- java.lang.Object
-
- net.finmath.optimizer.LevenbergMarquardt
-
- All Implemented Interfaces:
Serializable
,Cloneable
,Optimizer
public abstract class LevenbergMarquardt extends Object implements Serializable, Cloneable, Optimizer
This class implements a parallel Levenberg-Marquardt non-linear least-squares fit algorithm.The solver minimizes \( || f ||_{L_{2}} \) for a function \( f:\mathbb{R}^n \rightarrow \mathbb{R}^m \). The solver requires the calculation of a Jacobi-matrix \( J = \frac{\mathrm{d}f}{\mathrm{d}x} \). The iteration steps are then defined by \[ \Delta x = H_{\lambda}^{-1} J^T f \] where \( H_{\lambda} \) is a regularized approximation of the Hessian matrix. The solver supports two different regularizations. For
RegularizationMethod.LEVENBERG
the solver uses \( H_{\lambda} = J^T J + \lambda I \). ForRegularizationMethod.LEVENBERG_MARQUARDT
the solver uses \( H_{\lambda} = J^T J + \lambda \text{diag}(J^T J) \).The design avoids the need to define the objective function as a separate class. The objective function is defined by overriding a class method, see the sample code below.
The Levenberg-Marquardt solver is implemented in using multi-threading. The calculation of the derivatives (in case a specific implementation of
setDerivatives(double[] parameters, double[][] derivatives)
is not provided) may be performed in parallel by setting the parameternumberOfThreads
.To use the solver inherit from it and implement the objective function as
setValues(double[] parameters, double[] values)
where values has to be set to the value of the objective functions for the given parameters.
You may also provide an a derivative for your objective function by additionally overriding the functionsetDerivatives(double[] parameters, double[][] derivatives)
, otherwise the solver will calculate the derivative via finite differences.To reject a point, it is allowed to set an element of
The following simple example finds a solution for the equationvalues
toDouble.NaN
in the implementation ofsetValues(double[] parameters, double[] values)
. Put differently: The solver handles NaN values invalues
as an error larger than the current one (regardless of the current error) and rejects the point.
Note, however, that is is an error if the initial parameter guess results in an NaN value. That is, the solver should be initialized with an initial parameter in an admissible region.
Sample linear system of equations. 0.0 * x1 + 1.0 * x2 = 5.0 2.0 * x1 + 1.0 * x2 = 10.0 LevenbergMarquardt optimizer = new LevenbergMarquardt() { // Override your objective function here public void setValues(double[] parameters, double[] values) { values[0] = parameters[0] * 0.0 + parameters[1]; values[1] = parameters[0] * 2.0 + parameters[1]; } }; // Set solver parameters optimizer.setInitialParameters(new double[] { 0, 0 }); optimizer.setWeights(new double[] { 1, 1 }); optimizer.setMaxIteration(100); optimizer.setTargetValues(new double[] { 5, 10 }); optimizer.run(); double[] bestParameters = optimizer.getBestFitParameters();
The class can be initialized to use a multi-threaded valuation. If initialized this way the implementation of
Note: Iteration steps will be logged (java.util.logging) with LogLevel.FINEsetValues
must be thread-safe. The solver will evaluate the gradient of the value vector in parallel, i.e., use as many threads as the number of parameters.- Version:
- 1.6
- Author:
- Christian Fries
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
LevenbergMarquardt.RegularizationMethod
The regularization method used to invert the approximation of the Hessian matrix.-
Nested classes/interfaces inherited from interface net.finmath.optimizer.Optimizer
Optimizer.ObjectiveFunction
-
-
Constructor Summary
Constructors Constructor Description LevenbergMarquardt()
Create a Levenberg-Marquardt solver.LevenbergMarquardt(double[] initialParameters, double[] targetValues, int maxIteration, int numberOfThreads)
Create a Levenberg-Marquardt solver.LevenbergMarquardt(double[] initialParameters, double[] targetValues, int maxIteration, ExecutorService executorService)
Create a Levenberg-Marquardt solver.LevenbergMarquardt(int numberOfThreads)
Create a Levenberg-Marquardt solver.LevenbergMarquardt(List<Number> initialParameters, List<Number> targetValues, int maxIteration, int numberOfThreads)
Create a Levenberg-Marquardt solver.LevenbergMarquardt(List<Number> initialParameters, List<Number> targetValues, int maxIteration, ExecutorService executorService)
Create a Levenberg-Marquardt solver.LevenbergMarquardt(LevenbergMarquardt.RegularizationMethod regularizationMethod, double[] initialParameters, double[] targetValues, int maxIteration, int numberOfThreads)
Create a Levenberg-Marquardt solver.LevenbergMarquardt(LevenbergMarquardt.RegularizationMethod regularizationMethod, double[] initialParameters, double[] targetValues, int maxIteration, ExecutorService executorService)
Create a Levenberg-Marquardt solver.
