrete process, that is, given a collection of tuples (Double, RandomVariableFromDoubleArray) representing realizations \( X(t_{i}) \) this class implements theProcess
and creates a stochastic process \( t \mapsto X(t) \) where \[ X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1}) \] with \( t_{i} \leq t \leq t_{i+1} \).MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
.MonteCarloProcessFromProcessModel This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.Process The interface for a stochastic process X.