A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 

A

AbruptChangeGenerator - Class in moa.streams.generators.cd
 
AbruptChangeGenerator() - Constructor for class moa.streams.generators.cd.AbruptChangeGenerator
 
absorbCluster(GridCluster) - Method in class moa.clusterers.dstream.GridCluster
 
AbstractAMRules - Class in moa.classifiers.rules
 
AbstractAMRules() - Constructor for class moa.classifiers.rules.AbstractAMRules
 
AbstractAMRules(double) - Constructor for class moa.classifiers.rules.AbstractAMRules
 
AbstractAMRulesFunctionBasicMlLearner - Class in moa.classifiers.rules.multilabel.functions
 
AbstractAMRulesFunctionBasicMlLearner() - Constructor for class moa.classifiers.rules.multilabel.functions.AbstractAMRulesFunctionBasicMlLearner
 
AbstractAnomalyDetector - Class in moa.classifiers.rules.core.anomalydetection
 
AbstractAnomalyDetector() - Constructor for class moa.classifiers.rules.core.anomalydetection.AbstractAnomalyDetector
 
AbstractC - Class in moa.clusterers.outliers.AbstractC
 
AbstractC() - Constructor for class moa.clusterers.outliers.AbstractC.AbstractC
 
AbstractCBase - Class in moa.clusterers.outliers.AbstractC
 
AbstractCBase() - Constructor for class moa.clusterers.outliers.AbstractC.AbstractCBase
 
AbstractChangeDetector - Class in moa.classifiers.core.driftdetection
Abstract Change Detector.
AbstractChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.AbstractChangeDetector
 
AbstractClassifier - Class in moa.classifiers
 
AbstractClassifier() - Constructor for class moa.classifiers.AbstractClassifier
Creates an classifier and setups the random seed option if the classifier is randomizable.
AbstractClassOption - Class in com.github.javacliparser
Abstract class option.
AbstractClassOption - Class in moa.options
Abstract class option.
AbstractClassOption(String, char, String, Class<?>, String) - Constructor for class com.github.javacliparser.AbstractClassOption
Creates a new instance of an abstract option given its class name, command line interface text, its purpose, its class type and its default command line interface text.
AbstractClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.AbstractClassOption
Creates a new instance of an abstract option given its class name, command line interface text, its purpose, its class type and its default command line interface text.
AbstractClassOption(String, char, String, Class<?>, String, String) - Constructor for class com.github.javacliparser.AbstractClassOption
Creates a new instance of an abstract option given its class name, command line interface text, its purpose, its class type, default command line interface text, and its null text.
AbstractClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.AbstractClassOption
Creates a new instance of an abstract option given its class name, command line interface text, its purpose, its class type, default command line interface text, and its null text.
AbstractClusterer - Class in moa.clusterers
 
AbstractClusterer() - Constructor for class moa.clusterers.AbstractClusterer
 
AbstractConceptDriftGenerator - Class in moa.streams.generators.cd
 
AbstractConceptDriftGenerator() - Constructor for class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
AbstractErrorWeightedVote - Class in moa.classifiers.rules.core.voting
AbstractErrorWeightedVote class for weighted votes based on estimates of errors.
AbstractErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
AbstractErrorWeightedVoteMultiLabel - Class in moa.classifiers.rules.multilabel.core.voting
AbstractErrorWeightedVote class for weighted votes based on estimates of errors.
AbstractErrorWeightedVoteMultiLabel() - Constructor for class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
AbstractFeatureRanking - Class in moa.classifiers.rules.featureranking
 
AbstractFeatureRanking() - Constructor for class moa.classifiers.rules.featureranking.AbstractFeatureRanking
 
AbstractGraphAxes - Class in moa.gui.visualization
AbstractGraphAxes is an abstract class offering functionality to draw axes.
AbstractGraphAxes() - Constructor for class moa.gui.visualization.AbstractGraphAxes
Initialises a AbstractGraphAxes by setting the initial values and the layout.
AbstractGraphCanvas - Class in moa.gui.visualization
AbstractGraphCanvas is an abstract class offering scaling functionality and the structure of the underlying Axes and Plot classes.
AbstractGraphCanvas(AbstractGraphAxes, AbstractGraphPlot) - Constructor for class moa.gui.visualization.AbstractGraphCanvas
Initialises an AbstractGraphCanvas by constructing its AbstractGraphAxes, AbstractGraphPlot as well as setting initial sizes.
AbstractGraphPlot - Class in moa.gui.visualization
AbstractGraphPlot is an abstract class defining the structure of a Plot class.
AbstractGraphPlot() - Constructor for class moa.gui.visualization.AbstractGraphPlot
 
AbstractMacroClusterer - Class in moa.clusterers.macro
 
AbstractMacroClusterer() - Constructor for class moa.clusterers.macro.AbstractMacroClusterer
 
AbstractMOAObject - Class in moa
Abstract MOA Object.
AbstractMOAObject() - Constructor for class moa.AbstractMOAObject
 
AbstractMultiLabelErrorMeasurer - Class in moa.classifiers.rules.multilabel.errormeasurers
 
AbstractMultiLabelErrorMeasurer() - Constructor for class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
AbstractMultiLabelLearner - Class in moa.classifiers
 
AbstractMultiLabelLearner() - Constructor for class moa.classifiers.AbstractMultiLabelLearner
 
AbstractMultiLabelStreamFilter - Class in moa.streams.filters
Abstract Stream Filter.
AbstractMultiLabelStreamFilter() - Constructor for class moa.streams.filters.AbstractMultiLabelStreamFilter
 
AbstractMultiTargetErrorMeasurer - Class in moa.classifiers.rules.multilabel.errormeasurers
 
AbstractMultiTargetErrorMeasurer() - Constructor for class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiTargetErrorMeasurer
 
AbstractOption - Class in com.github.javacliparser
Abstract option.
AbstractOption(String, char, String) - Constructor for class com.github.javacliparser.AbstractOption
Creates a new instance of an abstract option given its class name, command line interface text and its purpose.
AbstractOptionHandler - Class in moa.options
Abstract Option Handler.
AbstractOptionHandler() - Constructor for class moa.options.AbstractOptionHandler
 
AbstractRecommenderData - Class in moa.recommender.rc.data
 
AbstractRecommenderData() - Constructor for class moa.recommender.rc.data.AbstractRecommenderData
 
AbstractStreamFilter - Class in moa.streams.filters
Abstract Stream Filter.
AbstractStreamFilter() - Constructor for class moa.streams.filters.AbstractStreamFilter
 
AbstractTabPanel - Class in moa.gui
Abstract Tab Panel.
AbstractTabPanel() - Constructor for class moa.gui.AbstractTabPanel
 
AbstractTask - Class in moa.tasks
Abstract Task.
AbstractTask() - Constructor for class moa.tasks.AbstractTask
 
acc1 - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
acc1 - Variable in class moa.gui.TaskTextViewerPanel
 
acc2 - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
acc2 - Variable in class moa.gui.TaskTextViewerPanel
 
accBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
accept(File) - Method in class moa.gui.FileExtensionFilter
 
acceptsInstances() - Method in class moa.gui.featureanalysis.FeatureImportancePanel
We can accept instances
accLearner - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
accReset - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
accResetBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
accumulatedError - Variable in class moa.classifiers.rules.functions.Perceptron
 
Accuracy - Class in moa.evaluation
 
Accuracy() - Constructor for class moa.evaluation.Accuracy
 
accuracyBaseLearner - Variable in class moa.classifiers.active.ALUncertainty
 
AccuracyUpdatedEnsemble - Class in moa.classifiers.meta
The revised version of the Accuracy Updated Ensemble as proposed by Brzezinski and Stefanowski in "Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm", IEEE Trans.
AccuracyUpdatedEnsemble() - Constructor for class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
AccuracyWeightedEnsemble - Class in moa.classifiers.meta
The Accuracy Weighted Ensemble classifier as proposed by Wang et al.
AccuracyWeightedEnsemble() - Constructor for class moa.classifiers.meta.AccuracyWeightedEnsemble
 
actionPerformed(ActionEvent) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
actionPerformed(ActionEvent) - Method in class moa.gui.experimentertab.TaskTextViewerPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
actionPerformed(ActionEvent) - Method in class moa.gui.TaskTextViewerPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
actionPerformed(ActionEvent) - Method in class moa.gui.visualization.RunVisualizer
 
activateLearningNode(EFDT.InactiveLearningNode, EFDT.SplitNode, int) - Method in class moa.classifiers.trees.EFDT
 
activateLearningNode(HoeffdingOptionTree.InactiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
activateLearningNode(HoeffdingTree.InactiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
activeClassifiersOption - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.EFDT
 
activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingTree
 
activeLeafNodeCount - Variable in class moa.classifiers.trees.EFDT
 
activeLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
activeLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
 
ActiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.EFDT.ActiveLearningNode
 
ActiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
ActiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
activeLearningStrategyOption - Variable in class moa.classifiers.active.ALUncertainty
 
actualClassStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
acuityOption - Variable in class moa.clusterers.CobWeb
 
ADACC - Class in moa.classifiers.meta
Anticipative and Dynamic Adaptation to Concept Changes.
ADACC() - Constructor for class moa.classifiers.meta.ADACC
 
AdaGrad - Class in moa.classifiers.functions
Implements the AdaGrad oneline optimiser for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
AdaGrad() - Constructor for class moa.classifiers.functions.AdaGrad
 
AdaHoeffdingOptionTree - Class in moa.classifiers.trees
Adaptive decision option tree for streaming data with adaptive Naive Bayes classification at leaves.
AdaHoeffdingOptionTree() - Constructor for class moa.classifiers.trees.AdaHoeffdingOptionTree
 
AdaHoeffdingOptionTree.AdaLearningNode - Class in moa.classifiers.trees
 
AdaLearningNode(double[]) - Constructor for class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
AdaLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
AdaptiveLeafNode(Iadem3, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, AbstractChangeDetector, boolean, boolean, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
AdaptiveLeafNodeNB(Iadem3, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, AbstractChangeDetector, boolean, boolean, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNB
 
AdaptiveLeafNodeNBAdaptive(Iadem3, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, boolean, boolean, AbstractChangeDetector, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBAdaptive
 
AdaptiveLeafNodeNBKirkby(Iadem3, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, boolean, boolean, AbstractChangeDetector, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBKirkby
 
AdaptiveLeafNodeWeightedVote(Iadem3, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, boolean, boolean, AbstractChangeDetector, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeWeightedVote
 
AdaptiveMultiTargetRegressor - Class in moa.classifiers.rules.multilabel.functions
Adaptive MultiTarget Regressor uses two learner The first is used in first stage when high error are produced(e.g.
AdaptiveMultiTargetRegressor() - Constructor for class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
AdaptiveNodePredictor - Class in moa.classifiers.rules.functions
 
AdaptiveNodePredictor() - Constructor for class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
AdaptiveNominalVirtualNode(Iadem3, Iadem2.Node, int, boolean, boolean) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveNominalVirtualNode
 
AdaptiveNumericVirtualNode(Iadem3, Iadem2.Node, int, IademNumericAttributeObserver) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
AdaptiveRandomForest - Class in moa.classifiers.meta
Adaptive Random Forest
AdaptiveRandomForest() - Constructor for class moa.classifiers.meta.AdaptiveRandomForest
 
AdaptiveRandomForest.ARFBaseLearner - Class in moa.classifiers.meta
Inner class that represents a single tree member of the forest.
AdaptiveRandomForest.TrainingRunnable - Class in moa.classifiers.meta
Inner class to assist with the multi-thread execution.
AdaptiveRandomForestRegressor - Class in moa.classifiers.meta
Implementation of AdaptiveRandomForestRegressor, an extension of AdaptiveRandomForest for classification.
AdaptiveRandomForestRegressor() - Constructor for class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner - Class in moa.classifiers.meta
 
AdaptiveSplitNode(Iadem3, Iadem2.Node, Iadem2.Node[], double[], InstanceConditionalTest, AbstractChangeDetector, Iadem3.AdaptiveLeafNode, int) - Constructor for class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
AdaSplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
AdaSplitNode(InstanceConditionalTest, double[], int) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
add(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
add(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Block
 
add(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
add(double) - Method in class moa.evaluation.AdwinClassificationPerformanceEvaluator.AdwinEstimator
 
add(double) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
add(double) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator.BasicEstimator
 
add(double) - Method in interface moa.evaluation.BasicClassificationPerformanceEvaluator.Estimator
 
add(double) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator.EWMAEstimator
 
add(double) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator
 
add(double) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
add(double) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
add(double) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
add(double) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
add(double) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
add(double, boolean) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
add(double, boolean, boolean) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
add(double, boolean, boolean) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
add(int) - Method in class moa.streams.filters.Selection
 
add(int, double[], double) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Adds a point to the ClusteringFeature.
add(int, int) - Method in class moa.streams.filters.Selection
 
add(int, T) - Method in class moa.core.AutoExpandVector
 
add(Instance) - Method in class com.yahoo.labs.samoa.instances.Instances
Adds the.
add(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Adds and indexes a data object.
add(E) - Method in class moa.core.FixedLengthList
Calls super.add(entry) to append the entry to the end of the FixedLengthList.
add(CFCluster) - Method in class moa.cluster.CFCluster
 
add(CFCluster) - Method in class moa.clusterers.clustream.ClustreamKernel
 
add(Cluster) - Method in class moa.cluster.Clustering
add a cluster to the clustering
add(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
Adds the given cluster to this cluster, without making this cluster older.
add(Entry) - Method in class moa.clusterers.clustree.Entry
Add the data cluster of another entry to the data cluster of this entry.
add(T) - Method in class moa.core.AutoExpandVector
 
addAll(int, Collection<? extends T>) - Method in class moa.core.AutoExpandVector
 
addAll(Collection<? extends E>) - Method in class moa.core.FixedLengthList
Appends all of the elements in the argument collection in the order that they are returned by the collection's iterator.
addAll(Collection<? extends T>) - Method in class moa.core.AutoExpandVector
 
addAt(int, double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Block
 
addAt(int, double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
addBlockToHead(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
addBlockToTail(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
addButtonActionListener(ActionListener) - Method in class moa.gui.clustertab.ClusteringSetupTab
 
addButtonActionListener(ActionListener) - Method in class moa.gui.outliertab.OutlierSetupTab
 
addCapabilities(Collection<Capability>) - Method in class moa.capabilities.Capabilities
Augments this capabilities object with the given capabilities.
addCapabilities(Collection<Capability>) - Method in class moa.capabilities.ImmutableCapabilities
 
addCapabilities(Capabilities) - Method in class moa.capabilities.Capabilities
Augments this capabilities object with the given capabilities.
addCapabilities(Capabilities) - Method in class moa.capabilities.ImmutableCapabilities
 
addCapabilities(Capability...) - Method in class moa.capabilities.Capabilities
Augments this capabilities object with the given capabilities.
addCapabilities(Capability...) - Method in class moa.capabilities.ImmutableCapabilities
 
addCapability(Capability) - Method in class moa.capabilities.Capabilities
Augments this capabilities object with the given capability.
addCapability(Capability) - Method in class moa.capabilities.ImmutableCapabilities
 
addChangeListener(ChangeListener) - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
Adds the listener to the internal set of listeners.
addChangeListener(ChangeListener) - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
Adds the listener to the internal set of listeners.
addChild(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
addChild(ClusteringTreeNode) - Method in class moa.clusterers.kmeanspm.ClusteringTreeHeadNode
 
addChild(ClusteringTreeNode) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Adds a child node.
addClusterChangeListener(ClusterEventListener) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
Add a listener
addCode() - Method in class moa.tasks.ipynb.NotebookBuilder
 
addedPermanent - Variable in class moa.classifiers.meta.ADACC
Number of added snapshots
addElement(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEED
 
addElement(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
addElement(E) - Method in class moa.core.FastVector
Adds an element to this vector.
addEmptyValue(int) - Method in class moa.evaluation.MeasureCollection
 
addEntry(Entry, long) - Method in class moa.clusterers.clustree.Node
Add a new Entry to this node.
addEventType(String) - Method in class moa.evaluation.MeasureCollection
 
addGrid(DensityGrid) - Method in class moa.clusterers.dstream.GridCluster
 
addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Adds one instance to KDTree loosly.
addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Adds the given instance info.
addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Adds information from the given instance without modifying the datastructure a lot.
addInstanceToTree(Instance, KDTreeNode) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Recursively adds an instance to the tree starting from the supplied KDTreeNode.
addItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
addItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
addItem(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.data.RecommenderData
 
additionalPlotOption - Variable in class moa.tasks.Plot
Additional plot options.
additionalSetOption - Variable in class moa.tasks.Plot
Addition pre-plot gunplot commands.
addLiteralAttribute(int) - Method in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking.RuleInformation
 
addMarkdown() - Method in class moa.tasks.ipynb.NotebookBuilder
 
addMeasurementName(String) - Method in class moa.evaluation.preview.LearningCurve
 
addMerit(int, double) - Method in class moa.classifiers.rules.featureranking.BasicFeatureRanking.RuleInformation
 
AddNode(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
AddNoiseFilter - Class in moa.streams.filters
Filter for adding random noise to examples in a stream.
AddNoiseFilter() - Constructor for class moa.streams.filters.AddNoiseFilter
 
addNoiseOption - Variable in class moa.streams.generators.WaveformGenerator
 
addNumLiterals() - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking.RuleInformation
 
addObject(DataObject) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Adds a DataObject to the set.
addObject(DataSet) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Adds all objects in the given data set
addObservation(double, double) - Method in class moa.core.GaussianEstimator
 
addObservations(GaussianEstimator) - Method in class moa.core.GaussianEstimator
 
addObserver(ObserverMOAObject) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
addObserver(ObserverMOAObject) - Method in class moa.classifiers.rules.multilabel.core.ObservableMOAObject
 
addOldLabel(double) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
addOption(Option) - Method in class com.github.javacliparser.Options
 
AddOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
AddPrecNeigh(Long) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
AddPrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
AddPrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
addPrediction(double[], Instance) - Method in class moa.classifiers.rules.errormeasurers.ErrorMeasurement
 
addPrediction(double[], Instance) - Method in class moa.classifiers.rules.errormeasurers.MeanAbsoluteDeviation
 
addPrediction(double[], Instance) - Method in class moa.classifiers.rules.errormeasurers.RootMeanSquaredError
 
addPrediction(Prediction, MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
addPrediction(Prediction, MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiTargetErrorMeasurer
 
addPrediction(Prediction, MultiLabelInstance) - Method in interface moa.classifiers.rules.multilabel.errormeasurers.MultiLabelErrorMeasurer
 
addPrediction(Prediction, Prediction) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
addPrediction(Prediction, Prediction) - Method in interface moa.classifiers.rules.multilabel.errormeasurers.MultiLabelErrorMeasurer
 
addPrediction(Prediction, Prediction, double) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
addPrediction(Prediction, Prediction, double) - Method in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
addPrediction(Prediction, Prediction, double) - Method in interface moa.classifiers.rules.multilabel.errormeasurers.MultiLabelErrorMeasurer
 
addPrediction(Prediction, Prediction, double) - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
addPrediction(Prediction, Prediction, double) - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
addPrediction(Prediction, Prediction, double) - Method in class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
addPropertyChangeListener(PropertyChangeListener) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Adds a PropertyChangeListener who will be notified of value changes.
addRaw() - Method in class moa.tasks.ipynb.NotebookBuilder
 
addResult(E, double[]) - Method in interface moa.evaluation.LearningPerformanceEvaluator
Adds a learning result to this evaluator.
addResult(E, Prediction) - Method in interface moa.evaluation.LearningPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
addResult(Example<Instance>, double[]) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
addResult(Example<Instance>, Prediction) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
addSource(String) - Method in class moa.tasks.ipynb.NotebookCellBuilder
Appends a line of source to cell on a new separate line.
addSparseValues(int[], double[], int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Adds the sparse values.
addSparseValues(int[], double[], int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Adds the sparse values.
addSubtree(Iadem3Subtree) - Method in class moa.classifiers.trees.iadem.Iadem3
 
addSubtree(Iadem3Subtree) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
addTaskCompletionListener(TaskCompletionListener) - Method in class moa.gui.experimentertab.ExpTaskThread
 
addTaskCompletionListener(TaskCompletionListener) - Method in class moa.tasks.TaskThread
 
addText(String) - Method in class moa.gui.TextViewerPanel
 
addTimePerObject(double) - Method in class moa.evaluation.OutlierPerformance
 
addToClustering(Clustering) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Adds all ClusterFeatures of the tree with this node as the root to a Clustering.
addToClusteringCenters(List<double[]>) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Adds all clustering centers of the ClusterFeatures of the tree with this node as the root to a List of points.
addToSplitAttempts(int) - Method in class moa.classifiers.trees.EFDT.Node
 
addToStored(Classifier, double) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Adds a classifier to the storage.
addToStored(Classifier, double) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Adds a classifier to the storage.
addToStored(OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory, double) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Adds a classifier to the storage.
addToValue(int, double) - Method in class moa.core.DoubleVector
 
addToValue(int, float) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
addToValues(double) - Method in class moa.core.DoubleVector
 
addToValues(float) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
addTransaction(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
addUndeclaredValuesOption - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
addUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
addUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
addUser(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.data.RecommenderData
 
addValue(double, int, double) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
addValue(double, int, double) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
addValue(double, int, double) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
addValue(double, int, double) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
addValue(int, double) - Method in class moa.evaluation.MeasureCollection
 
addValue(String, double) - Method in class moa.evaluation.MeasureCollection
 
addValues(double[]) - Method in class moa.core.DoubleVector
 
addValues(float[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
addValues(SingleVector) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
addValues(DoubleVector) - Method in class moa.core.DoubleVector
 
addVectors(double[], double[]) - Static method in class moa.cluster.CFCluster
Adds the second array to the first array element by element.
addVote(double[], double) - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
addVote(double[], double) - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Adds a vote and the corresponding error for the computation of the weighted vote and respective weighted error.
addVote(Prediction, double[]) - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
addVote(Prediction, double[]) - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Adds a vote and the corresponding error for the computation of the weighted vote and respective weighted error.
ADError - Variable in class moa.classifiers.meta.LeveragingBag
 