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description LevenbergMarquardt
clone()
Create a clone of this LevenbergMarquardt optimizer.double[]
getBestFitParameters()
Get the best fit parameter vector.LevenbergMarquardt
getCloneWithModifiedTargetValues(double[] newTargetVaues, double[] newWeights, boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights.LevenbergMarquardt
getCloneWithModifiedTargetValues(List<Number> newTargetVaues, List<Number> newWeights, boolean isUseBestParametersAsInitialParameters)
Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights.int
getIterations()
Get the number of iterations.double
getLambda()
Get the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, that is the \( \lambda \) in \( H + \lambda \diag H \).double
getLambdaDivisor()
Get the divisor applied to lambda (for the next iteration) if the inversion of regularized Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable.double
getLambdaMultiplicator()
Get the multiplicator applied to lambda if the inversion of regularized Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable.double
getMeanSquaredError(double[] value)
double
getRootMeanSquaredError()
static void
main(String[] args)
void
run()
Runs the optimization.void
setDerivatives(double[] parameters, double[][] derivatives)
The derivative of the objective function.LevenbergMarquardt
setErrorTolerance(double errorTolerance)
Set the error tolerance.LevenbergMarquardt
setInitialParameters(double[] initialParameters)
Set the initial parameters for the solver.LevenbergMarquardt
setLambda(double lambda)
Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, that is the \( \lambda \) in \( H + \lambda \diag H \).void
setLambdaDivisor(double lambdaDivisor)
Set the divisor applied to lambda (for the next iteration) if the inversion of regularized Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable.void
setLambdaMultiplicator(double lambdaMultiplicator)
Set the multiplicator applied to lambda if the inversion of regularized Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable.LevenbergMarquardt
setMaxIteration(int maxIteration)
Set the maximum number of iterations to be performed until the solver gives up.LevenbergMarquardt
setParameterSteps(double[] parameterSteps)
Set the parameter step for the solver.LevenbergMarquardt
setTargetValues(double[] targetValues)
Set the target values for the solver.abstract void
setValues(double[] parameters, double[] values)
The objective function.LevenbergMarquardt
setWeights(double[] weights)
Set the weight for the objective function.
-
-
-
Constructor Detail
-
LevenbergMarquardt
public LevenbergMarquardt(LevenbergMarquardt.RegularizationMethod regularizationMethod, double[] initialParameters, double[] targetValues, int maxIteration, ExecutorService executorService)
Create a Levenberg-Marquardt solver.- Parameters:
regularizationMethod
- The regularization method to use. SeeLevenbergMarquardt.RegularizationMethod
.initialParameters
- Initial value for the parameters where the solver starts its search.targetValues
- Target values to achieve.maxIteration
- Maximum number of iterations.executorService
- Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe!
-
LevenbergMarquardt
public LevenbergMarquardt(double[] initialParameters, double[] targetValues, int maxIteration, ExecutorService executorService)
Create a Levenberg-Marquardt solver.- Parameters:
initialParameters
- Initial value for the parameters where the solver starts its search.targetValues
- Target values to achieve.maxIteration
- Maximum number of iterations.executorService
- Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe!
-
LevenbergMarquardt
public LevenbergMarquardt(LevenbergMarquardt.RegularizationMethod regularizationMethod, double[] initialParameters, double[] targetValues, int maxIteration, int numberOfThreads)
Create a Levenberg-Marquardt solver.- Parameters:
regularizationMethod
- The regularization method to use. SeeLevenbergMarquardt.RegularizationMethod
.initialParameters
- Initial value for the parameters where the solver starts its search.targetValues
- Target values to achieve.maxIteration
- Maximum number of iterations.numberOfThreads
- Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe!
