Configurable
, java.io.Serializable
, CapabilitiesHandler
, Classifier
, MultiClassClassifier
, AWTRenderable
, Learner<Example<Instance>>
, MOAObject
, OptionHandler
public class ADOB extends AbstractClassifier implements MultiClassClassifier
Modifier and Type | Field | Description |
---|---|---|
ClassOption |
baseLearnerOption |
|
protected Classifier[] |
ensemble |
|
IntOption |
ensembleSizeOption |
|
protected int[] |
orderPosition |
|
FlagOption |
pureBoostOption |
|
protected double[] |
scms |
|
protected double[] |
swms |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
config
Constructor | Description |
---|---|
ADOB() |
Modifier and Type | Method | Description |
---|---|---|
protected double |
getEnsembleMemberWeight(int i) |
|
void |
getModelDescription(java.lang.StringBuilder out,
int indent) |
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl() |
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
java.lang.String |
getPurposeString() |
Dictionary with option texts and objects
|
Classifier[] |
getSubClassifiers() |
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(Instance inst) |
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable() |
Gets whether this learner needs a random seed.
|
void |
resetLearningImpl() |
Resets this classifier.
|
void |
trainOnInstanceImpl(Instance inst) |
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, defineImmutableCapabilities, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModel, getModelContext, getModelMeasurements, getNominalValueString, getPredictionForInstance, getPredictionForInstance, getSublearners, getVotesForInstance, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance, trainOnInstance
copy, measureByteSize, measureByteSize, toString
getCLICreationString, getOptions, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
getCapabilities
measureByteSize
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
public ClassOption baseLearnerOption
public IntOption ensembleSizeOption
public FlagOption pureBoostOption
protected Classifier[] ensemble
protected int[] orderPosition
protected double[] scms
protected double[] swms
public java.lang.String getPurposeString()
AbstractOptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingprotected double getEnsembleMemberWeight(int i)
public double[] getVotesForInstance(Instance inst)
Classifier
getVotesForInstance
in interface Classifier
getVotesForInstance
in class AbstractClassifier
inst
- the instance to be classifiedpublic boolean isRandomizable()
Learner
isRandomizable
in interface Learner<Example<Instance>>
public void getModelDescription(java.lang.StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public Classifier[] getSubClassifiers()
Classifier
getSubClassifiers
in interface Classifier
getSubClassifiers
in class AbstractClassifier
Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.