ADError - Variable in class moa.classifiers.meta.LimAttClassifier
 
ADError - Variable in class moa.classifiers.meta.OzaBagAdwin
 
ADError - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
adjustAlgorithm(boolean, boolean, int) - Method in class moa.clusterers.meta.Algorithm
 
adjustEnsembleSize(int) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
adjustEnsembleSize(int) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
adjustEnsembleSize(int) - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
adjustEnsembleSize(int) - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
adjustEnsembleSize(int) - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
adjustEnsembleSize(int) - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
adjustParameters() - Method in class moa.clusterers.AbstractClusterer
 
adjustParameters() - Method in class moa.clusterers.clustream.WithKmeans
 
adjustParameters() - Method in class moa.clusterers.clustree.ClusTree
 
adjustParameters() - Method in class moa.clusterers.denstream.WithDBSCAN
 
adjustParameters() - Method in class moa.clusterers.dstream.Dstream
 
ADOB - Class in moa.classifiers.meta
Adaptable Diversity-based Online Boosting (ADOB) is a modified version of the online boosting, as proposed by Oza and Russell, which is aimed at speeding up the experts recovery after concept drifts.
ADOB() - Constructor for class moa.classifiers.meta.ADOB
 
adwin - Variable in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
adwin - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
adwin - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
adwin - Variable in class moa.evaluation.AdwinClassificationPerformanceEvaluator.AdwinEstimator
 
ADWIN - Class in moa.classifiers.core.driftdetection
ADaptive sliding WINdow method.
ADWIN() - Constructor for class moa.classifiers.core.driftdetection.ADWIN
 
ADWIN(double) - Constructor for class moa.classifiers.core.driftdetection.ADWIN
 
ADWIN(int) - Constructor for class moa.classifiers.core.driftdetection.ADWIN
 
ADWINChangeDetector - Class in moa.classifiers.core.driftdetection
Drift detection method based in ADWIN.
ADWINChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
AdwinClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using an adaptive sliding window.
AdwinClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.AdwinClassificationPerformanceEvaluator
 
AdwinClassificationPerformanceEvaluator.AdwinEstimator - Class in moa.evaluation
 
adwinDriftDetector - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
adwinEnsemble - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
adwinEnsemble - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
adwinEnsemble - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
adwinEnsemble - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
adwinEnsemble - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
adwinEnsemble - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
AdwinEstimator() - Constructor for class moa.evaluation.AdwinClassificationPerformanceEvaluator.AdwinEstimator
 
adwinReplaceWorstClassifierOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
afterAddInstance(KDTreeNode) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Corrects the start and end indices of a KDTreeNode after an instance is added to the tree.
aggregate(ClusKernel, long, double) - Method in class moa.clusterers.clustree.ClusKernel
Make this cluster older bei weighting it and add to this cluster the given cluster.
aggregateCluster(ClusKernel, long, double) - Method in class moa.clusterers.clustree.Entry
Aggregate the given Kernel to the data cluster of this entry.
aggregateEntry(Entry, long, double) - Method in class moa.clusterers.clustree.Entry
Aggregate the data in the Kernel of the other Entry.
aggregateToBuffer(ClusKernel, long, double) - Method in class moa.clusterers.clustree.Entry
Aggregate the given Kernel to the buffer cluster of this entry.
AgrawalGenerator - Class in moa.streams.generators
Stream generator for Agrawal dataset.
AgrawalGenerator() - Constructor for class moa.streams.generators.AgrawalGenerator
 
AgrawalGenerator.ClassFunction - Interface in moa.streams.generators
 
ALClassificationPerformanceEvaluator - Interface in moa.evaluation
Active Learning Evaluator Interface to make AL Evaluators selectable in AL tasks.
ALClassifier - Interface in moa.classifiers.active
Active Learning Classifier Interface to make AL Classifiers selectable in AL tasks.
algName - Variable in class moa.gui.experimentertab.statisticaltests.RankPerAlgorithm
 
algName1 - Variable in class moa.gui.experimentertab.statisticaltests.PValuePerTwoAlgorithm
 
algName2 - Variable in class moa.gui.experimentertab.statisticaltests.PValuePerTwoAlgorithm
 
algNames - Variable in class moa.gui.experimentertab.SummaryTable
 
algorithm - Variable in class moa.clusterers.meta.Algorithm
 
algorithm - Variable in class moa.gui.experimentertab.Stream
The list of algorithms within of the stream
Algorithm - Class in moa.clusterers.meta
 
Algorithm - Class in moa.gui.experimentertab
This class calculates the different measures for each algorithm
Algorithm(String, List<Measure>, BufferedReader, String) - Constructor for class moa.gui.experimentertab.Algorithm
Algorithm constructor
Algorithm(AlgorithmConfiguration) - Constructor for class moa.clusterers.meta.Algorithm
 
Algorithm(Algorithm, double, double, boolean, boolean, int) - Constructor for class moa.clusterers.meta.Algorithm
 
algorithmImplementation - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
algorithmImplementationOption - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
algoritmModel - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
allAttUsed - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
ALMainTask - Class in moa.tasks.meta
This class provides a superclass for Active Learning tasks, which enables convenient searching for those tasks for example when showing a list of available Active Learning tasks.
ALMainTask() - Constructor for class moa.tasks.meta.ALMainTask
 
ALMeasureCollection - Class in moa.evaluation
Collection of measures used to evaluate AL tasks.
ALMeasureCollection() - Constructor for class moa.evaluation.ALMeasureCollection
 
ALMultiParamTask - Class in moa.tasks.meta
This task individually evaluates an active learning classifier for each element of a set of parameter values.
ALMultiParamTask() - Constructor for class moa.tasks.meta.ALMultiParamTask
Default constructor which sets up the refresh mechanism between the learner and the variedParamName option.
ALMultiParamTask(Color[]) - Constructor for class moa.tasks.meta.ALMultiParamTask
Constructor that sets the color coding for the subtasks additionally to the default constructor.
ALPartitionEvaluationTask - Class in moa.tasks.meta
This task extensively evaluates an active learning classifier on a stream.
ALPartitionEvaluationTask() - Constructor for class moa.tasks.meta.ALPartitionEvaluationTask
 
alpha - Variable in class moa.classifiers.meta.OCBoost
 
alpha - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
alpha - Variable in class moa.classifiers.meta.OzaBagASHT
 
alpha - Variable in class moa.classifiers.rules.core.Rule.Builder
 
alpha - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
alpha - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
alpha - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
alpha - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator.EWMAEstimator
 
alpha - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator
 
alpha(double) - Method in class moa.classifiers.rules.core.Rule.Builder
 
alphaDriftOption - Variable in class moa.classifiers.core.driftdetection.STEPD
 
alphainc - Variable in class moa.classifiers.meta.OCBoost
 
alphaOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
alphaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
alphaOption - Variable in class moa.classifiers.meta.HeterogeneousEnsembleBlastFadingFactors
 
alphaOption - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
alphaOption - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
alphaOption - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
alphaOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
alphaOption - Variable in class moa.streams.ConceptDriftRealStream
 
alphaOption - Variable in class moa.streams.ConceptDriftStream
 
alphaOption - Variable in class moa.tasks.EvaluatePrequential
 
alphaOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
alphaOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
alphaOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
alphaOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
alphaOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
alphaSEEDOption - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
alphaWarningOption - Variable in class moa.classifiers.core.driftdetection.STEPD
 
ALPrequentialEvaluationTask - Class in moa.tasks.meta
This task performs prequential evaluation for an active learning classifier (testing, then training with each example in sequence).
ALPrequentialEvaluationTask() - Constructor for class moa.tasks.meta.ALPrequentialEvaluationTask
Constructor which sets the color coding to black.
ALPrequentialEvaluationTask(Color) - Constructor for class moa.tasks.meta.ALPrequentialEvaluationTask
Constructor with which a color coding can be set.
ALPreviewPanel - Class in moa.gui.active
ALPreviewPanel provides a graphical interface to display the latest preview of a task thread.
ALPreviewPanel() - Constructor for class moa.gui.active.ALPreviewPanel
Initialises the underlying ALTaskTextViewerPanel and the refresh components.
ALRandom - Class in moa.classifiers.active
 
ALRandom() - Constructor for class moa.classifiers.active.ALRandom
 
alreadyUsed - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
alreadyUsed - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
ALTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
ALTabPanel() - Constructor for class moa.gui.ALTabPanel
 
ALTaskManagerPanel - Class in moa.gui.active
This panel displays the running tasks for active learning experiments.
ALTaskManagerPanel() - Constructor for class moa.gui.active.ALTaskManagerPanel
 
ALTaskManagerPanel.ProgressCellRenderer - Class in moa.gui.active
 
ALTaskManagerPanel.TaskColorCodingCellRenderer - Class in moa.gui.active
 
ALTaskManagerPanel.TaskTableModel - Class in moa.gui.active
 
ALTaskTextViewerPanel - Class in moa.gui.active
This panel displays text.
ALTaskTextViewerPanel() - Constructor for class moa.gui.active.ALTaskTextViewerPanel
 
ALTaskThread - Class in moa.tasks.meta
Task Thread for ALMainTask which supports pausing/resuming and cancelling of child threads
ALTaskThread(Task) - Constructor for class moa.tasks.meta.ALTaskThread
 
ALTaskThread(Task, ObjectRepository) - Constructor for class moa.tasks.meta.ALTaskThread
 
altAttClassObserver - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
altClassDist - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
alternateTree - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
alternateTree - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
alternateTree - Variable in class moa.classifiers.trees.FIMTDD.Node
 
alternateTree - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
alternateTreeFadingFactorOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
alternateTreeFadingFactorOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
alternateTreeFadingFactorOption - Variable in class moa.classifiers.trees.FIMTDD
 
alternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
alternateTreeTimeOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
alternateTreeTimeOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
alternateTreeTimeOption - Variable in class moa.classifiers.trees.FIMTDD
 
alternateTreeTMinOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
alternateTreeTMinOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
alternateTreeTMinOption - Variable in class moa.classifiers.trees.FIMTDD
 
alternativeTree - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
ALUncertainty - Class in moa.classifiers.active
Active learning setting for evolving data streams.
ALUncertainty() - Constructor for class moa.classifiers.active.ALUncertainty
 
ALWAYS_SEND_INSTANCES_TO_ALL - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
ALWAYS_SEND_INSTANCES_TO_ALL_KEY - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
ALWindowClassificationPerformanceEvaluator - Class in moa.evaluation
Active Learning Wrapper for BasicClassificationPerformanceEvaluator.
ALWindowClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.ALWindowClassificationPerformanceEvaluator
 
amountValues - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
amRules - Variable in class moa.classifiers.rules.core.Rule
 
amRules - Variable in class moa.classifiers.rules.core.Rule.Builder
 
amRules - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
amRules(AbstractAMRules) - Method in class moa.classifiers.rules.core.Rule.Builder
 
AMRulesClassifierFunction - Interface in moa.classifiers.rules.functions
 
AMRulesFunction - Interface in moa.classifiers.rules.multilabel.functions
 
AMRulesLearner - Interface in moa.classifiers.rules.functions
 
AMRulesMultiLabelClassifier - Class in moa.classifiers.rules.multilabel
Method for online multi-Label classification.
AMRulesMultiLabelClassifier() - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiLabelClassifier
 
AMRulesMultiLabelLearner - Class in moa.classifiers.rules.multilabel
Adaptive Model Rules for MultiLabel problems (AMRulesML), the streaming rule learning algorithm.
AMRulesMultiLabelLearner() - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
AMRulesMultiLabelLearner(double) - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
AMRulesMultiLabelLearnerSemiSuper - Class in moa.classifiers.rules.multilabel
Semi-supervised method for online multi-target regression.
AMRulesMultiLabelLearnerSemiSuper() - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
AMRulesMultiLabelLearnerSemiSuper(double) - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
AMRulesMultiTargetRegressor - Class in moa.classifiers.rules.multilabel
AMRules Algorithm for multitarget splitCriterionOption- Split criterion used to assess the merit of a split weightedVoteOption - Weighted vote type learnerOption - Learner selection errorMeasurerOption - Measure of error for deciding which learner should predict changeDetector - Change selection João Duarte, João Gama, Albert Bifet, Adaptive Model Rules From High-Speed Data Streams.
AMRulesMultiTargetRegressor() - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressor
 
AMRulesMultiTargetRegressor(double) - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressor
 
AMRulesMultiTargetRegressorSemiSuper - Class in moa.classifiers.rules.multilabel
 
AMRulesMultiTargetRegressorSemiSuper() - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressorSemiSuper
 
AMRulesMultiTargetRegressorSemiSuper(double) - Constructor for class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressorSemiSuper
 
AMRulesRegressor - Class in moa.classifiers.rules
 
AMRulesRegressor() - Constructor for class moa.classifiers.rules.AMRulesRegressor
 
AMRulesRegressorFunction - Interface in moa.classifiers.rules.functions
 
AMRulesRegressorOld - Class in moa.classifiers.rules
 
AMRulesRegressorOld() - Constructor for class moa.classifiers.rules.AMRulesRegressorOld
 
AMRulesSplitCriterion - Interface in moa.classifiers.rules.core.splitcriteria
 
AnadirtoFichero(String, String) - Static method in class moa.gui.experimentertab.statisticaltests.Fichero
 
analizeTab - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
AnalyzeTab - Class in moa.gui.experimentertab
In this class are compared online learning algorithms on multiple datasets by performing appropriate statistical tests.
AnalyzeTab() - Constructor for class moa.gui.experimentertab.AnalyzeTab
Creates new form Analize
AnomalinessRatioScore - Class in moa.classifiers.rules.core.anomalydetection
Score for anomaly detection percentageAnomalousAttributesOption - Percentage of anomalous attributes.
AnomalinessRatioScore() - Constructor for class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
anomalyDetectionOption - Variable in class moa.classifiers.rules.RuleClassifier
 
anomalyDetector - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
anomalyDetector - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
anomalyDetector - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
AnomalyDetector - Interface in moa.classifiers.rules.core.anomalydetection
Anomaly Detector interface to implement methods that detects change.
anomalyDetector2 - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
anomalyNumInstThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
anomalyNumInstThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
anomalyProbabilityThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
anomalyScore - Variable in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
anomalyScore - Variable in class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
anomalyScore - Variable in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
anomalyThresholdOption - Variable in class moa.classifiers.oneclass.HSTrees
 
AnyOut - Class in moa.clusterers.outliers.AnyOut
 
AnyOut() - Constructor for class moa.clusterers.outliers.AnyOut.AnyOut
 
AnyOutCore - Class in moa.clusterers.outliers.AnyOut
 
AnyOutCore() - Constructor for class moa.clusterers.outliers.AnyOut.AnyOutCore
 
appendIndent(StringBuilder, int) - Static method in class com.github.javacliparser.StringUtils
 
appendIndent(StringBuilder, int) - Static method in class moa.core.StringUtils
 
appendIndented(StringBuilder, int, String) - Static method in class com.github.javacliparser.StringUtils
 
appendIndented(StringBuilder, int, String) - Static method in class moa.core.StringUtils
 
appendNewline(StringBuilder) - Static method in class com.github.javacliparser.StringUtils
 
appendNewline(StringBuilder) - Static method in class moa.core.StringUtils
 
appendNewlineIndented(StringBuilder, int, String) - Static method in class com.github.javacliparser.StringUtils
 
appendNewlineIndented(StringBuilder, int, String) - Static method in class moa.core.StringUtils
 
applyChanges() - Method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
applyChanges() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
applyChanges() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
applyDrawDecay(float) - Method in class moa.gui.visualization.StreamPanel
 
applyDrawDecay(float, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
applyFilter(Filter) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Passes the dataset through the filter that has been configured for use.
applyState() - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
 
applyState() - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
applyState() - Method in class com.github.javacliparser.gui.FileOptionEditComponent
 
applyState() - Method in class com.github.javacliparser.gui.FlagOptionEditComponent
 
applyState() - Method in class com.github.javacliparser.gui.FloatOptionEditComponent
 
applyState() - Method in class com.github.javacliparser.gui.IntOptionEditComponent
 
applyState() - Method in class com.github.javacliparser.gui.MultiChoiceOptionEditComponent
 
applyState() - Method in interface com.github.javacliparser.gui.OptionEditComponent
This method applies the state
applyState() - Method in class com.github.javacliparser.gui.StringOptionEditComponent
 
applyState() - Method in class moa.gui.WEKAClassOptionEditComponent
 
ApplyToCanvas(BufferedImage) - Method in class moa.gui.visualization.StreamOutlierPanel
 
ApproxSTORM - Class in moa.clusterers.outliers.Angiulli
 
ApproxSTORM() - Constructor for class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
ApproxSTORM.ISBNodeAppr - Class in moa.clusterers.outliers.Angiulli
 
ARFBaseLearner(int, ARFHoeffdingTree, BasicClassificationPerformanceEvaluator, long, boolean, boolean, ClassOption, ClassOption, boolean) - Constructor for class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
arff - Variable in class com.yahoo.labs.samoa.instances.Instances
The arff.
ARFF_ATTRIBUTE - Static variable in class com.yahoo.labs.samoa.instances.Attribute
The keyword used to denote the start of an arff attribute declaration
ARFF_ATTRIBUTE_DATE - Static variable in class com.yahoo.labs.samoa.instances.Attribute
The keyword used to denote a date attribute
ARFF_ATTRIBUTE_INTEGER - Static variable in class com.yahoo.labs.samoa.instances.Attribute
A keyword used to denote a numeric attribute
ARFF_ATTRIBUTE_NUMERIC - Static variable in class com.yahoo.labs.samoa.instances.Attribute
A keyword used to denote a numeric attribute
ARFF_ATTRIBUTE_REAL - Static variable in class com.yahoo.labs.samoa.instances.Attribute
A keyword used to denote a numeric attribute
ARFF_ATTRIBUTE_RELATIONAL - Static variable in class com.yahoo.labs.samoa.instances.Attribute
The keyword used to denote a relation-valued attribute
ARFF_ATTRIBUTE_STRING - Static variable in class com.yahoo.labs.samoa.instances.Attribute
The keyword used to denote a string attribute
ARFF_DATA - Static variable in class com.yahoo.labs.samoa.instances.Instances
The keyword used to denote the start of the arff data section
ARFF_END_SUBRELATION - Static variable in class com.yahoo.labs.samoa.instances.Attribute
The keyword used to denote the end of the declaration of a subrelation
ARFF_RELATION - Static variable in class com.yahoo.labs.samoa.instances.Instances
The keyword used to denote the start of an arff header
arffFileOption - Variable in class moa.streams.ArffFileStream
 
arffFileOption - Variable in class moa.streams.clustering.FileStream
 
arffFileOption - Variable in class moa.streams.MultiTargetArffFileStream
 
arffFileOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
arffFileOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
ArffFileStream - Class in moa.streams
Stream reader of ARFF files.
ArffFileStream() - Constructor for class moa.streams.ArffFileStream
 
ArffFileStream(String, int) - Constructor for class moa.streams.ArffFileStream
 
ARFFIMTDD - Class in moa.classifiers.trees
Implementation of ARFFIMTDD, an extension of FIMTDD to be used by AdaptiveRandomForestRegressor.
ARFFIMTDD() - Constructor for class moa.classifiers.trees.ARFFIMTDD
 
ARFFIMTDD.FIMTDDPerceptron - Class in moa.classifiers.trees
 
ARFFIMTDD.InnerNode - Class in moa.classifiers.trees
 
ARFFIMTDD.LeafNode - Class in moa.classifiers.trees
 
ARFFIMTDD.Node - Class in moa.classifiers.trees
 
ARFFIMTDD.SplitNode - Class in moa.classifiers.trees
 
ARFFIMTDDBaseLearner(int, ARFFIMTDD, BasicRegressionPerformanceEvaluator, long, boolean, boolean, ClassOption, ClassOption, boolean) - Constructor for class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
ArffLoader - Class in com.yahoo.labs.samoa.instances
The Class ArffLoader.
ArffLoader(Reader) - Constructor for class com.yahoo.labs.samoa.instances.ArffLoader
Instantiates a new arff loader.
ArffLoader(Reader, int, int) - Constructor for class com.yahoo.labs.samoa.instances.ArffLoader
Instantiates a new arff loader.
ArffLoader(Reader, Range) - Constructor for class com.yahoo.labs.samoa.instances.ArffLoader
Instantiates a new arff loader.
ARFHoeffdingTree - Class in moa.classifiers.trees
Adaptive Random Forest Hoeffding Tree.
ARFHoeffdingTree() - Constructor for class moa.classifiers.trees.ARFHoeffdingTree
 
ARFHoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
ARFHoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
ARFHoeffdingTree.RandomLearningNode - Class in moa.classifiers.trees
 
array - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
array - Variable in class moa.core.DoubleVector
 
arrayToString(Object) - Static method in class moa.core.Utils
Returns the given Array in a string representation.
ASHoeffdingTree - Class in moa.classifiers.trees
Adaptive Size Hoeffding Tree used in Bagging using trees of different size.
ASHoeffdingTree() - Constructor for class moa.classifiers.trees.ASHoeffdingTree
 
AssetNegotiationGenerator - Class in moa.streams.generators
 
AssetNegotiationGenerator() - Constructor for class moa.streams.generators.AssetNegotiationGenerator
 
AssetNegotiationGenerator.ClassFunction - Interface in moa.streams.generators
 
assignSubToCenters(KDTreeNode, Instances, int[], int[]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Assigns instances of this node to center.
attachUpdatable(Updatable) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
attachUpdatable(Updatable) - Method in interface moa.recommender.rc.data.RecommenderData
 
attemptInstallJavaLookAndFeel(String) - Static method in class moa.gui.LookAndFeel
Attempts to install the specified Look'n'Feel, but falls back on cross-platform look if it fails.
attemptInstallJideLookAndFeel(int) - Static method in class moa.gui.LookAndFeel
Attempts to install the specifoed JIDE style, but falls back on cross-platform Java Look'n'Feel and JIDE style LookAndFeelFactory.VSNET_STYLE_WITHOUT_MENU if it fails.
attemptToSplit(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
attemptToSplit(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
attemptToSplit(ISOUPTree.LeafNode, ISOUPTree.SplitNode, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
attemptToSplit(ARFFIMTDD.LeafNode, ARFFIMTDD.Node, int) - Method in class moa.classifiers.trees.ARFFIMTDD
 
attemptToSplit(EFDT.ActiveLearningNode, EFDT.SplitNode, int) - Method in class moa.classifiers.trees.EFDT
 
attemptToSplit(FIMTDD.LeafNode, FIMTDD.Node, int) - Method in class moa.classifiers.trees.FIMTDD
 
attemptToSplit(FIMTDD.LeafNode, FIMTDD.Node, int) - Method in class moa.classifiers.trees.ORTO
 
attemptToSplit(HoeffdingOptionTree.ActiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves
 
attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves
 
attIndex - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
attIndex - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
attIndex - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
attIndex - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
attIndex - Variable in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
attNoiseFractionOption - Variable in class moa.streams.filters.AddNoiseFilter
 
attribute(int) - Method in class com.yahoo.labs.samoa.instances.AttributesInformation
Attribute.
attribute(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Attribute.
attribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Attribute.
attribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
attribute(int) - Method in class com.yahoo.labs.samoa.instances.Instances
Attribute.
attribute(String) - Method in class com.yahoo.labs.samoa.instances.Instances
 