-
LevenbergMarquardt
public LevenbergMarquardt(double[] initialParameters, double[] targetValues, int maxIteration, int numberOfThreads)
Create a Levenberg-Marquardt solver.- Parameters:
initialParameters
- Initial value for the parameters where the solver starts its search.targetValues
- Target values to achieve.maxIteration
- Maximum number of iterations.numberOfThreads
- Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe!
-
LevenbergMarquardt
public LevenbergMarquardt(List<Number> initialParameters, List<Number> targetValues, int maxIteration, ExecutorService executorService)
Create a Levenberg-Marquardt solver.- Parameters:
initialParameters
- List of initial values for the parameters where the solver starts its search.targetValues
- List of target values to achieve.maxIteration
- Maximum number of iterations.executorService
- Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe!
-
LevenbergMarquardt
public LevenbergMarquardt(List<Number> initialParameters, List<Number> targetValues, int maxIteration, int numberOfThreads)
Create a Levenberg-Marquardt solver.- Parameters:
initialParameters
- Initial value for the parameters where the solver starts its search.targetValues
- Target values to achieve.maxIteration
- Maximum number of iterations.numberOfThreads
- Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe!
-
LevenbergMarquardt
public LevenbergMarquardt()
Create a Levenberg-Marquardt solver.
-
LevenbergMarquardt
public LevenbergMarquardt(int numberOfThreads)
Create a Levenberg-Marquardt solver.- Parameters:
numberOfThreads
- Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe!
-
-
Method Detail
-
main
public static void main(String[] args) throws SolverException, CloneNotSupportedException
-
setInitialParameters
public LevenbergMarquardt setInitialParameters(double[] initialParameters)
Set the initial parameters for the solver.- Parameters:
initialParameters
- The initial parameters.- Returns:
- A self reference.
-
setParameterSteps
public LevenbergMarquardt setParameterSteps(double[] parameterSteps)
Set the parameter step for the solver. The parameter step is used to evaluate the derivatives via finite differences, if analytic derivatives are not provided.- Parameters:
parameterSteps
- The parameter step.- Returns:
- A self reference.
-
setTargetValues
public LevenbergMarquardt setTargetValues(double[] targetValues)
Set the target values for the solver. The solver will solver the equation weights * objectiveFunction = targetValues.- Parameters:
targetValues
- The target values.- Returns:
- A self reference.
-
setMaxIteration
public LevenbergMarquardt setMaxIteration(int maxIteration)
Set the maximum number of iterations to be performed until the solver gives up.- Parameters:
maxIteration
- The maximum number of iterations.- Returns:
- A self reference.
-
setWeights
public LevenbergMarquardt setWeights(double[] weights)
Set the weight for the objective function.- Parameters:
weights
- The weights for the objective function.- Returns:
- A self reference.
-
setErrorTolerance
public LevenbergMarquardt setErrorTolerance(double errorTolerance)
Set the error tolerance. The solver considers the solution "found" if the error is not improving by this given error tolerance.- Parameters:
errorTolerance
- The error tolerance.- Returns:
- A self reference.
-
getLambda
public double getLambda()
Get the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, that is the \( \lambda \) in \( H + \lambda \diag H \).- Returns:
- the parameter \( \lambda \).
-
setLambda
public LevenbergMarquardt setLambda(double lambda)
Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, that is the \( \lambda \) in \( H + \lambda \diag H \).- Parameters:
lambda
- the lambda to set- Returns:
- Self reference to this optimizer.
-
getLambdaMultiplicator
public double getLambdaMultiplicator()
Get the multiplicator applied to lambda if the inversion of regularized Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable.- Returns:
- the lambdaMultiplicator
-
setLambdaMultiplicator
public void setLambdaMultiplicator(double lambdaMultiplicator)
Set the multiplicator applied to lambda if the inversion of regularized Hessian fails, that is, if \( H + \lambda \diag H \) is not invertable. This will make lambda larger, hence let the stepping move slower.- Parameters:
lambdaMultiplicator
- the lambdaMultiplicator to set. Should be > 1.