Attribute - Class in com.yahoo.labs.samoa.instances
The Class Attribute.
Attribute() - Constructor for class com.yahoo.labs.samoa.instances.Attribute
Instantiates a new attribute.
Attribute(String) - Constructor for class com.yahoo.labs.samoa.instances.Attribute
Instantiates a new attribute.
Attribute(String, String) - Constructor for class com.yahoo.labs.samoa.instances.Attribute
Instantiates a new attribute.
Attribute(String, List<String>) - Constructor for class com.yahoo.labs.samoa.instances.Attribute
Instantiates a new attribute.
AttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
Interface for observing the class data distribution for an attribute.
attributeDiferentiation - Variable in class moa.classifiers.trees.iadem.Iadem2
 
AttributeExpansionSuggestion - Class in moa.classifiers.rules.multilabel.core
Class for computing attribute split suggestions given a split test.
AttributeExpansionSuggestion(Predicate, DoubleVector[][], double) - Constructor for class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
attributeImportance - Variable in class moa.classifiers.rules.featureranking.BasicFeatureRanking
 
attributeImportance - Variable in class moa.classifiers.rules.featureranking.MeritFeatureRanking
 
attributeImportance - Variable in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking
 
attributeIndicesTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns the tip text for this property.
attributeMissingValues - Variable in class moa.classifiers.rules.RuleClassification
 
attributeObservers - Variable in class moa.classifiers.bayes.NaiveBayes
 
attributeObservers - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
attributeObservers - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
attributeObservers - Variable in class moa.classifiers.rules.RuleClassifier
 
attributeObservers - Variable in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
attributeObservers - Variable in class moa.classifiers.trees.DecisionStump
 
attributeObservers - Variable in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
attributeObservers - Variable in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
attributeObservers - Variable in class moa.classifiers.trees.FIMTDD.LeafNode
 
attributeObservers - Variable in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
attributeObservers - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
attributeObserversGauss - Variable in class moa.classifiers.rules.RuleClassifier
 
attributes - Variable in class com.yahoo.labs.samoa.instances.AttributesInformation
The attribute information.
attributes - Variable in class moa.clusterers.meta.Algorithm
 
AttributeSelectionPanel - Class in moa.gui.featureanalysis
A sub panel in visualizeFeatures tab.
AttributeSelectionPanel() - Constructor for class moa.gui.featureanalysis.AttributeSelectionPanel
Creates the attribute selection panel with no initial instances.
AttributeSelectionPanel(boolean, boolean, boolean, boolean) - Constructor for class moa.gui.featureanalysis.AttributeSelectionPanel
Creates the attribute selection panel with no initial instances.
attributesInformation - Variable in class com.yahoo.labs.samoa.instances.InstanceInformation
 
AttributesInformation - Class in com.yahoo.labs.samoa.instances
Class for storing the information of the attributes.
AttributesInformation() - Constructor for class com.yahoo.labs.samoa.instances.AttributesInformation
 
AttributesInformation(Attribute[], int) - Constructor for class com.yahoo.labs.samoa.instances.AttributesInformation
 
AttributesInformation(Attribute[], int[], int) - Constructor for class com.yahoo.labs.samoa.instances.AttributesInformation
 
AttributesInformation(AttributesInformation) - Constructor for class com.yahoo.labs.samoa.instances.AttributesInformation
 
AttributesInformation(List<Attribute>, int) - Constructor for class com.yahoo.labs.samoa.instances.AttributesInformation
 
attributesMask - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
attributesMask - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
attributesPercentage - Variable in class moa.classifiers.rules.AbstractAMRules
 
attributesPercentage - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
attributesPercentage - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
attributesPercentage - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
AttributeSplitSuggestion - Class in moa.classifiers.core
Class for computing attribute split suggestions given a split test.
AttributeSplitSuggestion(InstanceConditionalTest, double[][], double) - Constructor for class moa.classifiers.core.AttributeSplitSuggestion
 
attributesProbability - Variable in class moa.classifiers.rules.RuleClassification
 
attributeStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
AttributeStatisticsObserver - Interface in moa.classifiers.rules.multilabel.attributeclassobservers
Interface for observing the statistics for an attribute.
attributeStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassification
 
AttributeSummaryPanel - Class in moa.gui.featureanalysis
This panel displays summary statistics about an attribute: name, type number/% of missing/unique values, number of distinct values.
AttributeSummaryPanel() - Constructor for class moa.gui.featureanalysis.AttributeSummaryPanel
Creates the instances panel with no initial instances.
attributeValues - Variable in class com.yahoo.labs.samoa.instances.Attribute
The attribute values.
attributeValues - Variable in class com.yahoo.labs.samoa.instances.DenseInstanceData
The attribute values.
attributeValues - Variable in class com.yahoo.labs.samoa.instances.SparseInstanceData
The attribute values.
AttributeVisualizationPanel - Class in moa.gui.featureanalysis
Creates a panel that shows a visualization of an attribute in a dataset.
AttributeVisualizationPanel() - Constructor for class moa.gui.featureanalysis.AttributeVisualizationPanel
Constructor - If used then the class will not show the class selection combo box.
AttributeVisualizationPanel(boolean) - Constructor for class moa.gui.featureanalysis.AttributeVisualizationPanel
Constructor.
attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
attValObservers - Variable in class moa.streams.filters.AddNoiseFilter
 
attValue - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
attValue - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
attValue - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
attValueDist - Variable in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
AutoClassDiscovery - Class in moa.core
Class for discovering classes via reflection in the java class path.
AutoClassDiscovery() - Constructor for class moa.core.AutoClassDiscovery
 
Autoencoder - Class in moa.classifiers.oneclass
Implements an autoencoder: a neural network that attempts to reconstruct the input.
Autoencoder() - Constructor for class moa.classifiers.oneclass.Autoencoder
 
AutoExpandVector<T> - Class in moa.core
Vector with the capability of automatic expansion.
AutoExpandVector() - Constructor for class moa.core.AutoExpandVector
 
AutoExpandVector(int) - Constructor for class moa.core.AutoExpandVector
 
autoFreqStrings - Static variable in class moa.gui.experimentertab.ExpPreviewPanel
 
autoFreqStrings - Static variable in class moa.gui.PreviewPanel
 
autoFreqTimeSecs - Static variable in class moa.gui.experimentertab.ExpPreviewPanel
 
autoFreqTimeSecs - Static variable in class moa.gui.PreviewPanel
 
autoRefreshComboBox - Variable in class moa.gui.active.ALPreviewPanel
 
autoRefreshComboBox - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
autoRefreshComboBox - Variable in class moa.gui.PreviewPanel
 
autoRefreshLabel - Variable in class moa.gui.active.ALPreviewPanel
 
autoRefreshLabel - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
autoRefreshLabel - Variable in class moa.gui.PreviewPanel
 
autoRefreshTimer - Variable in class moa.gui.active.ALPreviewPanel
 
autoRefreshTimer - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
autoRefreshTimer - Variable in class moa.gui.PreviewPanel
 
auxAttributes - Variable in class com.yahoo.labs.samoa.instances.ArffLoader
 
AuxiliarMainTask - Class in moa.tasks
Abstract Auxiliar Main Task.
AuxiliarMainTask() - Constructor for class moa.tasks.AuxiliarMainTask
 
AuxiliarTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
AuxiliarTabPanel() - Constructor for class moa.gui.AuxiliarTabPanel
 
AuxiliarTaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
AuxiliarTaskManagerPanel() - Constructor for class moa.gui.AuxiliarTaskManagerPanel
 
AuxiliarTaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
AuxiliarTaskManagerPanel.TaskTableModel - Class in moa.gui
 
AverageComparitionByHoeffdingCorollary(double, double, double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
averageError - Variable in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
averageError - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
averageError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
averageError - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
averageError - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
averageError - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
averageErrorToTargetMean - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
averageErrorToTargetMean - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
averageMeasurements(Measurement[][]) - Static method in class moa.core.Measurement
 
averageTargetError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
avgPerformance() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Compute the average ranking of the algorithms.
AWTInteractiveRenderer - Interface in moa.gui
 
AWTRenderable - Interface in moa.gui
Interface representing a component that is renderable
AWTRenderer - Interface in moa.gui
Interface representing a component to edit an option.
axesPanel - Variable in class moa.gui.visualization.AbstractGraphCanvas
 

B

b - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator
 
backQuoteChars(String) - Static method in class moa.core.Utils
Converts carriage returns and new lines in a string into \r and \n.
BAHR - Static variable in class moa.classifiers.core.statisticaltests.Cramer
 
balanceClassesOption - Variable in class moa.streams.generators.AgrawalGenerator
 
balanceClassesOption - Variable in class moa.streams.generators.MixedGenerator
 
balanceClassesOption - Variable in class moa.streams.generators.SEAGenerator
 
balanceClassesOption - Variable in class moa.streams.generators.SineGenerator
 
balanceClassesOption - Variable in class moa.streams.generators.STAGGERGenerator
 
BalancedPartition() - Constructor for class moa.clusterers.outliers.utils.mtree.PartitionFunctions.BalancedPartition
 
baseHeight - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
baseLearner - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
baseLearner - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
baseLearner - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
baseLearner - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
baseLearner - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
baseLearner - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
baseLearner - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
baseLearner - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
baseLearnerOption - Variable in class moa.classifiers.active.ALRandom
 
baseLearnerOption - Variable in class moa.classifiers.active.ALUncertainty
 
baseLearnerOption - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
baseLearnerOption - Variable in class moa.classifiers.meta.ADOB
 
baseLearnerOption - Variable in class moa.classifiers.meta.BOLE
 
baseLearnerOption - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
baseLearnerOption - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
baseLearnerOption - Variable in class moa.classifiers.meta.LearnNSE
 
baseLearnerOption - Variable in class moa.classifiers.meta.LeveragingBag
 
baseLearnerOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
baseLearnerOption - Variable in class moa.classifiers.meta.OCBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBag
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBagAdwin
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
baseLearnerOption - Variable in class moa.classifiers.meta.RandomRules
 
baseLearnerOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
baseLearnerOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
baseLearnerOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
baseLearnerOption - Variable in class moa.classifiers.multilabel.MEKAClassifier
 
baseLearnerOption - Variable in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
baseLearnerOption - Variable in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
baseLearnerOption - Variable in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
baseLearnerOption - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
baseLearnerOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
baseLearnerOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
baseLearnerOption1 - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
baseLearnerOption2 - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
baselearnersOption - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
BaselinePredictor - Class in moa.recommender.predictor
A naive algorithm which combines the global mean of all the existing ratings, the mean rating of the user and the mean rating of the item to make a prediction.
BaselinePredictor - Class in moa.recommender.rc.predictor.impl
 
BaselinePredictor() - Constructor for class moa.recommender.predictor.BaselinePredictor
 
BaselinePredictor(RecommenderData) - Constructor for class moa.recommender.rc.predictor.impl.BaselinePredictor
 
baseStream - Variable in class moa.streams.PartitioningStream
 
baseWidth - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
BasicAUCImbalancedPerformanceEvaluator - Class in moa.evaluation
Performance measures designed for class imbalance problems.
BasicAUCImbalancedPerformanceEvaluator() - Constructor for class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
BasicAUCImbalancedPerformanceEvaluator.Estimator - Class in moa.evaluation
 
BasicAUCImbalancedPerformanceEvaluator.Estimator.Score - Class in moa.evaluation
 
BasicAUCImbalancedPerformanceEvaluator.SimpleEstimator - Class in moa.evaluation
 
BasicClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that performs basic incremental evaluation.
BasicClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.BasicClassificationPerformanceEvaluator
 
BasicClassificationPerformanceEvaluator.BasicEstimator - Class in moa.evaluation
 
BasicClassificationPerformanceEvaluator.Estimator - Interface in moa.evaluation
 
BasicConceptDriftPerformanceEvaluator - Class in moa.evaluation
 
BasicConceptDriftPerformanceEvaluator() - Constructor for class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
BasicEstimator() - Constructor for class moa.evaluation.BasicClassificationPerformanceEvaluator.BasicEstimator
 
BasicFeatureRanking - Class in moa.classifiers.rules.featureranking
Basic Feature Ranking method João Duarte, João Gama,Feature ranking in hoeffding algorithms for regression.
BasicFeatureRanking() - Constructor for class moa.classifiers.rules.featureranking.BasicFeatureRanking
 
BasicFeatureRanking.RuleInformation - Class in moa.classifiers.rules.featureranking
 
BasicMultiLabelClassifier - Class in moa.classifiers.multitarget
 
BasicMultiLabelClassifier() - Constructor for class moa.classifiers.multitarget.BasicMultiLabelClassifier
 
BasicMultiLabelLearner - Class in moa.classifiers.multitarget
Binary relevance Multilabel Classifier
BasicMultiLabelLearner() - Constructor for class moa.classifiers.multitarget.BasicMultiLabelLearner
 
BasicMultiLabelPerformanceEvaluator - Class in moa.evaluation
Multilabel Window Classification Performance Evaluator.
BasicMultiLabelPerformanceEvaluator() - Constructor for class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
BasicMultiTargetPerformanceEvaluator - Class in moa.evaluation
Regression evaluator that performs basic incremental evaluation.
BasicMultiTargetPerformanceEvaluator() - Constructor for class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
BasicMultiTargetPerformanceRelativeMeasuresEvaluator - Class in moa.evaluation
Regression evaluator that performs basic incremental evaluation.
BasicMultiTargetPerformanceRelativeMeasuresEvaluator() - Constructor for class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
BasicMultiTargetRegressor - Class in moa.classifiers.multitarget
Binary relevance Multi-Target Regressor
BasicMultiTargetRegressor() - Constructor for class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
BasicRegressionPerformanceEvaluator - Class in moa.evaluation
Regression evaluator that performs basic incremental evaluation.
BasicRegressionPerformanceEvaluator() - Constructor for class moa.evaluation.BasicRegressionPerformanceEvaluator
 
batch - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
BatchCmd - Class in moa.gui
 
BatchCmd(AbstractClusterer, ClusteringStream, MeasureCollection[], int) - Constructor for class moa.gui.BatchCmd
 
batchMajority - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
batchMinority - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
bestCutPoint - Variable in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
bestModel - Variable in class moa.clusterers.meta.EnsembleClustererAbstract
 
bestSplit - Variable in class moa.classifiers.trees.DecisionStump
 
bestSplitSuggestion - Variable in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
bestSuggestion - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
bestSuggestion - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
betaOption - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
betaOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
betaOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
betaOption - Variable in class moa.clusterers.dstream.Dstream
 
BICO - Class in moa.clusterers.kmeanspm
A instance of this class provides the BICO clustering algorithm.
BICO() - Constructor for class moa.clusterers.kmeanspm.BICO
 
bicoCFUpdate(ClusteringTreeNode) - Method in class moa.clusterers.kmeanspm.BICO
Inserts a ClusteringTreeNode into the ClusteringFeature tree.
bicoUpdate(double[]) - Method in class moa.clusterers.kmeanspm.BICO
Inserts a new point into the ClusteringFeature tree.
big - Static variable in class moa.core.Statistics
 
biginv - Static variable in class moa.core.Statistics
 
bigTreesOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
Bin() - Constructor for class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
Bin() - Constructor for class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver.Bin
 
BinaryClassifierFromRegressor - Class in moa.classifiers.rules
Function that convertes a regressor into a binary classifier baseLearnerOption- regressor learner selection
BinaryClassifierFromRegressor() - Constructor for class moa.classifiers.rules.BinaryClassifierFromRegressor
 
binaryGeneratorOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
binarySplitsOption - Variable in class moa.classifiers.trees.DecisionStump
 
binarySplitsOption - Variable in class moa.classifiers.trees.EFDT
 
binarySplitsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
binarySplitsOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
BinaryTreeNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using a binary tree.
BinaryTreeNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
BinaryTreeNumericAttributeClassObserver.Node - Class in moa.classifiers.core.attributeclassobservers
 
BinaryTreeNumericAttributeClassObserverRegression - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using a binary tree.
BinaryTreeNumericAttributeClassObserverRegression() - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
BinaryTreeNumericAttributeClassObserverRegression.Node - Class in moa.classifiers.core.attributeclassobservers
 
binList - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
binList - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
binomialStandardError(double, int) - Static method in class moa.core.Statistics
Computes standard error for observed values of a binomial random variable.
bkgLearner - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
bkgLearner - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
bkgLearner - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
bkts - Variable in class moa.classifiers.meta.LearnNSE
 
blockSeqDrift2Option - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
blockSeqDriftOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
blockSizeSEEDOption - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
bntExport - Variable in class moa.gui.experimentertab.SummaryViewer
 
BOLE - Class in moa.classifiers.meta
 
BOLE() - Constructor for class moa.classifiers.meta.BOLE
 
BooleanParameter - Class in moa.clusterers.meta
 
BooleanParameter(BooleanParameter) - Constructor for class moa.clusterers.meta.BooleanParameter
 
BooleanParameter(ParameterConfiguration) - Constructor for class moa.clusterers.meta.BooleanParameter
 
BootstrappedStream - Class in moa.streams
Bootstrapped Stream
BootstrappedStream() - Constructor for class moa.streams.BootstrappedStream
 
BOTTOM_CENTER_INSIDE - moa.tasks.Plot.LegendLocation
 
BOTTOM_CENTER_OUTSIDE - moa.tasks.Plot.LegendLocation
 
BOTTOM_LEFT_INSIDE - moa.tasks.Plot.LegendLocation
 
BOTTOM_LEFT_OUTSIDE - moa.tasks.Plot.LegendLocation
 
BOTTOM_RIGHT_INSIDE - moa.tasks.Plot.LegendLocation
 
BOTTOM_RIGHT_OUTSIDE - moa.tasks.Plot.LegendLocation
 
boundaryClass - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
boundaryClass - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver.Bin
 
boundaryWeight - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
boundaryWeight - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver.Bin
 
bOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
BOX_HORIZONTAL - moa.gui.experimentertab.PlotTab.LegendType
 
BOX_HORIZONTAL - moa.tasks.Plot.LegendType
 
BOX_VERTICAL - moa.gui.experimentertab.PlotTab.LegendType
 
BOX_VERTICAL - moa.tasks.Plot.LegendType
 
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Returns the number of the branch for an instance, -1 if unknown.
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
branchForInstance(Instance) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
breadthFirstStrat - Variable in class moa.clusterers.clustree.ClusTree
Parameter to determine wich strategy to use
breadthFirstStrategyOption - Variable in class moa.clusterers.clustree.ClusTree
 
breakUp(String, int) - Static method in class moa.core.Utils
Breaks up the string, if wider than "columns" characters.
breakVotesOption - Variable in class moa.classifiers.meta.BOLE
 
BRISMFPredictor - Class in moa.recommender.predictor
Implementation of the algorithm described in Scalable Collaborative Filtering Approaches for Large Recommender Systems (Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk).
BRISMFPredictor - Class in moa.recommender.rc.predictor.impl
Implementation of the algorithm described in Scalable Collaborative Filtering Approaches for Large Recommender Systems (Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk).
BRISMFPredictor() - Constructor for class moa.recommender.predictor.BRISMFPredictor
 
BRISMFPredictor(int, RecommenderData, boolean) - Constructor for class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
BRISMFPredictor(int, RecommenderData, double, double, boolean) - Constructor for class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
browseButton - Variable in class com.github.javacliparser.gui.FileOptionEditComponent
 
browseForFile() - Method in class com.github.javacliparser.gui.FileOptionEditComponent
 
bShowProgress - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
bStopAlgorithm - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
bTrace - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
Bucket(int, int) - Constructor for class moa.clusterers.streamkm.BucketManager.Bucket
 
BucketManager - Class in moa.clusterers.streamkm
 
BucketManager(int, int, int, MTRandom) - Constructor for class moa.clusterers.streamkm.BucketManager
initializes a bucketmanager for n points with bucketsize maxsize and dimension d
BucketManager.Bucket - Class in moa.clusterers.streamkm
 
buckets - Variable in class moa.clusterers.streamkm.BucketManager
 
Budget - Interface in moa.clusterers.clustree.util
This is an interface for classes that are to be given along with every data point inserted in the tree.
budgetManager - Variable in class moa.classifiers.active.ALRandom
 
BudgetManager - Interface in moa.classifiers.active.budget
Budget Manager Interface to make AL Classifiers select the most beneficial instances.
budgetManagerOption - Variable in class moa.classifiers.active.ALRandom
 
budgetOption - Variable in class moa.classifiers.active.ALUncertainty
 
budgetOption - Variable in class moa.classifiers.active.budget.FixedBM
 
buffer - Variable in class moa.classifiers.meta.LearnNSE
 
buffer - Variable in class moa.gui.experimentertab.Algorithm
The results file for the algorithm
Buffer - Class in moa.gui.experimentertab
This class is the buffer where the threads get each task to execute
Buffer(MainTask[]) - Constructor for class moa.gui.experimentertab.Buffer
Buffer Constructor
bufferSize - Variable in class moa.classifiers.meta.RCD
 
bufferSizeOption - Variable in class moa.classifiers.meta.RCD
 
build() - Method in class moa.classifiers.rules.core.Rule.Builder
 
build() - Method in class moa.cluster.Miniball
Recalculate Miniball parameter Center and Radius
build() - Method in class moa.tasks.ipynb.NotebookBuilder
 
build() - Method in class moa.tasks.ipynb.NotebookCellBuilder
Create a cell with the right format
buildClassifier() - Method in class moa.classifiers.meta.WEKAClassifier
 
buildClassifier(Instances) - Method in class weka.classifiers.meta.MOA
Generates a classifier.
Builder() - Constructor for class moa.classifiers.rules.core.Rule.Builder
 
buildingModelTree() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
buildingModelTree() - Method in class moa.classifiers.trees.FIMTDD
 
buildKDTree(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Builds the KDTree on the supplied set of instances/points.
buildTree(DataSet) - Method in class moa.clusterers.outliers.AnyOut.util.EMTopDownTreeBuilder
 
bWarning - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
bWarning - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
bWarning - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
ByteCountingOutputStream() - Constructor for class com.github.javacliparser.SerializeUtils.ByteCountingOutputStream
 
ByteCountingOutputStream() - Constructor for class moa.core.SerializeUtils.ByteCountingOutputStream
 
byteSizeEstimateOverheadFraction - Variable in class moa.classifiers.trees.EFDT
 
byteSizeEstimateOverheadFraction - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
byteSizeEstimateOverheadFraction - Variable in class moa.classifiers.trees.HoeffdingTree
 

C

c - Variable in class moa.classifiers.meta.PairedLearners
 
c - Variable in class moa.streams.filters.RBFFilter
 
c_max - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
c_min - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
cached(DistanceFunction<Data>) - Static method in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
Creates a cached version of a distance function.
cachedClassNames - Static variable in class moa.core.AutoClassDiscovery
 
CachedInstancesStream - Class in moa.streams
Stream generator for representing a stream that is cached in memory.
CachedInstancesStream(Instances) - Constructor for class moa.streams.CachedInstancesStream
 
CacheShuffledStream - Class in moa.tasks
Task for storing and shuffling examples in memory.
CacheShuffledStream() - Constructor for class moa.tasks.CacheShuffledStream
 
cacheTestOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
cacheTestOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
calcByteSize() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
calcByteSize() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
calcByteSize() - Method in class moa.classifiers.trees.ARFFIMTDD
 
calcByteSize() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
calcByteSize() - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.EFDT
 
calcByteSize() - Method in class moa.classifiers.trees.EFDT.Node
 
calcByteSize() - Method in class moa.classifiers.trees.EFDT.SplitNode
 
calcByteSize() - Method in class moa.classifiers.trees.FIMTDD
 
calcByteSize() - Method in class moa.classifiers.trees.FIMTDD.Node
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.EFDT.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.EFDT.SplitNode
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
calcDistance(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
Calculate the distance to this other cluster.
calcDistance(ClusKernel) - Method in class moa.clusterers.clustree.Entry
Calculates the distance to the data in this entry.
calcDistance(Entry) - Method in class moa.clusterers.clustree.Entry
Calculates the distance to the data in this entry of the data in the given entry.
calcGraph(int, int) - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Recalculates the barplot or histogram to display, required usually when the attribute is changed or the component is resized.
calcKMeansCosts(double[]) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Calculates the k-means costs of the ClusteringFeature too a center.
calcKMeansCosts(double[], double[]) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Calculates the k-means costs of the ClusteringFeature and a point too a center.
calcKMeansCosts(double[], ClusteringFeature) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Calculates the k-means costs of the ClusteringFeature and another ClusteringFeature too a center.
calcNodeCover(HoeffdingTree.SplitNode) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
calcNodeDecreaseImpurity(HoeffdingTree.SplitNode) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
calcR(int) - Method in class moa.clusterers.kmeanspm.BICO
Calculates the threshold at a specific level in the ClusteringFeature tree.
calcRSquared(int) - Method in class moa.clusterers.kmeanspm.BICO
Calculates the squared threshold at a specific level in the ClusteringFeature tree.
calculate(DATA, DATA) - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunction
 
calculateAuc - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
calculateAUC - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
calculatePromise() - Method in class moa.classifiers.trees.EFDT.Node
 
calculatePromise() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
calculatePromise() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
call() - Method in class moa.classifiers.core.statisticaltests.Cramer
 
call() - Method in class moa.classifiers.core.statisticaltests.KNN
 
call() - Method in class moa.classifiers.meta.AdaptiveRandomForest.TrainingRunnable
 
call() - Method in class moa.clusterers.meta.EnsembleClustererAbstract.EnsembleRunnable
 
cancelFlag - Variable in class moa.tasks.StandardTaskMonitor
 
CANCELLED - moa.gui.experimentertab.ExpTaskThread.Status
 
CANCELLED - moa.tasks.TaskThread.Status
 
CANCELLING - moa.gui.experimentertab.ExpTaskThread.Status
 
CANCELLING - moa.tasks.TaskThread.Status
 
cancelSelectedTasks() - Method in class moa.gui.active.ALTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Cancel task
cancelSelectedTasks() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
cancelTask() - Method in class moa.gui.experimentertab.ExpTaskThread
 
cancelTask() - Method in class moa.tasks.meta.ALTaskThread
 
cancelTask() - Method in class moa.tasks.TaskThread
 
cancelTaskButton - Variable in class moa.gui.active.ALTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.TaskManagerPanel
 
canCreateSubtree() - Method in class moa.classifiers.trees.iadem.Iadem3
 
canCreateSubtree() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
candidate - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Candidate classifier.
candidate - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Candidate classifier.
candidateClassifier - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
candidateEnsemble - Variable in class moa.clusterers.meta.EnsembleClustererAbstract
 
candidateIsFullOwner(KDTreeNode, Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns true if candidate is a full owner in respect to a competitor.
CantellisInequality - Class in moa.classifiers.rules.core.anomalydetection.probabilityfunctions
Returns the probability for anomaly detection according to a Cantelli inequality mean- mean of a data variable sd- standard deviation of a data variable value- current value of the variable
CantellisInequality() - Constructor for class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.CantellisInequality
 
CANVAS - moa.gui.experimentertab.PlotTab.Terminal
 
CANVAS - moa.tasks.Plot.Terminal
 
Capabilities - Class in moa.capabilities
Container class representing the set of capabilities an object has.
Capabilities() - Constructor for class moa.capabilities.Capabilities
Creates a capabilities object with no capabilities.
Capabilities(Capability...) - Constructor for class moa.capabilities.Capabilities
Creates a capabilities object with the given capabilities.
CapabilitiesHandler - Interface in moa.capabilities
Interface marking classes as being able to specify the capabilities they can handle.
Capability - Enum in moa.capabilities
Class enumerating the different possible capabilities of objects in MOA.
CapabilityRequirement - Class in moa.capabilities
Represents a requirement that a set of capabilities must meet.
CapabilityRequirement(Predicate<Capabilities>) - Constructor for class moa.capabilities.CapabilityRequirement
Creates a capabilities requirement with the given predicate as its method of checking if the requirement is met.
caseAnomaly - Variable in class moa.classifiers.rules.RuleClassifier
 
caseAnomalySupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
cast(Object) - Static method in class moa.core.Utils
Casting an object without "unchecked" compile-time warnings.
CategoricalParameter - Class in moa.clusterers.meta
 
CategoricalParameter(CategoricalParameter) - Constructor for class moa.clusterers.meta.CategoricalParameter
 
CategoricalParameter(ParameterConfiguration) - Constructor for class moa.clusterers.meta.CategoricalParameter
 
causeOfSplit - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
CDF_Normal - Class in moa.gui.experimentertab.statisticaltests
This class contains routines to calculate the normal cumulative distribution function (CDF) and its inverse.
CDF_Normal() - Constructor for class moa.gui.experimentertab.statisticaltests.CDF_Normal
 
cds - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
CDTaskManagerPanel - Class in moa.gui.conceptdrift
This panel displays the running tasks.
CDTaskManagerPanel() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel
 
CDTaskManagerPanel.ProgressCellRenderer - Class in moa.gui.conceptdrift
 
CDTaskManagerPanel.TaskTableModel - Class in moa.gui.conceptdrift
 
cellType() - Method in class moa.tasks.ipynb.CodeCellBuilder
 
cellType() - Method in class moa.tasks.ipynb.MarkDownCellBuilder
 
cellType() - Method in class moa.tasks.ipynb.NotebookCellBuilder
Gets the cell-type string of this type of cell.
cellType() - Method in class moa.tasks.ipynb.RawCellBuilder
 
center() - Method in class moa.cluster.Miniball
Return the center of the Miniball
CENTER_INSIDE - moa.tasks.Plot.LegendLocation
 
CENTER_OUTSIDE - moa.tasks.Plot.LegendLocation
 
centerInstances(Instances, int[], double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Assigns instances to centers using KDTree.
centre - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
 
centresStreamingCoreset - Variable in class moa.clusterers.streamkm.StreamKM
 
Centroid() - Constructor for class moa.streams.generators.RandomRBFGenerator.Centroid
 
centroids - Variable in class moa.streams.generators.RandomRBFGenerator
 
centroidWeights - Variable in class moa.streams.generators.RandomRBFGenerator
 
cEstimacion - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
CFCluster - Class in moa.cluster
 
CFCluster(double[], int) - Constructor for class moa.cluster.CFCluster
 
CFCluster(int) - Constructor for class moa.cluster.CFCluster
 
CFCluster(Instance, int) - Constructor for class moa.cluster.CFCluster
Instantiates an empty kernel with the given dimensionality.
CFCluster(CFCluster) - Constructor for class moa.cluster.CFCluster
 
change - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
changeChildren(Iadem2.Node, Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
changeCluster(ClusterEvent) - Method in class moa.gui.BatchCmd
 
changeCluster(ClusterEvent) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
changeCluster(ClusterEvent) - Method in class moa.gui.visualization.RunVisualizer
 
changeCluster(ClusterEvent) - Method in interface moa.streams.clustering.ClusterEventListener
 
changeDetected - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
changeDetected - Variable in class moa.classifiers.meta.PairedLearners
 
ChangeDetectedMessage - Class in moa.classifiers.rules.featureranking.messages
 
ChangeDetectedMessage() - Constructor for class moa.classifiers.rules.featureranking.messages.ChangeDetectedMessage
 
changeDetection - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
changeDetection - Variable in class moa.classifiers.rules.core.Rule.Builder
 
changeDetection - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
changeDetection - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
changeDetection - Variable in class moa.classifiers.trees.FIMTDD.Node
 
changeDetection(boolean) - Method in class moa.classifiers.rules.core.Rule.Builder
 
ChangeDetectionMeasures - Class in moa.evaluation
 
ChangeDetectionMeasures() - Constructor for class moa.evaluation.ChangeDetectionMeasures
 
changeDetector - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
changeDetector - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
changeDetector - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
ChangeDetector - Interface in moa.classifiers.core.driftdetection
Change Detector interface to implement methods that detects change.
ChangeDetectorLearner - Class in moa.learners
Class for detecting concept drift and to be used as a learner.
ChangeDetectorLearner() - Constructor for class moa.learners.ChangeDetectorLearner
 
changeDetectors - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
changeDetectorsOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
changeDriftOption - Variable in class moa.streams.generators.cd.GradualChangeGenerator
 
changeFreqWords(int) - Method in class moa.streams.generators.TextGenerator
 
changeListeners - Variable in class com.github.javacliparser.gui.ClassOptionEditComponent
listeners that listen to changes to the chosen option.
changeListeners - Variable in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
listeners that listen to changes to the chosen option.
changePolarity(int) - Method in class moa.streams.generators.TextGenerator
 
CharacteristicVector - Class in moa.clusterers.dstream
The Characteristic Vector of a density grid is defined in Definition 3.2 of Chen and Tu 2007 as: The characteristic vector of a grid g is a tuple (tg,tm,D, label,status), where tg is the last time when g is updated, tm is the last time when g is removed from grid list as a sporadic grid (if ever), D is the grid density at the last update, label is the class label of the grid, and status = {SPORADIC, NORMAL} is a label used for removing sporadic grids.
CharacteristicVector(int, int, double, int, boolean, double, double) - Constructor for class moa.clusterers.dstream.CharacteristicVector
 
ChebyshevInequality - Class in moa.classifiers.rules.core.anomalydetection.probabilityfunctions
Returns the probability for anomaly detection according to a Chebyshev inequality mean- mean of a data variable sd- standard deviation of a data variable value- current value of the variable
ChebyshevInequality() - Constructor for class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.ChebyshevInequality
 
check_in(double[]) - Method in class moa.cluster.Miniball
Adds a point to the list.
Skip action on null parameter.
checkBestAttrib(double, AutoExpandVector<AttributeClassObserver>, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
checkForRemainingOptions(String[]) - Static method in class moa.core.Utils
Checks if the given array contains any non-empty options.
checkForSplit() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
checkForSplit(ARFFIMTDD) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
checkForSplit(FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
checkHomogeneity(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
checkMissing(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Checks if there is any missing value in the given instance.
checkMissing(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Checks if there is any instance with missing values.
checkRoot() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
checkRoot() - Method in class moa.classifiers.trees.ARFFIMTDD
 
checkRoot() - Method in class moa.classifiers.trees.FIMTDD
 
children - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
children - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
children - Variable in class moa.classifiers.trees.EFDT.SplitNode
 
children - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
children - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
children - Variable in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
children - Variable in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
children - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
chiSquaredProbability(double, double) - Static method in class moa.core.Statistics
Returns chi-squared probability for given value and degrees of freedom.
chooseRandomIndexBasedOnWeights(double[], Random) - Static method in class moa.core.MiscUtils
 
chosenObject - Variable in class moa.gui.ClassOptionSelectionPanel
 
chosenObject - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
 
chosenObjectEditor - Variable in class moa.gui.ClassOptionSelectionPanel
 
chosenObjectEditor - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
 
chosenOptionIndex - Variable in class com.github.javacliparser.MultiChoiceOption
 
chunkSize - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
chunkSizeOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Chunk size.
chunkSizeOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Chunk size.
chunkSizeOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Allow to define the training/testing chunk size.
chunkSizeOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allow to define the training/testing chunk size.
cindex(Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.StatisticalCollection
 
CLASS_LIST - Static variable in class moa.core.AutoClassDiscovery
 
classAttribute() - Method in interface com.yahoo.labs.samoa.instances.Instance
Class attribute.
classAttribute() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Class attribute.
classAttribute() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
classAttribute() - Method in class com.yahoo.labs.samoa.instances.Instances
Class attribute.
classChoiceBox - Variable in class moa.gui.ClassOptionSelectionPanel
 
classChoiceBox - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
 
classChoiceChanged(Object) - Method in class moa.gui.ClassOptionSelectionPanel
 
classChoiceChanged(Object) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
classCountsLeft - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
classCountsRight - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
classDist - Variable in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
classDist - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
classDistributionAtTimeOfCreation - Variable in class moa.classifiers.trees.EFDT.Node
 
classDistributions - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Class distributions.
classDistributions - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
classDistributions - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Class distributions.
classFunction - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
CLASSIFICATION - moa.gui.experimentertab.ExpPreviewPanel.TypePanel
 
CLASSIFICATION - moa.gui.PreviewPanel.TypePanel
 
classificationFunctions - Static variable in class moa.streams.generators.AgrawalGenerator
 
classificationFunctions - Static variable in class moa.streams.generators.MixedGenerator
 
classificationFunctions - Static variable in class moa.streams.generators.SEAGenerator
 
classificationFunctions - Static variable in class moa.streams.generators.SineGenerator
 
classificationFunctions - Static variable in class moa.streams.generators.STAGGERGenerator
 
ClassificationMainTask - Class in moa.tasks
Abstract Classification Main Task.
ClassificationMainTask() - Constructor for class moa.tasks.ClassificationMainTask
 
ClassificationMeasureCollection - Interface in moa.evaluation
Classification Measure Collection interface that it is used to not appear in clustering
ClassificationPerformanceEvaluator - Interface in moa.evaluation
 
ClassificationTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
ClassificationTabPanel() - Constructor for class moa.gui.ClassificationTabPanel
 
classifier - Variable in class moa.classifiers.active.ALRandom
 
classifier - Variable in class moa.classifiers.active.ALUncertainty
 
classifier - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
classifier - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
classifier - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
classifier - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
classifier - Variable in class moa.classifiers.meta.WEKAClassifier
 
classifier - Variable in class moa.classifiers.multilabel.MEKAClassifier
 
classifier - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
classifier - Variable in class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
Classifier - Interface in moa.classifiers
Classifier interface for incremental classification models.
classifierParameterOption - Variable in class moa.tasks.RunTasks
 
classifierPurposeString - Static variable in class moa.clusterers.CobWeb
 
classifierRandom - Variable in class moa.classifiers.AbstractClassifier
Random Generator used in randomizable learners
classifierRandom - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
classifierRandom - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
classifiersSizeOption - Variable in class moa.classifiers.meta.RCD
 
classifierTipText() - Method in class weka.classifiers.meta.MOA
Returns the tooltip displayed in the GUI.
ClassifierWithFeatureImportance - Class in moa.learners.featureanalysis
Classifier with Feature Importance
ClassifierWithFeatureImportance() - Constructor for class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
ClassifierWithMemory(Classifier, int) - Constructor for class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory
 
classifyInstance(RandomTreeGenerator.Node, double[]) - Method in class moa.streams.generators.RandomTreeGenerator
 
classIndex - Variable in class com.yahoo.labs.samoa.instances.InstanceInformation
The class index.
classIndex() - Method in interface com.yahoo.labs.samoa.instances.Instance
Class index.
classIndex() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Class index.
classIndex() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
classIndex() - Method in class com.yahoo.labs.samoa.instances.Instances
Class index.
classIndexOption - Variable in class moa.streams.ArffFileStream
 
classIndexOption - Variable in class moa.streams.clustering.FileStream
 
classIndexOption - Variable in class moa.streams.clustering.SimpleCSVStream
 
classIsMissing() - Method in interface com.yahoo.labs.samoa.instances.Instance
Class is missing.
classIsMissing() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Class is missing.
classLabel - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
 
classLabel - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
classNoiseFractionOption - Variable in class moa.streams.filters.AddNoiseFilter
 
ClassOption - Class in com.github.javacliparser
Class option.
ClassOption - Class in moa.options
Class option.
ClassOption(String, char, String, Class<?>, String) - Constructor for class com.github.javacliparser.ClassOption
 
ClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.ClassOption
 
ClassOption(String, char, String, Class<?>, String, String) - Constructor for class com.github.javacliparser.ClassOption
 
ClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.ClassOption
 
ClassOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a class option.
ClassOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.ClassOptionEditComponent
 
classOptionNamesToPreparedObjects - Variable in class com.github.javacliparser.JavaCLIParser
Dictionary with option texts and objects
ClassOptionSelectionPanel - Class in moa.gui
Creates a panel that displays the classes available, letting the user select a class.
ClassOptionSelectionPanel(Class<?>, String, String) - Constructor for class moa.gui.ClassOptionSelectionPanel
 
ClassOptionWithListenerOption - Class in moa.options
ClassOption that can be given a ChangeListener.
ClassOptionWithListenerOption(String, char, String, Class<?>, String) - Constructor for class moa.options.ClassOptionWithListenerOption
 
ClassOptionWithListenerOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.ClassOptionWithListenerOption
 
ClassOptionWithListenerOption(String, char, String, Class<?>, String, String, ChangeListener) - Constructor for class moa.options.ClassOptionWithListenerOption
 
ClassOptionWithListenerOption(String, char, String, Class<?>, String, ChangeListener) - Constructor for class moa.options.ClassOptionWithListenerOption
 
ClassOptionWithListenerOptionEditComponent - Class in moa.gui
EditComponent for the ClassOptionWithListenerOption.
ClassOptionWithListenerOptionEditComponent(Option) - Constructor for class moa.gui.ClassOptionWithListenerOptionEditComponent
 
ClassOptionWithNames - Class in moa.options
 
ClassOptionWithNames(String, char, String, Class<?>, String, String[]) - Constructor for class moa.options.ClassOptionWithNames
 
ClassOptionWithNames(String, char, String, Class<?>, String, String, String[]) - Constructor for class moa.options.ClassOptionWithNames
 
ClassOptionWithNamesEditComponent - Class in com.github.javacliparser.gui
 
ClassOptionWithNamesEditComponent(ClassOptionWithNames) - Constructor for class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
ClassOptionWithNamesSelectionPanel - Class in moa.gui
 
ClassOptionWithNamesSelectionPanel(Class<?>, String, String, String[]) - Constructor for class moa.gui.ClassOptionWithNamesSelectionPanel
 
classRatioOption - Variable in class moa.streams.ImbalancedStream
 
classToCLIString(Class<?>, Class<?>) - Static method in class com.github.javacliparser.AbstractClassOption
Gets the command line interface text of the class.
classToCLIString(Class<?>, Class<?>) - Static method in class moa.options.AbstractClassOption
Gets the command line interface text of the class.
classTwitterGenerator - Variable in class moa.streams.generators.TextGenerator
 
classValue() - Method in interface com.yahoo.labs.samoa.instances.Instance
Class value.
classValue() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Class value.
classValue(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of an output attribute.
classValue(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
classValueDist - Variable in class moa.classifiers.trees.iadem.Iadem2.Node
 
classValues - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
classValues(List<? extends Instance>) - Static method in class moa.cluster.Clustering
 
classWeights - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
classWeights - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver.Bin
 
clean(int) - Method in class moa.evaluation.MeasureCollection
 
cleanTables() - Method in class moa.gui.experimentertab.AnalyzeTab
Tables of algorithms and datasets are cleaned.
cleanTables() - Method in class moa.gui.experimentertab.PlotTab
Clean the tables
cleanTables() - Method in class moa.gui.experimentertab.SummaryTab
Clean the tables
cleanTables() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Clean the tables
cleanUpKMeans(Clustering, ArrayList<CFCluster>) - Static method in class moa.clusterers.clustream.WithKmeans
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
clear() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
clear() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
clear() - Method in class moa.cluster.Miniball
Method clear: clears the ArrayList of the selection points.
Use it for starting a new selection list to calculate Bounding Sphere on
or to clear memory references to the list of objects.
Always use at the end of a Miniball use if you want to reuse later the Miniball object
clear() - Method in class moa.clusterers.clustree.ClusKernel
Remove all points from this cluster.
clear() - Method in class moa.clusterers.clustree.Entry
Clear the Entry.
clear() - Method in class moa.clusterers.clustree.Node
Clear this Node, which means that the noiseBuffer is cleared, that shallowClear is called upon all the entries of the node, that the split counter is set to zero and the node is set to not be a fake root.
clear() - Method in class moa.clusterers.kmeanspm.CuckooHashing
Removes all of the elements from this hash table.
clear() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
 
clear() - Method in class moa.core.AutoExpandVector
 
clear() - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
clear() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
clear() - Method in interface moa.recommender.rc.data.RecommenderData
 
clearChildren() - Method in class moa.clusterers.kmeanspm.ClusteringTreeHeadNode
 
clearChildren() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Removes all children nodes.
clearEvents() - Method in class moa.gui.visualization.StreamOutlierPanel
 
clearOtherOutputs() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
clearPoints() - Method in class moa.gui.visualization.StreamOutlierPanel
 
cliChar - Variable in class com.github.javacliparser.AbstractOption
Command line interface text of this option.
clipToInsideHrect(KDTreeNode, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Finds the closest point in the hyper rectangle to a given point.
cliStringToDouble(String) - Static method in class com.github.javacliparser.FloatOption
 
cliStringToInt(String) - Static method in class com.github.javacliparser.IntOption
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class com.github.javacliparser.ClassOption
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.ClassOption
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.ClassOptionWithNames
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.WEKAClassOption
 
cliStringToOptionArray(String, char, Option) - Static method in class com.github.javacliparser.ListOption
 
clone() - Method in class moa.clusterers.streamkm.Point
 
clone() - Method in class moa.gui.experimentertab.Measure
 
clOption - Variable in class moa.clusterers.dstream.Dstream
 
close() - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
close() - Method in interface moa.recommender.rc.data.RecommenderData
 
closeDialog() - Method in class weka.gui.MOAClassOptionEditor
Closes the dialog.
closestPoint(Instance, Instances, int[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns the index of the closest point to the current instance.
ClusKernel - Class in moa.clusterers.clustree
Representation of an Entry in the tree
ClusKernel(double[], int) - Constructor for class moa.clusterers.clustree.ClusKernel
A constructor that makes a Kernel which just represents the given point.
ClusKernel(int) - Constructor for class moa.clusterers.clustree.ClusKernel
Constructor of the Cluster.
ClusKernel(ClusKernel) - Constructor for class moa.clusterers.clustree.ClusKernel
Instantiates a copy of the given cluster.
Cluster - Class in moa.cluster
 