-
getLambdaDivisor
public double getLambdaDivisor()
Get the divisor applied to lambda (for the next iteration) if the inversion of regularized Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable.- Returns:
- the lambdaDivisor
-
setLambdaDivisor
public void setLambdaDivisor(double lambdaDivisor)
Set the divisor applied to lambda (for the next iteration) if the inversion of regularized Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. This will make lambda smaller, hence let the stepping move faster.- Parameters:
lambdaDivisor
- the lambdaDivisor to set. Should be > 1.
-
getBestFitParameters
public double[] getBestFitParameters()
Description copied from interface:Optimizer
Get the best fit parameter vector.- Specified by:
getBestFitParameters
in interfaceOptimizer
- Returns:
- The best fit parameter.
-
getRootMeanSquaredError
public double getRootMeanSquaredError()
- Specified by:
getRootMeanSquaredError
in interfaceOptimizer
- Returns:
- the the root mean square error of achieved with the the best fit parameter
-
getIterations
public int getIterations()
Description copied from interface:Optimizer
Get the number of iterations.- Specified by:
getIterations
in interfaceOptimizer
- Returns:
- The number of iterations required
-
setValues
public abstract void setValues(double[] parameters, double[] values) throws SolverException
The objective function. Override this method to implement your custom function.- Parameters:
parameters
- Input value. The parameter vector.values
- Output value. The vector of values f(i,parameters), i=1,...,n- Throws:
SolverException
- Thrown if the valuation fails, specific cause may be available via thecause()
method.
-
setDerivatives
public void setDerivatives(double[] parameters, double[][] derivatives) throws SolverException
The derivative of the objective function. You may override this method if you like to implement your own derivative.- Parameters:
parameters
- Input value. The parameter vector.derivatives
- Output value, where derivatives[i][j] is d(value(j)) / d(parameters(i)- Throws:
SolverException
- Thrown if the valuation fails, specific cause may be available via thecause()
method.
-
run
public void run() throws SolverException
Description copied from interface:Optimizer
Runs the optimization.- Specified by:
run
in interfaceOptimizer
- Throws:
SolverException
- Thrown if the valuation fails, specific cause may be available via thecause()
method.
-
getMeanSquaredError
public double getMeanSquaredError(double[] value)
-
clone
public LevenbergMarquardt clone() throws CloneNotSupportedException
Create a clone of this LevenbergMarquardt optimizer. The clone will use the same objective function than this implementation, i.e., the implementation ofsetValues(double[], double[])
and that ofsetDerivatives(double[], double[][])
is reused.- Overrides:
clone
in classObject
- Throws:
CloneNotSupportedException
-
getCloneWithModifiedTargetValues
public LevenbergMarquardt getCloneWithModifiedTargetValues(double[] newTargetVaues, double[] newWeights, boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException
Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights. The clone will use the same objective function than this implementation, i.e., the implementation ofsetValues(double[], double[])
and that ofsetDerivatives(double[], double[][])
is reused. The initial values of the cloned optimizer will either be the original initial values of this object or the best parameters obtained by this optimizer, the latter is used only if this optimized signals adone()
.- Parameters:
newTargetVaues
- New array of target values.newWeights
- New array of weights.isUseBestParametersAsInitialParameters
- If true and this optimizer is done(), then the clone will use this.getBestFitParameters()
as initial parameters.- Returns:
- A new LevenbergMarquardt optimizer, cloning this one except modified target values and weights.
- Throws:
CloneNotSupportedException
- Thrown if this optimizer cannot be cloned.
-
getCloneWithModifiedTargetValues
public LevenbergMarquardt getCloneWithModifiedTargetValues(List<Number> newTargetVaues, List<Number> newWeights, boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException
Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights. The clone will use the same objective function than this implementation, i.e., the implementation ofsetValues(double[], double[])
and that ofsetDerivatives(double[], double[][])
is reused. The initial values of the cloned optimizer will either be the original initial values of this object or the best parameters obtained by this optimizer, the latter is used only if this optimized signals adone()
.- Parameters:
newTargetVaues
- New list of target values.newWeights
- New list of weights.isUseBestParametersAsInitialParameters
- If true and this optimizer is done(), then the clone will use this.getBestFitParameters()
as initial parameters.- Returns:
- A new LevenbergMarquardt optimizer, cloning this one except modified target values and weights.
- Throws:
CloneNotSupportedException
- Thrown if this optimizer cannot be cloned.
-
-