Cluster() - Constructor for class moa.cluster.Cluster
 
clusterAddOption - Variable in class moa.clusterers.ClusterGenerator
 
clusterer - Variable in class moa.clusterers.meta.Algorithm
 
Clusterer - Interface in moa.clusterers
 
clustererRandom - Variable in class moa.clusterers.AbstractClusterer
 
clustererRandom - Variable in class moa.clusterers.streamkm.BucketManager
 
clustererRandom - Variable in class moa.clusterers.streamkm.StreamKM
 
ClusterEvent - Class in moa.streams.clustering
 
ClusterEvent(Object, long, String, String) - Constructor for class moa.streams.clustering.ClusterEvent
 
ClusterEventListener - Interface in moa.streams.clustering
 
clusterEvents - Variable in class moa.streams.ArffFileStream
 
clusterEvents - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
ClusterGenerator - Class in moa.clusterers
 
ClusterGenerator() - Constructor for class moa.clusterers.ClusterGenerator
 
clustering - Variable in class moa.clusterers.AbstractClusterer
 
Clustering - Class in moa.cluster
 
Clustering() - Constructor for class moa.cluster.Clustering
 
Clustering(ArrayList<DataPoint>, double, int) - Constructor for class moa.cluster.Clustering
 
Clustering(List<? extends Instance>) - Constructor for class moa.cluster.Clustering
 
Clustering(Cluster[]) - Constructor for class moa.cluster.Clustering
 
Clustering(AutoExpandVector<Cluster>) - Constructor for class moa.cluster.Clustering
 
ClusteringAlgoPanel - Class in moa.gui.clustertab
 
ClusteringAlgoPanel() - Constructor for class moa.gui.clustertab.ClusteringAlgoPanel
 
ClusteringEvalPanel - Class in moa.gui.clustertab
 
ClusteringEvalPanel() - Constructor for class moa.gui.clustertab.ClusteringEvalPanel
Creates new form ClusteringEvalPanel
ClusteringFeature - Class in moa.clusterers.kmeanspm
Provides a ClusteringFeature.
ClusteringFeature(double[], double) - Constructor for class moa.clusterers.kmeanspm.ClusteringFeature
Creates a ClusteringFeature.
ClusteringFeature(double[], int, double[], double, double) - Constructor for class moa.clusterers.kmeanspm.ClusteringFeature
Creates a ClusteringFeature.
ClusteringSetupTab - Class in moa.gui.clustertab
 
ClusteringSetupTab() - Constructor for class moa.gui.clustertab.ClusteringSetupTab
Creates new form ClusteringSetupTab
ClusteringStream - Class in moa.streams.clustering
 
ClusteringStream() - Constructor for class moa.streams.clustering.ClusteringStream
 
ClusteringTabPanel - Class in moa.gui.clustertab
 
ClusteringTabPanel() - Constructor for class moa.gui.clustertab.ClusteringTabPanel
Creates new form ClusterTab
ClusteringTreeHeadNode - Class in moa.clusterers.kmeanspm
Provides a ClusteringTreeNode with an extended nearest neighbor search in the root.
ClusteringTreeHeadNode(double[], ClusteringFeature, int, int, int, Random) - Constructor for class moa.clusterers.kmeanspm.ClusteringTreeHeadNode
Creates a ClusteringTreeNode with an extended nearest neighbor search in the root.
ClusteringTreeNode - Class in moa.clusterers.kmeanspm
Provides a tree of ClusterFeatures.
ClusteringTreeNode(double[], ClusteringFeature) - Constructor for class moa.clusterers.kmeanspm.ClusteringTreeNode
Creates a tree node for a ClusterFeature.
ClusteringVisualEvalPanel - Class in moa.gui.clustertab
 
ClusteringVisualEvalPanel() - Constructor for class moa.gui.clustertab.ClusteringVisualEvalPanel
Creates new form ClusteringEvalPanel
ClusteringVisualTab - Class in moa.gui.clustertab
 
ClusteringVisualTab() - Constructor for class moa.gui.clustertab.ClusteringVisualTab
Creates new form ClusteringVisualTab
ClusterPanel - Class in moa.gui.visualization
 
ClusterPanel(SphereCluster, Color, StreamPanel) - Constructor for class moa.gui.visualization.ClusterPanel
Creates new form ObjectPanel
clusterRemoveOption - Variable in class moa.clusterers.ClusterGenerator
 
Clustream - Class in moa.clusterers.clustream
Citation: CluStream: Charu C.
Clustream() - Constructor for class moa.clusterers.clustream.Clustream
 
ClustreamKernel - Class in moa.clusterers.clustream
 
ClustreamKernel(Instance, int, long, double, int) - Constructor for class moa.clusterers.clustream.ClustreamKernel
 
ClustreamKernel(ClustreamKernel, double, int) - Constructor for class moa.clusterers.clustream.ClustreamKernel
 
ClusTree - Class in moa.clusterers.clustree
Citation: ClusTree: Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl: The ClusTree: indexing micro-clusters for anytime stream mining.
ClusTree() - Constructor for class moa.clusterers.clustree.ClusTree
 
CMM - Class in moa.evaluation
 
CMM() - Constructor for class moa.evaluation.CMM
 
CMM_GTAnalysis - Class in moa.evaluation
 
CMM_GTAnalysis(Clustering, ArrayList<DataPoint>, boolean) - Constructor for class moa.evaluation.CMM_GTAnalysis
 
CMM_GTAnalysis.CMMPoint - Class in moa.evaluation
Wrapper class for data points to store CMM relevant attributes
CMM_GTAnalysis.GTCluster - Class in moa.evaluation
Main class to model the new clusters that will be the output of the cluster analysis
cmmOption - Variable in class moa.tasks.EvaluateClustering
 
cmmOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
CMMPoint(DataPoint, int) - Constructor for class moa.evaluation.CMM_GTAnalysis.CMMPoint
 
cmOption - Variable in class moa.clusterers.dstream.Dstream
 
CobWeb - Class in moa.clusterers
Class implementing the Cobweb and Classit clustering algorithms.
CobWeb() - Constructor for class moa.clusterers.CobWeb
 
CodeCellBuilder - Class in moa.tasks.ipynb
Implement a code cell
col - Variable in class moa.gui.visualization.ClusterPanel
 
col - Variable in class moa.gui.visualization.OutlierPanel
 
col - Variable in class moa.gui.visualization.PointPanel
 
ColorArray - Class in moa.clusterers.macro
 
ColorArray() - Constructor for class moa.clusterers.macro.ColorArray
 
colorCoding - Variable in class moa.tasks.meta.MetaMainTask
 
ColorGenerator - Interface in moa.gui.colorGenerator
This interface specifies the generateColors method for classes which generate colors according different strategies such that those colors can be distinguished easily.
ColorObject - Class in moa.clusterers.macro
 
ColorObject(String, Color) - Constructor for class moa.clusterers.macro.ColorObject
 
colors - Variable in class moa.gui.visualization.AbstractGraphPlot
 
colorValues - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
colour - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
columnKappa - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
columnKappa - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
columnKappa - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
columnsStatistics - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
com.github.javacliparser - package com.github.javacliparser
 
com.github.javacliparser.gui - package com.github.javacliparser.gui
 
com.yahoo.labs.samoa.instances - package com.yahoo.labs.samoa.instances
 
CombinationGenerator(int, int) - Constructor for class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
combinationOption - Variable in class moa.classifiers.meta.DACC
Combination functions: MAX and WVD (MAX leads to a faster reactivity to the change, WVD is more robust to noise)
combine(SphereCluster) - Method in class moa.cluster.SphereCluster
 
combinePredictions(Prediction[], Instance) - Static method in class moa.classifiers.multilabel.meta.OzaBagML
 
combSort11(double[], int[]) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
sorts the two given arrays.
compareTo(Object) - Method in class moa.gui.experimentertab.statisticaltests.Pareja
 
compareTo(AttributeSplitSuggestion) - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
compareTo(DACC.Pair) - Method in class moa.classifiers.meta.DACC.Pair
 
compareTo(AttributeExpansionSuggestion) - Method in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
compareTo(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
compareTo(MCODBase.EventItem) - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
compareTo(MicroCluster) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
compareTo(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
compareTo(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
compareTo(SimpleCODBase.EventItem) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
compareTo(BasicAUCImbalancedPerformanceEvaluator.Estimator.Score) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator.Score
Sort descending based on score value.
compareTo(WindowAUCImbalancedPerformanceEvaluator.Estimator.Score) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator.Score
Sort descending based on score value.
compareTo(RankPerAlgorithm) - Method in class moa.gui.experimentertab.statisticaltests.RankPerAlgorithm
 
compareTo(Pair<T, U>) - Method in class moa.recommender.rc.utils.Pair
 
compilePredictions(Classifier[], Example) - Static method in class moa.classifiers.multilabel.meta.OzaBagML
 
compileVotes(Classifier[], Instance) - Static method in class moa.classifiers.multilabel.meta.OzaBagML
 
complementSet(int[], int[]) - Static method in class moa.classifiers.rules.core.Utils
 
COMPLETED - moa.gui.experimentertab.ExpTaskThread.Status
 
COMPLETED - moa.tasks.TaskThread.Status
 
componentHidden(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentHidden(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentHidden(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
componentMoved(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentMoved(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentMoved(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
componentResized(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentResized(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentResized(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
componentShown(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentShown(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentShown(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
ComposedSplitFunction<DATA> - Class in moa.clusterers.outliers.utils.mtree
A split function that is defined by composing a promotion function and a partition function.
ComposedSplitFunction(PromotionFunction<DATA>, PartitionFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.ComposedSplitFunction
The constructor of a SplitFunction composed by a PromotionFunction and a PartitionFunction.
compress(long) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
compressBlock(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
compressBuckets() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
compressTermSEEDOption - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
computeAnomalySupervised(RuleClassification, int, Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
computeAnomalyUnsupervised(RuleClassification, int, Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
computeBandBoundaries(long) - Static method in class moa.core.GreenwaldKhannaQuantileSummary
 
computeBound(double, double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
computeBranchSplitMerits(double[][]) - Method in interface moa.classifiers.rules.core.splitcriteria.AMRulesSplitCriterion
 
computeBranchSplitMerits(double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
computeBranchSplitMerits(double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRulesNode
 
computeBranchSplitMerits(double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.VarianceRatioSplitCriterion
 
computeBranchSplitMerits(double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.VRSplitCriterion
 
computeCandidateWeight(Classifier, Instances, int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Computes the weight of a candidate classifier.
computeClassDist(double[][][]) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
computeClassDist(double[][][]) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
computeClassDist(double[][][]) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
computeClassDist(double[][][]) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
computeClassDistBinaryTest(double[][][], double[][][]) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
computeClassDistProbabilities(double[][][], double[][][], double[][], boolean) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
computeClassDistProbabilities(double[][][], double[][][], double[][], boolean) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
computeClassDistProbabilities(double[][][], double[][][], double[][], boolean) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
computeClassDistProbabilities(double[][][], double[][][], double[][], boolean) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
computeConditionalProb(ArrayList<Double>, double) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
computeConditionalProb(ArrayList<Double>, double) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
computeConditionalProb(ArrayList<Double>, double) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
computeConditionalProb(ArrayList<Double>, double) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
computeConditionalProbability(double) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
computeConditionalProbability(double) - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
computeConditionalProbability(double) - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
computeConditionalProbPerBin(ArrayList<Double>) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
computeConditionalProbPerBin(ArrayList<Double>) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
computeConditionalProbPerBin(ArrayList<Double>) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
computeConditionalProbPerBin(ArrayList<Double>) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
computeEntropy(double[]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
computeEntropy(double[]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterionMultilabel
 
computeEntropy(double[][]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
computeEntropy(double, double) - Static method in class moa.classifiers.rules.core.Utils
 
computeEntropy(DoubleVector) - Static method in class moa.classifiers.rules.core.Utils
 
computeError(Instance) - Method in class moa.classifiers.rules.core.Rule
 
computeError(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
computeError(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
computeGini(double[]) - Static method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
computeGini(double[], double) - Static method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.multilabel.trees.ISOUPTree
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.ARFFIMTDD
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.EFDT
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.FIMTDD
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.HoeffdingOptionTree
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.HoeffdingTree
 
ComputeHoeffdingBound(double, double, double) - Method in class moa.classifiers.rules.RuleClassifier
 
computeLevel(ArrayList<Double>, ArrayList<Integer>, double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
computeMean(double, int) - Method in class moa.classifiers.rules.RuleClassifier
 
computeMeritOfExistingSplit(SplitCriterion, double[]) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
computeMse(Classifier, Instances) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Computes the MSE of a learner for a given chunk of examples.
computeMseR() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Computes the MSEr threshold.
computeMseR() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Computes the MSEr threshold.
computeMseR() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Computes the MSEr threshold.
computePerformanceMeasure(Algorithm) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
computeProbability(double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
computeProbability(double, double, double) - Method in class moa.classifiers.rules.RuleClassifier
 
computeSD(double[]) - Static method in class moa.classifiers.core.splitcriteria.SDRSplitCriterion
 
computeSD(double[]) - Static method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
computeSD(double, double, double) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
computeSD(double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
computeSD(double, double, double) - Static method in class moa.classifiers.rules.core.Utils
 
computeSD(double, double, double) - Method in class moa.classifiers.rules.functions.Perceptron
 
computeSD(double, double, double) - Method in class moa.classifiers.trees.ARFFIMTDD
 
computeSD(double, double, double) - Method in class moa.classifiers.trees.FIMTDD
 
computeSD(double, double, int) - Method in class moa.classifiers.rules.RuleClassifier
 
computeSD(double, double, long) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
computeSD(DoubleVector) - Static method in class moa.classifiers.rules.core.Utils
 
computeValue(DoubleVector) - Method in class moa.gui.experimentertab.Measure
Calculates the value of measure
computeVariance(double, double, double) - Static method in class moa.classifiers.rules.core.Utils
 
computeVariance(DoubleVector) - Static method in class moa.classifiers.rules.core.Utils
 
computeWeight(int, Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Computes the weight of a learner before training a given example.
computeWeight(Classifier, Instances) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Computes the weight of a given classifie.
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
computeWeightedVote() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Computes the weighted vote.
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.ExpNegErrorWeightedVote
 
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
 
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.MinErrorWeightedVote
 
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.OneMinusErrorWeightedVote
 
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.UniformWeightedVote
 
computeWeightedVote() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
computeWeightedVote() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Computes the weighted vote.
computeWeightedVote() - Method in class moa.classifiers.rules.multilabel.core.voting.FirstHitVoteMultiLabel
 
computeWeightedVote() - Method in class moa.classifiers.rules.multilabel.core.voting.InverseErrorWeightedVoteMultiLabel
 
computeWeightedVote() - Method in class moa.classifiers.rules.multilabel.core.voting.UniformWeightedVoteMultiLabel
 
computeWinsTiesLossesHTML(String) - Method in class moa.gui.experimentertab.Summary
Generates a HTML summary that shows the gains, loses or ties of each algorithm against each other, in a specific measure..
computeWinsTiesLossesLatex(String) - Method in class moa.gui.experimentertab.Summary
Generates a latex summary that shows the gains, loses or ties of each algorithm against each other, in a specific measure..
CONCEPT_DRIFT - moa.gui.experimentertab.ExpPreviewPanel.TypePanel
 
CONCEPT_DRIFT - moa.gui.PreviewPanel.TypePanel
 
ConceptDriftGenerator - Interface in moa.streams.generators.cd
 
ConceptDriftMainTask - Class in moa.gui.experimentertab.tasks
 
ConceptDriftMainTask - Class in moa.tasks
 
ConceptDriftMainTask() - Constructor for class moa.gui.experimentertab.tasks.ConceptDriftMainTask
 
ConceptDriftMainTask() - Constructor for class moa.tasks.ConceptDriftMainTask
 
ConceptDriftRealStream - Class in moa.streams
Stream generator that adds concept drift to examples in a stream with different classes and attributes.
ConceptDriftRealStream() - Constructor for class moa.streams.ConceptDriftRealStream
 
ConceptDriftStream - Class in moa.streams
Stream generator that adds concept drift to examples in a stream.
ConceptDriftStream() - Constructor for class moa.streams.ConceptDriftStream
 
ConceptDriftTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
ConceptDriftTabPanel() - Constructor for class moa.gui.ConceptDriftTabPanel
 
concepts - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
Conditional - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
confidenceChoiceOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
confidenceLevelOption - Variable in class moa.classifiers.core.statisticaltests.Cramer
 
config - Variable in class moa.options.AbstractOptionHandler
 
Configurable - Interface in com.github.javacliparser
Configurable interface.
configureTaskButton - Variable in class moa.gui.active.ALTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
 
configureTaskButton - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.TaskManagerPanel
 
confKOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
ConfStream - Class in moa.clusterers.meta
 
ConfStream() - Constructor for class moa.clusterers.meta.ConfStream
 
confusionMatrixBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
confusionMatrixLearner - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
confusionMatrixReset - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
confusionMatrixResetBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
connectivity - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
the connectivity of the point to its cluster
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.AMRulesRegressorOld
 
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.core.Rule.Builder
 
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
contains(int, int) - Method in class moa.gui.visualization.ClusterPanel
 
contains(int, int) - Method in class moa.gui.visualization.OutlierPanel
 
contextIsCompatible(InstancesHeader, InstancesHeader) - Static method in class moa.classifiers.AbstractClassifier
Returns if two contexts or headers of instances are compatible.

Two contexts are compatible if they follow the following rules:
Rule 1: num classes can increase but never decrease
Rule 2: num attributes can increase but never decrease
Rule 3: num nominal attribute values can increase but never decrease
Rule 4: attribute types must stay in the same order (although class can move; is always skipped over)

Attribute names are free to change, but should always still represent the original attributes.
contextIsCompatible(InstancesHeader, InstancesHeader) - Static method in class moa.clusterers.AbstractClusterer
 
Converter - Class in moa.core.utils
Converter.
Converter() - Constructor for class moa.core.utils.Converter
 
Converter(int) - Constructor for class moa.core.utils.Converter
 
convertNewLines(String) - Static method in class moa.core.Utils
Converts carriage returns and new lines in a string into \r and \n.
convertToRelativePath(File) - Static method in class moa.core.Utils
Converts a File's absolute path to a path relative to the user (ie start) directory.
convertX(double) - Method in class moa.gui.LineGraphViewPanel.PlotLine
 
convertY(double) - Method in class moa.gui.LineGraphViewPanel.PlotLine
 
copy() - Method in class com.github.javacliparser.AbstractOption
 
copy() - Method in interface com.github.javacliparser.Option
Gets a copy of this option
copy() - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
 
copy() - Method in interface com.yahoo.labs.samoa.instances.Instance
Copy.
copy() - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Produces a shallow copy of this instance data.
copy() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Copy.
copy() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
 
copy() - Method in class moa.AbstractMOAObject
 
copy() - Method in class moa.classifiers.AbstractClassifier
 
copy() - Method in interface moa.classifiers.Classifier
Produces a copy of this learner.
copy() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Produces a copy of this change detector method
copy() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Produces a copy of this drift detection method
copy() - Method in class moa.classifiers.rules.core.anomalydetection.AbstractAnomalyDetector
 
copy() - Method in interface moa.classifiers.rules.core.anomalydetection.AnomalyDetector
 
copy() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Creates a copy of the object
copy() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Creates a copy of the object
copy() - Method in class moa.clusterers.AbstractClusterer
 
copy() - Method in interface moa.clusterers.Clusterer
 
copy() - Method in class moa.clusterers.denstream.MicroCluster
 
copy() - Method in class moa.clusterers.meta.BooleanParameter
 
copy() - Method in class moa.clusterers.meta.CategoricalParameter
 
copy() - Method in class moa.clusterers.meta.IntegerParameter
 
copy() - Method in interface moa.clusterers.meta.IParameter
 
copy() - Method in class moa.clusterers.meta.NumericalParameter
 
copy() - Method in class moa.clusterers.meta.OrdinalParameter
 
copy() - Method in class moa.core.AutoExpandVector
 
copy() - Method in interface moa.core.Example
 
copy() - Method in class moa.core.InstanceExample
 
copy() - Method in interface moa.MOAObject
This method produces a copy of this object.
copy() - Method in class moa.options.AbstractOptionHandler
 
copy() - Method in interface moa.options.OptionHandler
This method produces a copy of this object.
copy() - Method in class moa.recommender.rc.utils.DenseVector
 
copy() - Method in class moa.recommender.rc.utils.SparseVector
 
copy() - Method in class moa.recommender.rc.utils.Vector
 
copy(SeqDrift2ChangeDetector.Reservoir) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
copy(SingleVector[]) - Static method in class moa.classifiers.rules.core.Utils
 
copy(DoubleVector[]) - Static method in class moa.classifiers.rules.core.Utils
 
copy(DoubleVector[][]) - Static method in class moa.classifiers.rules.core.Utils
 
copy(MOAObject) - Static method in class moa.AbstractMOAObject
This method produces a copy of an object.
copyAsFloatVector(DoubleVector[]) - Static method in class moa.classifiers.rules.core.Utils
 
copyClipBoardConfiguration() - Method in class moa.gui.active.ALTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.featureanalysis.FeatureImportancePanel
 
copyClipBoardConfiguration() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.RegressionTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.TaskManagerPanel
 
copyInstances(int, Instances, int) - Method in class com.yahoo.labs.samoa.instances.Instances
 
copyObject(Serializable) - Static method in class com.github.javacliparser.SerializeUtils
 
copyObject(Serializable) - Static method in class moa.core.SerializeUtils
 
copyrightNotice - Static variable in class moa.core.Globals
 
copyStatistics(ISOUPTree.Node) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
copyStatistics(ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
copyStatistics(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.Node
 
copyTree(Iadem3Subtree) - Method in class moa.classifiers.trees.iadem.Iadem3
 
CoresetCostTriple - Class in moa.clusterers.streamkm
CoresetCostTriple is a wrapper that allows the lloydPlusPlus method in StreamKM to return the coresetCentres, radii of the associated clusters and the cost associated with the coreset.
CoresetCostTriple(Point[], double[], double) - Constructor for class moa.clusterers.streamkm.CoresetCostTriple
 
CoresetKMeans - Class in moa.clusterers.kmeanspm
Provides methods to execute the k-means and k-means++ algorithm with a clustering.
CoresetKMeans() - Constructor for class moa.clusterers.kmeanspm.CoresetKMeans
 
coresetsize - Variable in class moa.clusterers.streamkm.StreamKM
 
correctlyClassifies(Instance) - Method in class moa.classifiers.AbstractClassifier
 
correctlyClassifies(Instance) - Method in interface moa.classifiers.Classifier
Gets whether this classifier correctly classifies an instance.
correctlyInitialized() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Checks whether an object of this class has been correctly initialized.
correctPositivePredictions - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
correctPositivePredictions - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
correctPredictions - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
correctPredictions - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
CorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
correlation(double[], double[], int) - Static method in class moa.core.Utils
Returns the correlation coefficient of two double vectors.
costLabeling - Variable in class moa.classifiers.active.ALUncertainty
 
costNegative - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
costNegative - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
costNegativeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
costNegativeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
costOfPoint(int, Point[]) - Method in class moa.clusterers.streamkm.Point
Computes the cost of this point with the given array of centres centres[] (of size k)
costOfPointToCenter(Point) - Method in class moa.clusterers.streamkm.Point
Computes the cost of this point with centre centre
costPositive - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
costPositive - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
costPositiveOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
costPositiveOption - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
count() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Deprecated. 
count_after - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
count_after - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
count_after - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
count_after - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
count_before - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
countRatingsItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
countRatingsItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
countRatingsUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
countRatingsUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
countTweets - Variable in class moa.streams.generators.TextGenerator
 
coversAllOutputs() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
coversAllOutputs() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Check if vote has a value for each output
Cramer - Class in moa.classifiers.core.statisticaltests
Implements the Multivariate Non-parametric Cramer Von Mises Statistical Test.
Cramer() - Constructor for class moa.classifiers.core.statisticaltests.Cramer
 
CRAMER - Static variable in class moa.classifiers.core.statisticaltests.Cramer
 
Cramer.CramerTest - Class in moa.classifiers.core.statisticaltests
 
cramerTest(List<Instance>, List<Instance>) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
cramerTest(List<Instance>, List<Instance>, double, int, String, boolean, int, double, int) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
CramerTest(int, int, int, double, double, double, double, double, double, double[], double[], double[]) - Constructor for class moa.classifiers.core.statisticaltests.Cramer.CramerTest
 
cramerTest1(List<List<Double>>, List<List<Double>>) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
cramerTest1(List<List<Double>>, List<List<Double>>, double, int, String, boolean, int, double, int) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
createCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
Creates the custom editor.
createDebugOutputFile() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
createdOn - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
createdOn - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
createdOn - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
createLabelledOptionComponentListPanel(Option[], List<OptionEditComponent>) - Static method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
createNewClassifier(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Processes a chunk.
createObject(String[], Class<?>) - Static method in class com.github.javacliparser.ClassOption
 
createObject(String, Class<?>) - Static method in class com.github.javacliparser.ClassOption
 
createOptionsList() - Method in class moa.tasks.ipynb.OptionsString
Separates out options from command strings
createPopupMenu(boolean, boolean, boolean, boolean, boolean) - Method in class moa.gui.experimentertab.ImagePanel
 
createRelativePath(File) - Static method in class moa.core.Utils
Converts a File's absolute path to a path relative to the user (ie start) directory.
createRoot(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
createRoot(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3
 
createRule(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
createTemplate(Instances) - Method in class moa.core.utils.Converter
 
createVirtualNodes(IademNumericAttributeObserver, boolean, boolean, Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
createVirtualNodes(IademNumericAttributeObserver, boolean, boolean, Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
createWekaClassifier(String[]) - Method in class moa.classifiers.meta.WEKAClassifier
 
createWekaClassifier(String[]) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
crossingPoint - Variable in class moa.classifiers.meta.LearnNSE
 
CROSSPLATFORM_LNF - Static variable in class moa.gui.LookAndFeel
the cross-platform LnF classname.
CSMOTE - Class in moa.classifiers.meta.imbalanced
CSMOTE
CSMOTE() - Constructor for class moa.classifiers.meta.imbalanced.CSMOTE
 
csvFileOption - Variable in class moa.streams.clustering.SimpleCSVStream
 
CuckooHashing<T> - Class in moa.clusterers.kmeanspm
Provides a hash table based on Cuckoo Hashing.
CuckooHashing(int, int, int, Random) - Constructor for class moa.clusterers.kmeanspm.CuckooHashing
Creates a new hash table based on Cuckoo Hashing.
CuckooHashing(int, Random) - Constructor for class moa.clusterers.kmeanspm.CuckooHashing
Creates a new hash table based on Cuckoo Hashing.
cumulativeSum - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
curItemID() - Method in interface moa.recommender.dataset.Dataset
 
curItemID() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
curItemID() - Method in class moa.recommender.dataset.impl.JesterDataset
 
curItemID() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
curRating() - Method in interface moa.recommender.dataset.Dataset
 
curRating() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
curRating() - Method in class moa.recommender.dataset.impl.JesterDataset
 
curRating() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
currentActivityDescription - Variable in class moa.tasks.StandardTaskMonitor
 
currentActivityFractionComplete - Variable in class moa.tasks.StandardTaskMonitor
 
currentChunk - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Current chunk of instances.
currentChunk - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
currentChunk - Variable in class moa.classifiers.meta.RCD
 
currentChunk2 - Variable in class moa.classifiers.meta.RCD
 
currentLength() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Gets the current length of the list.
currentList - Variable in class com.github.javacliparser.ListOption
 
currentSplitState - Variable in class moa.classifiers.trees.iadem.Iadem3
 
currentStatus - Variable in class moa.gui.experimentertab.ExpTaskThread
 
currentStatus - Variable in class moa.tasks.TaskThread
 
currentTask - Variable in class moa.gui.active.ALTaskManagerPanel
 
currentTask - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
currentTask - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
currentTask - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
currentTask - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
Configure GUI so that user can set parameters for feature importance algorithm and trigger task execution to compute scores of feature importance.
currentTask - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
currentTask - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
currentTask - Variable in class moa.gui.RegressionTaskManagerPanel
 
currentTask - Variable in class moa.gui.TaskManagerPanel
 
currentVal - Variable in class com.github.javacliparser.FloatOption
 
currentVal - Variable in class com.github.javacliparser.IntOption
 
currentVal - Variable in class com.github.javacliparser.StringOption
 
currentValue - Variable in class com.github.javacliparser.AbstractClassOption
The current object
currentValue - Variable in class moa.options.AbstractClassOption
The current object
currentWindow - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Current window of instance class values.
curUserID() - Method in interface moa.recommender.dataset.Dataset
 
curUserID() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
curUserID() - Method in class moa.recommender.dataset.impl.JesterDataset
 
curUserID() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
curve - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
CusumDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in Cusum
CusumDM() - Constructor for class moa.classifiers.core.driftdetection.CusumDM
 
cut_point - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
cut_point - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
cut_point - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
cutoffOption - Variable in class moa.clusterers.CobWeb
 
cutPointSuggestion(int) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
cutPointSuggestion(int) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
cutPointSuggestion(int) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
cutPointSuggestion(int) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 

D

DACC - Class in moa.classifiers.meta
Dynamic Adaptation to Concept Changes.
DACC() - Constructor for class moa.classifiers.meta.DACC
 
DACC.Pair - Class in moa.classifiers.meta
This helper class is used to sort an array of pairs of integers: val and index.
data - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Block
 
data - Variable in class moa.clusterers.clustree.Entry
The actual entry data.
data - Variable in class moa.clusterers.outliers.utils.mtree.MTree.ResultItem
A nearest-neighbor.
data - Variable in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
data - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
DataObject - Class in moa.clusterers.outliers.AnyOut.util
This object encapsulates a data point.
DataObject(int, Instance) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataObject
Standard constructor for DataObject.
dataOption - Variable in class moa.recommender.predictor.BaselinePredictor
 
dataOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
DataPoint - Class in moa.gui.visualization
 
DataPoint(Instance, Integer) - Constructor for class moa.gui.visualization.DataPoint
 
dataset - Variable in class moa.classifiers.meta.RandomRules
 
dataset - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
dataset - Variable in class moa.streams.clustering.SimpleCSVStream
 
dataset - Variable in class moa.streams.filters.RBFFilter
 
dataset - Variable in class moa.streams.filters.ReLUFilter
 
dataset - Variable in class moa.streams.filters.SelectAttributesFilter
 
dataset() - Method in interface com.yahoo.labs.samoa.instances.Instance
Dataset.
dataset() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Dataset.
Dataset - Interface in moa.recommender.dataset
 
DataSet - Class in moa.clusterers.outliers.AnyOut.util
A set of DataObjects.
DataSet(int) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataSet
Creates an empty set.
DataSet(DataObject) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataSet
Creates a Set with only the given object.
datasetOption - Variable in class moa.tasks.EvaluateOnlineRecommender
 
dbInitialModelPercentage - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
DBScan - Class in moa.clusterers.macro.dbscan
 
DBScan(Clustering, double, int) - Constructor for class moa.clusterers.macro.dbscan.DBScan
 
DDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in DDM method of Joao Gama SBIA 2004.
DDM() - Constructor for class moa.classifiers.core.driftdetection.DDM
 
DDM_INCONTROL_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
DDM_OUTCONTROL_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
DDM_WARNING_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
ddmLevel - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
deactivateAllLeaves() - Method in class moa.classifiers.trees.EFDT
 
deactivateAllLeaves() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
deactivateAllLeaves() - Method in class moa.classifiers.trees.HoeffdingTree
 
deactivateLearningNode(EFDT.ActiveLearningNode, EFDT.SplitNode, int) - Method in class moa.classifiers.trees.EFDT
 
deactivateLearningNode(HoeffdingOptionTree.ActiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
deactivateLearningNode(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
deactivateLearningNode(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
debug - Variable in class moa.evaluation.CMM
enable/disable debug mode
debug(String, int) - Method in class moa.classifiers.rules.AbstractAMRules
Print to console
debug(String, int) - Method in class moa.classifiers.rules.core.Rule
 
debug(String, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
debug(String, int) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
Print to console
debug(String, int) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
Print to console
debuganomaly(Instance, double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
debugFileOption - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
debugStream - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
decay_rate - Variable in class moa.gui.visualization.ClusterPanel
 
decay_rate - Variable in class moa.gui.visualization.OutlierPanel
 
decayFactorOption - Variable in class moa.clusterers.dstream.Dstream
 
decayHorizonOption - Variable in class moa.streams.clustering.ClusteringStream
 
decayRate - Variable in class moa.gui.visualization.PointPanel
 
decayThreshold - Variable in class moa.gui.visualization.PointPanel
 
decayThresholdOption - Variable in class moa.streams.clustering.ClusteringStream
 
decisionNodeCount - Variable in class moa.classifiers.trees.EFDT
 
decisionNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
decisionNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
 
DecisionStump - Class in moa.classifiers.trees
Decision trees of one level.
Parameters:
DecisionStump() - Constructor for class moa.classifiers.trees.DecisionStump
 
decrCutPoint - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
default_color - Variable in class moa.gui.visualization.ClusterPanel
 
default_color - Variable in class moa.gui.visualization.OutlierPanel
 
default_color - Variable in class moa.gui.visualization.PointPanel
 
DEFAULT_MIN_NODE_CAPACITY - Static variable in class moa.clusterers.outliers.utils.mtree.MTree
The default minimum capacity of nodes in an M-Tree, when not specified in the constructor call.
DEFAULT_NUM_TABLES - Static variable in class moa.clusterers.kmeanspm.CuckooHashing
 
DEFAULT_STASH_SIZE - Static variable in class moa.clusterers.kmeanspm.CuckooHashing
 
defaultCLIString - Variable in class com.github.javacliparser.AbstractClassOption
The default command line interface text.
defaultCLIString - Variable in class moa.options.AbstractClassOption
The default command line interface text.
defaultFileExtension - Variable in class com.github.javacliparser.FileOption
 
defaultList - Variable in class com.github.javacliparser.ListOption
 
defaultNumericAttribute - Variable in class com.yahoo.labs.samoa.instances.AttributesInformation
The attribute used for default for numerical values
defaultOptionIndex - Variable in class com.github.javacliparser.MultiChoiceOption
 
defaultRule - Variable in class moa.classifiers.rules.AbstractAMRules
 
defaultRule - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
defaultRule - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
defaultRuleErrors(Prediction) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
defaultRuleErrors(Prediction) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
defaultVal - Variable in class com.github.javacliparser.FloatOption
 
defaultVal - Variable in class com.github.javacliparser.IntOption
 
defaultVal - Variable in class com.github.javacliparser.StringOption
 
defineDataFormat() - Method in class weka.datagenerators.classifiers.classification.MOA
Initializes the format for the dataset produced.
defineImmutableCapabilities() - Method in interface moa.capabilities.CapabilitiesHandler
Defines the set of capabilities the object has.
defineImmutableCapabilities() - Method in class moa.classifiers.AbstractClassifier
 
defineImmutableCapabilities() - Method in class moa.classifiers.bayes.NaiveBayes
 
defineImmutableCapabilities() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
defineImmutableCapabilities() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
defineImmutableCapabilities() - Method in class moa.classifiers.functions.MajorityClass
 
defineImmutableCapabilities() - Method in class moa.classifiers.functions.NoChange
 
defineImmutableCapabilities() - Method in class moa.classifiers.lazy.SAMkNN
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.LeveragingBag
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.OzaBag
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.OzaBagAdwin
 
defineImmutableCapabilities() - Method in class moa.classifiers.meta.StreamingRandomPatches
 
defineImmutableCapabilities() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
defineImmutableCapabilities() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
defineImmutableCapabilities() - Method in class moa.classifiers.trees.HoeffdingTree
 
defineImmutableCapabilities() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
defineImmutableCapabilities() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
defineImmutableCapabilities() - Method in interface moa.evaluation.LearningPerformanceEvaluator
 
defineImmutableCapabilities() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
defineImmutableCapabilities() - Method in class moa.streams.ArffFileStream
 
defineImmutableCapabilities() - Method in class moa.streams.ConceptDriftRealStream
 
defineImmutableCapabilities() - Method in class moa.streams.ConceptDriftStream
 
defineImmutableCapabilities() - Method in interface moa.streams.ExampleStream
 
defineImmutableCapabilities() - Method in class moa.streams.generators.AgrawalGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.HyperplaneGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.LEDGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.LEDGeneratorDrift
 
defineImmutableCapabilities() - Method in class moa.streams.generators.RandomRBFGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
defineImmutableCapabilities() - Method in class moa.streams.generators.RandomTreeGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.SEAGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.STAGGERGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.WaveformGenerator
 
defineImmutableCapabilities() - Method in class moa.streams.generators.WaveformGeneratorDrift
 
defineImmutableCapabilities() - Method in class moa.tasks.ClassificationMainTask
 
defineImmutableCapabilities() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
defineImmutableCapabilities() - Method in class moa.tasks.EvaluateModel
 
defineImmutableCapabilities() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
defineImmutableCapabilities() - Method in class moa.tasks.EvaluatePrequential
 
defineImmutableCapabilities() - Method in class moa.tasks.LearnModel
 
delay - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Delay in detecting change
delay - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
delayLengthOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
delayLengthOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
delete() - Method in class com.yahoo.labs.samoa.instances.Instances
Delete.
delete(int) - Method in class com.yahoo.labs.samoa.instances.Instances
Delete.
deleteAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.AttributesInformation
 
deleteAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
 
deleteAttributeAt(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Delete attribute at.
deleteAttributeAt(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Deletes an attribute.
deleteAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Delete attribute at.
deleteAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
deleteAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Deletes an attribute at the given position (0 to numAttributes() - 1).
deleteAttributeAt(Integer) - Method in class com.yahoo.labs.samoa.instances.Instances
Delete attribute at.
deleteDrectory(File) - Static method in class moa.gui.experimentertab.ReadFile
Delete the selected directory.
deletedTrees - Variable in class moa.classifiers.trees.iadem.Iadem3
 
deleteElement() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
deleteMergeableTupleMostFull() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
deleteNode(HoeffdingTree.Node, int) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
deleteScriptsOption - Variable in class moa.tasks.Plot
Determines whether to delete gnuplot scripts after plotting.
deleteSelectedTasks() - Method in class moa.gui.active.ALTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Deletes selected tasks
deleteSelectedTasks() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.active.ALTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.TaskManagerPanel
 
deleteTuple(int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
deleteTupleMostFull() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
deliveryDelayValues - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
delta - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
DELTA - Static variable in class moa.classifiers.core.driftdetection.ADWIN
 
deltaAdwinOption - Variable in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
deltaAdwinOption - Variable in class moa.classifiers.meta.LeveragingBag
 
deltaAdwinOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
deltaAdwinOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
deltaOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
 
deltaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
deltaOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
deltaSEEDOption - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
deltaSeqDrift2Option - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
deltaWarningOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
DenseInstance - Class in com.yahoo.labs.samoa.instances
The Class DenseInstance.
DenseInstance(double) - Constructor for class com.yahoo.labs.samoa.instances.DenseInstance
Instantiates a new dense instance.
DenseInstance(double, double[]) - Constructor for class com.yahoo.labs.samoa.instances.DenseInstance
Instantiates a new dense instance.
DenseInstance(Instance) - Constructor for class com.yahoo.labs.samoa.instances.DenseInstance
Instantiates a new dense instance.
DenseInstance(InstanceImpl) - Constructor for class com.yahoo.labs.samoa.instances.DenseInstance
Instantiates a new dense instance.
DenseInstanceData - Class in com.yahoo.labs.samoa.instances
The Class DenseInstanceData.
DenseInstanceData() - Constructor for class com.yahoo.labs.samoa.instances.DenseInstanceData
Instantiates a new dense instance data.
DenseInstanceData(double[]) - Constructor for class com.yahoo.labs.samoa.instances.DenseInstanceData
Instantiates a new dense instance data.
DenseInstanceData(int) - Constructor for class com.yahoo.labs.samoa.instances.DenseInstanceData
Instantiates a new dense instance data.
DenseMicroCluster - Class in moa.clusterers.macro.dbscan
 
DenseMicroCluster(CFCluster) - Constructor for class moa.clusterers.macro.dbscan.DenseMicroCluster
 
DenseVector - Class in moa.recommender.rc.utils
 
DenseVector() - Constructor for class moa.recommender.rc.utils.DenseVector
 
DenseVector(ArrayList<Double>) - Constructor for class moa.recommender.rc.utils.DenseVector
 
DenseVector.DenseVectorIterator - Class in moa.recommender.rc.utils
 
DenseVectorIterator() - Constructor for class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
DensityGrid - Class in moa.clusterers.dstream
Density Grids are defined in equation 3 (section 3.1) of Chen and Tu 2007 as: In D-Stream, we partition the d−dimensional space S into density grids.
DensityGrid(int[]) - Constructor for class moa.clusterers.dstream.DensityGrid
A constructor method for a density grid
DensityGrid(DensityGrid) - Constructor for class moa.clusterers.dstream.DensityGrid
A constructor method for a density grid
densityRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
densityWithNew(int, double) - Method in class moa.clusterers.dstream.CharacteristicVector
Implements the density update function given in eq 5 (Proposition 3.1) of Chen and Tu 2007.
DependentOptionsUpdater - Class in moa.options
This class handles the dependency between two options by updating the dependent option whenever the option it is depending on changes.
DependentOptionsUpdater(ClassOptionWithListenerOption, EditableMultiChoiceOption) - Constructor for class moa.options.DependentOptionsUpdater
 
descendOneStep(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.SplitNode
 
descendOneStep(Instance) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
describe() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
Describe the feature importance method used.
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Gets the text that describes the condition of a branch.
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.SplitNode
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.trees.ARFFIMTDD.SplitNode
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.Node
 
describeSubtree(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
describeSubtree(EFDT, StringBuilder, int) - Method in class moa.classifiers.trees.EFDT.Node
 
describeSubtree(EFDT, StringBuilder, int) - Method in class moa.classifiers.trees.EFDT.SplitNode
 
describeSubtree(HoeffdingOptionTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
describeSubtree(HoeffdingOptionTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
detectMeanIncrement(HDDM_W_Test.SampleInfo, HDDM_W_Test.SampleInfo, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
detector - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
detectorStream - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
determineAssignments(KDTreeNode, Instances, int[], int[], double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Assigns instances to the current centers called candidates.
determineClass(double, double) - Method in interface moa.streams.generators.SineGenerator.ClassFunction
 
determineClass(double, double, double) - Method in interface moa.streams.generators.SEAGenerator.ClassFunction
 
determineClass(double, double, double, double) - Method in interface moa.streams.generators.MixedGenerator.ClassFunction
 
determineClass(double, double, int, int, int, int, double, int, double) - Method in interface moa.streams.generators.AgrawalGenerator.ClassFunction
 
determineClass(int, int, int) - Method in interface moa.streams.generators.STAGGERGenerator.ClassFunction
 
determineClass(String, String, String, String, String) - Method in interface moa.streams.generators.AssetNegotiationGenerator.ClassFunction
 
determineClusterCentreKMeans(int, Point[]) - Method in class moa.clusterers.streamkm.Point
Computes the index of the centre nearest to this point with the given array of centres centres[] (of size k)
determineNumberOfClusters() - Method in class moa.clusterers.CobWeb
determines the number of clusters if necessary
DietzfelbingerHash - Class in moa.clusterers.kmeanspm
Provides a Dietzfelbinger hash function.
DietzfelbingerHash(int, Random) - Constructor for class moa.clusterers.kmeanspm.DietzfelbingerHash
Creates a Dietzfelbinger hash function.
difference(int, double, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Computes the difference between two given attribute values.
dimension - Variable in class moa.clusterers.streamkm.StreamKM
 
dimension() - Method in class moa.cluster.Clustering
 
dimensions() - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
dimensions() - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
dimensions() - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
dimensions() - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
dimensions() - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
dimensions() - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunctions.EuclideanCoordinate
The number of dimensions.
direction - Variable in class moa.gui.visualization.ClusterPanel
 
directionForBestTree() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
disableAttribute(int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
disableAttribute(int) - Method in class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
disableAttribute(int) - Method in class moa.classifiers.trees.EFDT.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
disableAttribute(int) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
 
disableBackgroundLearnerOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
disableBackgroundLearnerOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
disableBackgroundLearnerOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
disableBkgLearner - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
disableChangeDetection() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
disableChangeDetection() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
disableChangeDetection() - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
disableChangeDetection() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
disableChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
disableChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.Node
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
disableDriftDetectionOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
disableDriftDetector - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
disableRefresh() - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
disableRefresh() - Method in class moa.gui.PreviewPanel
 
disableUpdates - Variable in class moa.recommender.rc.data.AbstractRecommenderData
 
disableUpdates(boolean) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
disableUpdates(boolean) - Method in interface moa.recommender.rc.data.RecommenderData
 
disableWeightedVote - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
disableWeightedVote - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
discardModel(int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Removes the classifier at a given index from the model, thus decreasing the models size.
discardModel(int) - Method in class moa.classifiers.meta.DACC
Resets a classifier in the ensemble
discardModel(int) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
discardNexInstancesNotFromPartition() - Method in class moa.streams.PartitioningStream
discarding all instances which are exluded until an instance which can be seen by this stream or the stream is empty
discoverOptionsViaReflection() - Method in class com.github.javacliparser.JavaCLIParser
Gets the options of this class via reflection.
DiscreteAttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
Interface for observing the class data distribution for a discrete (nominal) attribute.
distance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
the distance of this element.
distance - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.utils.mtree.MTree.ResultItem
The distance from the nearest-neighbor to the query data object parameter.
distance(double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the Euclidean length of a point.
distance(double[], double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the Euclidean distance of two points.
distance(double[], double[], int) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the Euclidean distance of two points.
distance(Instance, Instance) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Calculates the distance between two instances.
distance(Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Calculates the distance between two instances.
distance(Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Calculates the distance between two instances.
distance(Instance, Instance, double) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Calculates the distance between two instances.
distance(Instance, Instance, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Calculates the distance between two instances.
distanceFunction - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
DistanceFunction - Interface in moa.classifiers.lazy.neighboursearch
Interface for any class that can compute and return distances between two instances.
DistanceFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
An object that can calculate the distance between two data objects.
DistanceFunctions - Class in moa.clusterers.outliers.utils.mtree
Some pre-defined implementations of distance functions.
DistanceFunctions.EuclideanCoordinate - Interface in moa.clusterers.outliers.utils.mtree
An interface to represent coordinates in Euclidean spaces.
distanceFunctionTipText() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the tip text for this property.
distanceSquared(double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the squared Euclidean length of a point.
distanceSquared(double[], double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the squared Euclidean distance of two points.
distanceSquared(double[], double[], int) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the squared Euclidean distance of two points.
distanceToHrect(KDTreeNode, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the distance between a point and an hyperrectangle.
distanceWithDivision(double[], double) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the Euclidean length of a point divided by a scalar.
distanceWithDivision(double[], double, double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the Euclidean distance of the first point divided by a scalar and another second point.
distanceWithDivision(double[], double, double[], double) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the Euclidean distance of the first point divided by a first scalar and another second point divided by a second scalar.
distanceWithDivisionSquared(double[], double) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the squared Euclidean length of a point divided by a scalar.
distanceWithDivisionSquared(double[], double, double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the squared Euclidean distance of the first point divided by a scalar and another second point.
distanceWithDivisionSquared(double[], double, double[], double) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the squared Euclidean distance of the first point divided by a first scalar and another second point divided by a second scalar.
distributionForInstance(Instance) - Method in class weka.classifiers.meta.MOA
Predicts the class memberships for a given instance.
dloss(double) - Method in class moa.classifiers.functions.SGD
 
dloss(double) - Method in class moa.classifiers.functions.SGDMultiClass
 
dloss(double) - Method in class moa.classifiers.functions.SPegasos
 
doLabelAcqReport(Example<Instance>, int) - Method in interface moa.evaluation.ALClassificationPerformanceEvaluator
Reports if a label of an instance was acquired.
doLabelAcqReport(Example<Instance>, int) - Method in class moa.evaluation.ALWindowClassificationPerformanceEvaluator
Receives the information if a label has been acquired and increases counters.
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateClustering
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateConceptDrift
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateInterleavedChunks
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModelMultiLabel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModelMultiTarget
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModelRegression
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateMultipleClusterings
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateOnlineRecommender
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequential
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialCV
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialDelayed
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialDelayedCV
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialMultiLabel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialMultiTarget
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialRegression
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.FeatureImportanceConfig
After user clicks Run button, this method executes task to compute scores of feature importance and return.
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModelMultiLabel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModelMultiTarget
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModelRegression
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MainTask
This method performs this task.
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MeasureStreamSpeed
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.meta.ALMultiParamTask
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.meta.ALPartitionEvaluationTask
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.meta.ALPrequentialEvaluationTask
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.Plot
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.RunStreamTasks
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.RunTasks
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.WriteConfigurationToJupyterNotebook
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.WriteMultipleStreamsToARFF
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.WriteStreamToARFFFile
 
doMeasure(ArrayList<Double>) - Method in class moa.classifiers.trees.iadem.IademSplitCriterion
 
DominantLabelsClassifier - Class in moa.classifiers.rules.multilabel.functions
 
DominantLabelsClassifier() - Constructor for class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
doNaiveBayesPrediction(Instance, DoubleVector, AutoExpandVector<AttributeClassObserver>) - Static method in class moa.classifiers.bayes.NaiveBayes
 
doNaiveBayesPredictionLog(Instance, DoubleVector, AutoExpandVector<AttributeClassObserver>, AutoExpandVector<AttributeClassObserver>) - Static method in class moa.classifiers.bayes.NaiveBayes
 
doNotNormalizeFeatureScore() - Method in class moa.tasks.FeatureImportanceConfig
 
doNotNormalizeFeatureScoreOption - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
doNotNormalizeOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
doNotOutputResultsToFileOption - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
dontNormalizeTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns the tip text for this property.
doSaveAs() - Method in class moa.gui.experimentertab.ImagePanel
Method for save the images.
doSplit(IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
doSplit(IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
doTask() - Method in class moa.tasks.AbstractTask
 
doTask() - Method in interface moa.tasks.Task
This method performs this task, when TaskMonitor and ObjectRepository are no needed.
doTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
 
doTask(TaskMonitor, ObjectRepository) - Method in interface moa.tasks.Task
This method performs this task.
DoTask - Class in moa
Class for running a MOA task from the command line.
DoTask() - Constructor for class moa.DoTask
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
This method performs this task.
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.CacheShuffledStream
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MainTask
 
dotProd(Instance, double[], int) - Static method in class moa.classifiers.functions.SPegasos
 
dotProd(Instance, DoubleVector, int) - Static method in class moa.classifiers.functions.SGD
 
dotProd(Instance, DoubleVector, int) - Static method in class moa.classifiers.functions.SGDMultiClass
 
dotProduct(double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the dot product of the point with itself.
dotProduct(double[], double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the dot product of the first point with a second point.
dotProduct(Vector) - Method in class moa.recommender.rc.utils.Vector
 
dotProductWithAddition(double[], double[], double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the dot product of the addition of the first and the second point with the third point.
dotProductWithAddition(double[], double[], double[], double[]) - Static method in class moa.clusterers.kmeanspm.Metric
Calculates the dot product of the addition of the first and the second point with the addition of the third and the fourth point.
DOTS - moa.gui.experimentertab.PlotTab.PlotStyle
 
DOTS - moa.tasks.Plot.PlotStyle
 
DOUBLE_ADD - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
DOUBLE_DIV - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
DOUBLE_MULT - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
doubleAddition() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a double addition has been performed by the tree.
doubleAddition() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleAddition(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of double additions have been performed.
doubleAddition(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleDivision() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a double division has been performed by the tree.
doubleDivision() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleDivision(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of double divisions have been performed.
doubleDivision(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleMultiplication() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a double multiplicaton has been performed by the tree.
doubleMultiplication() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleMultiplication(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of double multiplications have been performed.
doubleMultiplication(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleToCLIString(double) - Static method in class com.github.javacliparser.FloatOption
 
doubleToString(double, int) - Static method in class com.github.javacliparser.StringUtils
 
doubleToString(double, int) - Static method in class moa.core.StringUtils
 
doubleToString(double, int) - Static method in class moa.core.Utils
Rounds a double and converts it into String.
doubleToString(double, int, int) - Static method in class com.github.javacliparser.StringUtils
 
doubleToString(double, int, int) - Static method in class moa.core.StringUtils
 
doubleToString(double, int, int) - Static method in class moa.core.Utils
Rounds a double and converts it into a formatted decimal-justified String.
DoubleVector - Class in moa.core
Vector of double numbers with some utilities.
DoubleVector() - Constructor for class moa.core.DoubleVector
 
DoubleVector(double[]) - Constructor for class moa.core.DoubleVector
 
DoubleVector(DoubleVector) - Constructor for class moa.core.DoubleVector
 
downheap() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
performs downheap operation for the heap to maintian its properties.
drawClusterings(List<DataPoint>, List<DataPoint>) - Method in class moa.gui.visualization.RunVisualizer
 
drawEvent(OutlierEvent, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
drawGTClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
 
drawMacroClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
 
drawMicroClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
 
drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.ClusterPanel
 
drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.OutlierPanel
 
drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.PointPanel
 
drawOutliers(Vector<MyBaseOutlierDetector.Outlier>, Color) - Method in class moa.gui.visualization.StreamOutlierPanel
 
drawPoint(DataPoint) - Method in class moa.gui.visualization.StreamPanel
 
drawPoint(DataPoint, boolean, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
drawXLabels(Graphics) - Method in class moa.gui.visualization.AbstractGraphAxes
Draws the x labels onto the x axis.
drawXLabels(Graphics) - Method in class moa.gui.visualization.ParamGraphAxes
 
drawXLabels(Graphics) - Method in class moa.gui.visualization.ProcessGraphAxes
 
DRIFT - Static variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
driftConfidence - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
driftConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
driftConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
driftDetection - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
driftDetectionMethod - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
driftDetectionMethod - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
driftDetectionMethod - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
driftDetectionMethod - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
driftDetectionMethod - Variable in class moa.learners.ChangeDetectorLearner
 
DriftDetectionMethodClassifier - Class in moa.classifiers.drift
Class for handling concept drift datasets with a wrapper on a classifier.
DriftDetectionMethodClassifier() - Constructor for class moa.classifiers.drift.DriftDetectionMethodClassifier
 
driftDetectionMethodOption - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
driftDetectionMethodOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
driftDetectionMethodOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
driftDetectionMethodOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
driftDetectionMethodOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
driftDetectionMethodOption - Variable in class moa.learners.ChangeDetectorLearner
 
DriftDetectionOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
driftInstance - Variable in class moa.streams.ConceptDriftRealStream
 
driftLevelOption - Variable in class moa.classifiers.core.driftdetection.RDDM
 
driftOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
driftOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
driftOption - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
driftStream - Variable in class moa.streams.ConceptDriftRealStream
 
driftStream - Variable in class moa.streams.ConceptDriftStream
 
driftstreamOption - Variable in class moa.streams.ConceptDriftRealStream
 
driftstreamOption - Variable in class moa.streams.ConceptDriftStream
 
dropOldRuleAfterExpansionOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
dropOldRuleAfterExpansionOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
Dstream - Class in moa.clusterers.dstream
Citation: Y.
Dstream() - Constructor for class moa.clusterers.dstream.Dstream
 
dumpFileOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
dumpFileOption - Variable in class moa.tasks.EvaluateClustering
 
dumpFileOption - Variable in class moa.tasks.EvaluateConceptDrift
 
dumpFileOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the output file name and location.
dumpFileOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
dumpFileOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
dumpFileOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequential
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
dumpFileOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
DynamicWeightedMajority - Class in moa.classifiers.meta
Dynamic weighted majority algorithm.
DynamicWeightedMajority() - Constructor for class moa.classifiers.meta.DynamicWeightedMajority
 

E

EDDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in EDDM method of Manuel Baena et al.
EDDM() - Constructor for class moa.classifiers.core.driftdetection.EDDM
 
EditableMultiChoiceOption - Class in moa.options
MultiChoiceOption that can have changing options.
EditableMultiChoiceOption(String, char, String, String[], String[], int) - Constructor for class moa.options.EditableMultiChoiceOption
 
EditableMultiChoiceOptionEditComponent - Class in moa.gui
EditComponent for the EditableMultiChoiceOption which allows for refreshing the shown contents.
EditableMultiChoiceOptionEditComponent(Option) - Constructor for class moa.gui.EditableMultiChoiceOptionEditComponent
 
editButton - Variable in class com.github.javacliparser.gui.ClassOptionEditComponent
 
editButton - Variable in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
editButton - Variable in class moa.gui.WEKAClassOptionEditComponent
 
editComponent - Variable in class moa.options.EditableMultiChoiceOption
The corresponding UI component
editComponents - Variable in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
editComponents - Variable in class moa.gui.clustertab.ClusteringAlgoPanel
 
editComponents - Variable in class moa.gui.outliertab.OutlierAlgoPanel
 
editedOption - Variable in class com.github.javacliparser.gui.ClassOptionEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.FileOptionEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.FlagOptionEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.FloatOptionEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.IntOptionEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.MultiChoiceOptionEditComponent
 
editedOption - Variable in class com.github.javacliparser.gui.StringOptionEditComponent
 
editedOption - Variable in class moa.gui.WEKAClassOptionEditComponent
 
editObject() - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
 
editObject() - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
editObject() - Method in class moa.gui.WEKAClassOptionEditComponent
 
EFDT - Class in moa.classifiers.trees
 
EFDT() - Constructor for class moa.classifiers.trees.EFDT
 
EFDT.ActiveLearningNode - Class in moa.classifiers.trees
 
EFDT.EFDTLearningNode - Class in moa.classifiers.trees
 
EFDT.EFDTNode - Interface in moa.classifiers.trees
 
EFDT.EFDTSplitNode - Class in moa.classifiers.trees
 
EFDT.FoundNode - Class in moa.classifiers.trees
 
EFDT.InactiveLearningNode - Class in moa.classifiers.trees
 
EFDT.LearningNode - Class in moa.classifiers.trees
 
EFDT.LearningNodeNB - Class in moa.classifiers.trees
 
EFDT.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
EFDT.Node - Class in moa.classifiers.trees
 
EFDT.SplitNode - Class in moa.classifiers.trees
 
EFDTLearningNode(double[]) - Constructor for class moa.classifiers.trees.EFDT.EFDTLearningNode
 
EFDTSplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.EFDT.EFDTSplitNode
 
EFDTSplitNode(InstanceConditionalTest, double[], int) - Constructor for class moa.classifiers.trees.EFDT.EFDTSplitNode
 
effectiveNearestNeighbors - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
elementAt(int) - Method in class moa.core.FastVector
Returns the element at the given position.
EMProjectedClustering - Class in moa.clusterers.outliers.AnyOut.util
Implements clustering via Expectation Maximization but return a clear partitioning of the data, i.e.
EMProjectedClustering() - Constructor for class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
 
emptyBuffer(long, double) - Method in class moa.clusterers.clustree.Entry
Clear the buffer in this entry and return a copy.
EMTopDownTreeBuilder - Class in moa.clusterers.outliers.AnyOut.util
 
EMTopDownTreeBuilder() - Constructor for class moa.clusterers.outliers.AnyOut.util.EMTopDownTreeBuilder
 
ENABLE_UNDO - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
ENABLE_UNDO_KEY - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
enableClassMerge - Variable in class moa.evaluation.CMM
enable/disable class merge (main feature of ground truth analysis)
enableModelError - Variable in class moa.evaluation.CMM
enable/disable model error when enabled errors that are caused by the underling cluster model will not be counted
enablePreciseTiming() - Static method in class moa.core.TimingUtils
 
enableRefresh() - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
enableRefresh() - Method in class moa.gui.PreviewPanel
 
endIndexValidation(int) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
 
enforceMemoryLimit() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Checks if the memory limit is exceeded and if so prunes the classifiers in the ensemble.
enforceMemoryLimit() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Checks if the memory limit is exceeded and if so prunes the classifiers in the ensemble.
enforceTrackerLimit() - Method in class moa.classifiers.trees.EFDT
 
enforceTrackerLimit() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
enforceTrackerLimit() - Method in class moa.classifiers.trees.HoeffdingTree
 
ensemble - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
ensemble - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
ensemble - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
ensemble - Variable in class moa.classifiers.meta.ADOB
 
ensemble - Variable in class moa.classifiers.meta.BOLE
 
ensemble - Variable in class moa.classifiers.meta.DACC
Ensemble of classifiers
ensemble - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
ensemble - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
ensemble - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
ensemble - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
ensemble - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
ensemble - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
ensemble - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
ensemble - Variable in class moa.classifiers.meta.LearnNSE
 
ensemble - Variable in class moa.classifiers.meta.LeveragingBag
 
ensemble - Variable in class moa.classifiers.meta.LimAttClassifier
 
ensemble - Variable in class moa.classifiers.meta.OCBoost
 
ensemble - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Ensemble classifiers.
ensemble - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
ensemble - Variable in class moa.classifiers.meta.OzaBag
 
ensemble - Variable in class moa.classifiers.meta.OzaBagAdwin
 
ensemble - Variable in class moa.classifiers.meta.OzaBagASHT
 
ensemble - Variable in class moa.classifiers.meta.OzaBoost
 
ensemble - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
ensemble - Variable in class moa.classifiers.meta.RandomRules
 
ensemble - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
ensemble - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
ensemble - Variable in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
ensemble - Variable in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
ensemble - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
ensemble - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
ensemble - Variable in class moa.clusterers.meta.EnsembleClustererAbstract
 
ensemble - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
ensembleAges - Variable in class moa.classifiers.meta.DACC
Age of classifiers (to compare with maturity age)
EnsembleClustererAbstract - Class in moa.clusterers.meta
 
EnsembleClustererAbstract() - Constructor for class moa.clusterers.meta.EnsembleClustererAbstract
 
EnsembleClustererAbstract.EnsembleRunnable - Class in moa.clusterers.meta
 
EnsembleDriftDetectionMethods - Class in moa.classifiers.core.driftdetection
Ensemble Drift detection method
EnsembleDriftDetectionMethods() - Constructor for class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
ensembleLearnerOption - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
EnsembleRunnable(AbstractClusterer, Instance) - Constructor for class moa.clusterers.meta.EnsembleClustererAbstract.EnsembleRunnable
 
ensembleSize - Variable in class moa.classifiers.meta.LearnNSE
 
ensembleSizeOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
ensembleSizeOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
ensembleSizeOption - Variable in class moa.classifiers.meta.ADOB
 
ensembleSizeOption - Variable in class moa.classifiers.meta.BOLE
 
ensembleSizeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
ensembleSizeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
ensembleSizeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
ensembleSizeOption - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
ensembleSizeOption - Variable in class moa.classifiers.meta.LearnNSE
 
ensembleSizeOption - Variable in class moa.classifiers.meta.LeveragingBag
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OCBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBag
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBagAdwin
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
ensembleSizeOption - Variable in class moa.classifiers.meta.RandomRules
 
ensembleSizeOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
ensembleSizeOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
ensembleSizeOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
ensembleSizeOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
ensembleWeights - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
ensembleWeights - Variable in class moa.classifiers.meta.DACC
Weights of classifiers
ensembleWeights - Variable in class moa.classifiers.meta.LearnNSE
 
ensembleWeights - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
ensembleWindows - Variable in class moa.classifiers.meta.DACC
Evaluation windows (recent classification errors)
entropy(DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
EntropyCollection - Class in moa.evaluation
 
EntropyCollection() - Constructor for class moa.evaluation.EntropyCollection
 
entropyOption - Variable in class moa.tasks.EvaluateClustering
 
entropyOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
EntropyThreshold - Class in moa.classifiers.rules.multilabel.outputselectors
Entropy measure use by online multi-label AMRules for heuristics computation.
EntropyThreshold() - Constructor for class moa.classifiers.rules.multilabel.outputselectors.EntropyThreshold
 
Entry - Class in moa.clusterers.clustree
 
Entry(int) - Constructor for class moa.clusterers.clustree.Entry
Constructor for the entry.
Entry(int, ClusKernel, long) - Constructor for class moa.clusterers.clustree.Entry
Constructuctor that creates an Entry with an empty buffer and the data given by the Kernel.
Entry(int, ClusKernel, long, Entry, Node) - Constructor for class moa.clusterers.clustree.Entry
extended constructor with containerNode and parentEntry
Entry(int, Node, long, Entry, Node) - Constructor for class moa.clusterers.clustree.Entry
Constructor that creates an Entry that points to the given node.
Entry(Entry) - Constructor for class moa.clusterers.clustree.Entry
Copy constructor.
entryToString(int) - Method in class moa.evaluation.preview.LearningCurve
 
entryToString(int) - Method in class moa.evaluation.preview.Preview
 
entryToString(int) - Method in class moa.evaluation.preview.PreviewCollection
 
entryToString(int) - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
entryToString(int, int) - Method in class moa.evaluation.preview.PreviewCollection
 
enumerateMeasures() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns an enumeration of the additional measure names.
enumerateValues() - Method in class com.yahoo.labs.samoa.instances.Attribute
Returns an enumeration of all the attribute's values if the attribute is nominal, null otherwise.
epochs - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
epsilon - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
epsilon - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
epsilon - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
EPSILON - Static variable in class moa.clusterers.clustree.ClusKernel
Numeric epsilon.
epsilonOption - Variable in class moa.classifiers.functions.AdaGrad
 
epsilonOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
epsilonPrimeSEEDOption - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
EPSLATEX - moa.gui.experimentertab.PlotTab.Terminal
 
EPSLATEX - moa.tasks.Plot.Terminal
 
eq(double, double) - Static method in class moa.core.Utils
Tests if a is equal to b.
equals(Object) - Method in class moa.capabilities.Capabilities
 
equals(Object) - Method in class moa.clusterers.dstream.DensityGrid
Overrides Object's method equals to declare that two DensityGrids are equal iff their dimensions are the same and each of their corresponding coordinates are the same.
equals(Object) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
equals(Object) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
equals(Object) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
equals(Object) - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
equals(Object) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
equals(Object) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
equals(Object) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator.Score
 
equals(Object) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator.Score
 
equals(Capabilities) - Method in class moa.capabilities.Capabilities
 
equals(Capability) - Method in class moa.capabilities.Capabilities
 
equalsPassesTest - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
equivIndexSizeOption - Variable in class moa.classifiers.meta.ADACC
Threshold for concept equivalence
ERR - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
The floating point error to tolerate in finding the widest rectangular side.
error - Variable in class moa.classifiers.meta.OzaBagASHT
 
error - Variable in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
ERROR_MARGIN - Static variable in class moa.classifiers.trees.iadem.Iadem2
 
errorBoundOption - Variable in class moa.classifiers.meta.BOLE
 
ErrorChange - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
ErrorChange - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
errorEstimator - Variable in class moa.classifiers.trees.iadem.Iadem3Subtree
 
errorFunction(double) - Static method in class moa.core.Statistics
Returns the error function of the normal distribution.
errorFunctionComplemented(double) - Static method in class moa.core.Statistics
Returns the complementary Error function of the normal distribution.
errorM - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
ErrorMeasurement - Class in moa.classifiers.rules.errormeasurers
Computes error measures with a fading factor fadingErrorFactorOption - Fading factor
ErrorMeasurement() - Constructor for class moa.classifiers.rules.errormeasurers.ErrorMeasurement
 
errorMeasurer - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
errorMeasurer - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
errorMeasurer - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
errorMeasurerOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
errorMeasurerOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
errorMeasurerOption - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
errorMeasurerOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
errorP - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
errorPrediction - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
errors - Variable in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
errors - Variable in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
errorSum - Variable in class moa.classifiers.rules.functions.TargetMean
 
ErrorWeightedVote - Interface in moa.classifiers.rules.core.voting
ErrorWeightedVote interface for weighted votes based on estimates of errors.
ErrorWeightedVoteMultiLabel - Interface in moa.classifiers.rules.multilabel.core.voting
ErrorWeightedVoteMultiLabel interface for weighted votes based on estimates of errors.
escribeFichero(String, String) - Static method in class moa.gui.experimentertab.statisticaltests.Fichero
 
estimacionValorMedio() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
estimador - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNominalVirtualNode
 
estimatedRemainingInstances() - Method in class moa.streams.ArffFileStream
 
estimatedRemainingInstances() - Method in class moa.streams.BootstrappedStream
 
estimatedRemainingInstances() - Method in class moa.streams.CachedInstancesStream
 
estimatedRemainingInstances() - Method in class moa.streams.clustering.FileStream
 
estimatedRemainingInstances() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
estimatedRemainingInstances() - Method in class moa.streams.clustering.SimpleCSVStream
 
estimatedRemainingInstances() - Method in class moa.streams.ConceptDriftRealStream
 
estimatedRemainingInstances() - Method in class moa.streams.ConceptDriftStream
 
estimatedRemainingInstances() - Method in interface moa.streams.ExampleStream
Gets the estimated number of remaining instances in this stream
estimatedRemainingInstances() - Method in class moa.streams.FilteredStream
 
estimatedRemainingInstances() - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
 
estimatedRemainingInstances() - Method in class moa.streams.filters.AbstractStreamFilter
 
estimatedRemainingInstances() - Method in class moa.streams.generators.AgrawalGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.AssetNegotiationGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.HyperplaneGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.LEDGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.MixedGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.RandomRBFGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.RandomTreeGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.SEAGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.SineGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.STAGGERGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.TextGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.WaveformGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.ImbalancedStream
 
estimatedRemainingInstances() - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
estimatedRemainingInstances() - Method in class moa.streams.MultiFilteredStream
 
estimatedRemainingInstances() - Method in class moa.streams.MultiLabelFilteredStream
 
estimatedRemainingInstances() - Method in class moa.streams.MultiTargetArffFileStream
 
estimatedRemainingInstances() - Method in class moa.streams.PartitioningStream
 
estimatedWeight_LessThan_EqualTo_GreaterThan_Value(double) - Method in class moa.core.GaussianEstimator
 
estimateModelByteSizes() - Method in class moa.classifiers.trees.EFDT
 
estimateModelByteSizes() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
estimateModelByteSizes() - Method in class moa.classifiers.trees.HoeffdingTree
 
estimation - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Prediction for the next value based in previous seen values
estimation - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator.EWMAEstimator
 
estimation - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator
 
estimation() - Method in class moa.evaluation.AdwinClassificationPerformanceEvaluator.AdwinEstimator
 
estimation() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
estimation() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator.BasicEstimator
 
estimation() - Method in interface moa.evaluation.BasicClassificationPerformanceEvaluator.Estimator
 
estimation() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator.EWMAEstimator
 
estimation() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator
 
estimation() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
estimation() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
estimationErrorWeight - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
estimationErrorWeight - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
estimator - Variable in class moa.classifiers.trees.iadem.Iadem2
 
estimator - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
estimator - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
estimator - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
Estimator(boolean) - Constructor for class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
Estimator(int) - Constructor for class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
Estimator(int) - Constructor for class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
Estimator(int) - Constructor for class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
Estimator(int) - Constructor for class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
euclidean(DistanceFunctions.EuclideanCoordinate, DistanceFunctions.EuclideanCoordinate) - Static method in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
Calculates the distance between two euclidean coordinates.
EUCLIDEAN - Static variable in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
A distance function object that calculates the distance between two euclidean coordinates.
EUCLIDEAN_DOUBLE_LIST - Static variable in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
A distance function object that calculates the distance between two coordinates represented by lists of Doubles.
EUCLIDEAN_INTEGER_LIST - Static variable in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
A distance function object that calculates the distance between two coordinates represented by lists of Integers.
EuclideanDistance - Class in moa.classifiers.lazy.neighboursearch
Implementing Euclidean distance (or similarity) function.

One object defines not one distance but the data model in which the distances between objects of that data model can be computed.

Attention: For efficiency reasons the use of consistency checks (like are the data models of the two instances exactly the same), is low.

For more information, see:

Wikipedia.
EuclideanDistance() - Constructor for class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Constructs an Euclidean Distance object, Instances must be still set.
EuclideanDistance(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Constructs an Euclidean Distance object and automatically initializes the ranges.
evalTaskOption - Variable in class moa.options.DependentOptionsUpdater
 
evaluate(Instance) - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
evaluate(Instance) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
evaluate(Instance) - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
evaluate(Instance) - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
evaluate(Instance) - Method in interface moa.classifiers.rules.core.Predicate
 
evaluate(Instance) - Method in class moa.classifiers.rules.core.RuleSplitNode
 
evaluate(Instance) - Method in class moa.classifiers.rules.multilabel.core.Literal
 
evaluate(Instance) - Method in class moa.classifiers.rules.Predicates
 
evaluate(MultiLabelInstance) - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
evaluate(MultiLabelInstance) - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.Accuracy
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.ALMeasureCollection
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.ChangeDetectionMeasures
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.CMM
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.EntropyCollection
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.F1
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.General
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.MeasureCollection
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.OutlierPerformance
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.Separation
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.SilhouetteCoefficient
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.SSQ
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.StatisticalCollection
 
EvaluateClustering - Class in moa.tasks
Task for evaluating a clusterer on a stream.
EvaluateClustering() - Constructor for class moa.tasks.EvaluateClustering
 
evaluateClusteringPerformance(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.MeasureCollection
 
EvaluateConceptDrift - Class in moa.gui.experimentertab.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluateConceptDrift - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluateConceptDrift() - Constructor for class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
EvaluateConceptDrift() - Constructor for class moa.tasks.EvaluateConceptDrift
 
EvaluateInterleavedChunks - Class in moa.gui.experimentertab.tasks
 
EvaluateInterleavedChunks - Class in moa.tasks
 
EvaluateInterleavedChunks() - Constructor for class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
 
EvaluateInterleavedChunks() - Constructor for class moa.tasks.EvaluateInterleavedChunks
 
EvaluateInterleavedTestThenTrain - Class in moa.gui.experimentertab.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluateInterleavedTestThenTrain - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluateInterleavedTestThenTrain() - Constructor for class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
EvaluateInterleavedTestThenTrain() - Constructor for class moa.tasks.EvaluateInterleavedTestThenTrain
 
evaluateMicroClusteringOption - Variable in class moa.clusterers.AbstractClusterer
 
EvaluateModel - Class in moa.tasks
Task for evaluating a static model on a stream.
EvaluateModel() - Constructor for class moa.tasks.EvaluateModel
 
EvaluateModel(Classifier, InstanceStream, LearningPerformanceEvaluator, int) - Constructor for class moa.tasks.EvaluateModel
 
EvaluateModelMultiLabel - Class in moa.tasks
Task for evaluating a static model on a stream.
EvaluateModelMultiLabel() - Constructor for class moa.tasks.EvaluateModelMultiLabel
 
EvaluateModelMultiLabel(Classifier, InstanceStream, LearningPerformanceEvaluator, int) - Constructor for class moa.tasks.EvaluateModelMultiLabel
 
EvaluateModelMultiTarget - Class in moa.tasks
Task for evaluating a static model on a stream.
EvaluateModelMultiTarget() - Constructor for class moa.tasks.EvaluateModelMultiTarget
 
EvaluateModelMultiTarget(Classifier, InstanceStream, LearningPerformanceEvaluator, int) - Constructor for class moa.tasks.EvaluateModelMultiTarget
 
EvaluateModelRegression - Class in moa.tasks
Task for evaluating a static model on a stream.
EvaluateModelRegression() - Constructor for class moa.tasks.EvaluateModelRegression
 
EvaluateModelRegression(Classifier, InstanceStream, LearningPerformanceEvaluator, int) - Constructor for class moa.tasks.EvaluateModelRegression
 
EvaluateMultipleClusterings - Class in moa.tasks
Task for evaluating a clusterer on multiple (related) streams.
EvaluateMultipleClusterings() - Constructor for class moa.tasks.EvaluateMultipleClusterings
 
EvaluateOnlineRecommender - Class in moa.tasks
Test for evaluating a recommender by training and periodically testing on samples from a rating dataset.
EvaluateOnlineRecommender() - Constructor for class moa.tasks.EvaluateOnlineRecommender
 
evaluateOption - Variable in class moa.clusterers.streamkm.StreamKM
 
evaluatePerformance() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
EvaluatePeriodicHeldOutTest - Class in moa.gui.experimentertab.tasks
Task for evaluating a classifier on a stream by periodically testing on a heldout set.
EvaluatePeriodicHeldOutTest - Class in moa.tasks
Task for evaluating a classifier on a stream by periodically testing on a heldout set.
EvaluatePeriodicHeldOutTest() - Constructor for class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
EvaluatePeriodicHeldOutTest() - Constructor for class moa.tasks.EvaluatePeriodicHeldOutTest
 
EvaluatePrequential - Class in moa.gui.experimentertab.tasks
 
EvaluatePrequential - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluatePrequential() - Constructor for class moa.gui.experimentertab.tasks.EvaluatePrequential
 
EvaluatePrequential() - Constructor for class moa.tasks.EvaluatePrequential
 
EvaluatePrequentialCV - Class in moa.gui.experimentertab.tasks
Task for prequential cross-validation evaluation of a classifier on a stream by testing then training with each example in sequence and doing cross-validation at the same time.
EvaluatePrequentialCV - Class in moa.tasks
Task for prequential cross-validation evaluation of a classifier on a stream by testing then training with each example in sequence and doing cross-validation at the same time.
EvaluatePrequentialCV() - Constructor for class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
EvaluatePrequentialCV() - Constructor for class moa.tasks.EvaluatePrequentialCV
 
EvaluatePrequentialDelayed - Class in moa.tasks
Task for evaluating a classifier on a delayed stream by testing and only training with the example after k other examples (delayed labeling).
EvaluatePrequentialDelayed() - Constructor for class moa.tasks.EvaluatePrequentialDelayed
 
EvaluatePrequentialDelayedCV - Class in moa.tasks
Task for delayed cross-validation evaluation of a classifier on a stream by testing and only training with the example after the arrival of other k examples (delayed labeling).
EvaluatePrequentialDelayedCV() - Constructor for class moa.tasks.EvaluatePrequentialDelayedCV
 
EvaluatePrequentialMultiLabel - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluatePrequentialMultiLabel() - Constructor for class moa.tasks.EvaluatePrequentialMultiLabel
 
EvaluatePrequentialMultiTarget - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluatePrequentialMultiTarget() - Constructor for class moa.tasks.EvaluatePrequentialMultiTarget
 
EvaluatePrequentialMultiTargetSemiSuper - Class in moa.tasks
Multi-target Prequential semi-supervised evaluation Phase1: Creates a initial model with of the instances in the dataset Phase2: When an instance is received: A binary random process with a binomial distribution selects if the instance should be labeled or unlabeled with probability .
EvaluatePrequentialMultiTargetSemiSuper() - Constructor for class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
EvaluatePrequentialRegression - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluatePrequentialRegression() - Constructor for class moa.tasks.EvaluatePrequentialRegression
 
evaluationFrequencyOption - Variable in class moa.streams.clustering.ClusteringStream
 
evaluationSizeOption - Variable in class moa.classifiers.meta.DACC
Size of the evaluation window for weights computing
evaluator - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
evaluator - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
evaluator - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
evaluator - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
evaluator - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
evaluatorOption - Variable in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
evaluatorOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Allows to select the classifier performance evaluation method.
evaluatorOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
evaluatorOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
evaluatorOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
evaluatorOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
evaluatorOption - Variable in class moa.tasks.EvaluateConceptDrift
 
evaluatorOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to select the classifier performance evaluation method.
evaluatorOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
evaluatorOption - Variable in class moa.tasks.EvaluateModel
 
evaluatorOption - Variable in class moa.tasks.EvaluateModelMultiLabel
 
evaluatorOption - Variable in class moa.tasks.EvaluateModelMultiTarget
 
evaluatorOption - Variable in class moa.tasks.EvaluateModelRegression
 
evaluatorOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequential
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
evaluatorOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
eventDeleteCreateOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
eventFrequencyOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
EventItem(ISBIndex.ISBNode, Long) - Constructor for class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
EventItem(ISBIndex.ISBNode, Long) - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
eventMergeSplitOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
eventQueue - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
eventQueue - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
EventQueue() - Constructor for class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
EventQueue() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
events - Variable in class moa.gui.experimentertab.tasks.ConceptDriftMainTask
 
events - Variable in class moa.tasks.AuxiliarMainTask
 
events - Variable in class moa.tasks.ClassificationMainTask
 
events - Variable in class moa.tasks.ConceptDriftMainTask
 
events - Variable in class moa.tasks.MultiLabelMainTask
 
events - Variable in class moa.tasks.MultiTargetMainTask
 
events - Variable in class moa.tasks.RegressionMainTask
 
EWMA_Estimator - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
 
EWMAChartDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in EWMA Charts of Ross, Adams, Tasoulis and Hand 2012
EWMAChartDM() - Constructor for class moa.classifiers.core.driftdetection.EWMAChartDM
 
EWMAClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using an Exponential Weighted Moving Average.
EWMAClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
EWMAClassificationPerformanceEvaluator.EWMAEstimator - Class in moa.evaluation
 
EWMAEstimator(double) - Constructor for class moa.evaluation.EWMAClassificationPerformanceEvaluator.EWMAEstimator
 
ExactSTORM - Class in moa.clusterers.outliers.Angiulli
 
ExactSTORM() - Constructor for class moa.clusterers.outliers.Angiulli.ExactSTORM
 
ExactSTORM.ISBNodeExact - Class in moa.clusterers.outliers.Angiulli
 
Example<T> - Interface in moa.core
 
examplesSeen - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
examplesSeen - Variable in class moa.classifiers.trees.ARFFIMTDD
 
examplesSeen - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
examplesSeen - Variable in class moa.classifiers.trees.FIMTDD
 
examplesSeen - Variable in class moa.classifiers.trees.FIMTDD.Node
 
examplesSeenAtLastSplitEvaluation - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
examplesSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
examplesSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.FIMTDD.LeafNode
 
ExampleStream<E extends Example> - Interface in moa.streams
Interface representing a data stream of examples.
executor - Variable in class moa.clusterers.meta.EnsembleClustererAbstract
 
expandedLearningLiteral - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
expandeRule(RuleClassification, Instance, int) - Method in class moa.classifiers.rules.RuleClassifier
 
expectedType - Variable in class com.github.javacliparser.ListOption
 
ExperimenterTabPanel - Class in moa.gui.experimentertab
 
ExperimenterTabPanel() - Constructor for class moa.gui.experimentertab.ExperimenterTabPanel
Initializes the different tabs of the application
ExperimenterTask - Class in moa.gui.experimentertab.tasks
 
ExperimenterTask() - Constructor for class moa.gui.experimentertab.tasks.ExperimenterTask
 
ExperimeterCLI - Class in moa.gui.experimentertab
 
ExperimeterCLI(String[]) - Constructor for class moa.gui.experimentertab.ExperimeterCLI
 
experts - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
ExpNegErrorWeightedVote - Class in moa.classifiers.rules.core.voting
ExpNegErrorWeightedVote class for weighted votes based on estimates of errors.
ExpNegErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.ExpNegErrorWeightedVote
 
exponential(double[]) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
exportAdvancedNotebook - Variable in class moa.tasks.WriteConfigurationToJupyterNotebook
 
exportButton - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
exportButton - Variable in class moa.gui.TaskTextViewerPanel
 
exportButton - Variable in class moa.gui.TextViewerPanel
 
exportCSV(String) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
exportCSV(String) - Method in class moa.gui.visualization.RunVisualizer
 
exportCSV(String, ArrayList<ClusterEvent>, MeasureCollection[], int) - Static method in class moa.gui.BatchCmd
 
exportFileExtension - Static variable in class moa.gui.active.ALTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.AuxiliarTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
exportFileExtension - Static variable in class moa.gui.MultiLabelTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.MultiTargetTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.RegressionTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.TaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.TaskTextViewerPanel
 
exportFileExtension - Static variable in class moa.gui.TextViewerPanel
 
exportIMG(String, String) - Method in class moa.gui.experimentertab.ImageChart
Export the image to formats JPG, PNG, SVG and EPS.
ExpPreviewPanel - Class in moa.gui.experimentertab
This panel displays the running task preview text and buttons.
ExpPreviewPanel() - Constructor for class moa.gui.experimentertab.ExpPreviewPanel
 
ExpPreviewPanel(ExpPreviewPanel.TypePanel) - Constructor for class moa.gui.experimentertab.ExpPreviewPanel
 
ExpPreviewPanel(ExpPreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.experimentertab.ExpPreviewPanel
 
ExpPreviewPanel.TypePanel - Enum in moa.gui.experimentertab
 
ExpTaskThread - Class in moa.gui.experimentertab
Task Thread.
ExpTaskThread(Buffer) - Constructor for class moa.gui.experimentertab.ExpTaskThread
 
ExpTaskThread.Status - Enum in moa.gui.experimentertab
 
extendWithOldLabels(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
ExtractMin() - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
ExtractMin() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 

F

F1 - Class in moa.evaluation
 
F1() - Constructor for class moa.evaluation.F1
 
f1Option - Variable in class moa.tasks.EvaluateClustering
 
f1Option - Variable in class moa.tasks.EvaluateMultipleClusterings
 
f1PerClassOption - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
fadingErrorFactor - Variable in class moa.classifiers.rules.errormeasurers.ErrorMeasurement
 
fadingErrorFactor - Variable in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
fadingErrorFactorOption - Variable in class moa.classifiers.rules.errormeasurers.ErrorMeasurement
 
fadingErrorFactorOption - Variable in class moa.classifiers.rules.functions.TargetMean
 
fadingErrorFactorOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
fadingErrorFactorOption - Variable in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
fadingFactor - Variable in class moa.classifiers.rules.functions.Perceptron
 
FadingFactorClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using a fading factor.
FadingFactorClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator - Class in moa.evaluation
 
FadingFactorEstimator(double) - Constructor for class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.FadingFactorEstimator
 
fadingFactorOption - Variable in class moa.classifiers.rules.functions.FadingTargetMean
 
fadingFactorOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
FadingTargetMean - Class in moa.classifiers.rules.functions
 
FadingTargetMean() - Constructor for class moa.classifiers.rules.functions.FadingTargetMean
 
FAILED - moa.gui.experimentertab.ExpTaskThread.Status
 
FAILED - moa.tasks.TaskThread.Status
 
FailedTaskReport - Class in moa.tasks
Class for reporting a failed task.
FailedTaskReport(Throwable) - Constructor for class moa.tasks.FailedTaskReport
 
failureReason - Variable in class moa.tasks.FailedTaskReport
 
FastVector<E> - Class in moa.core
Simple extension of ArrayList.
FastVector() - Constructor for class moa.core.FastVector
 
FEATURE_IMPORTANCE_COVER - Static variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
FEATURE_IMPORTANCE_MDI - Static variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
FeatureAnalysisTabPanel - Class in moa.gui.featureanalysis
FeatureAnalysis module panel.
FeatureAnalysisTabPanel() - Constructor for class moa.gui.featureanalysis.FeatureAnalysisTabPanel
 
FeatureImportanceClassifier - Interface in moa.learners.featureanalysis
Feature Importance Classifier
featureImportanceClassifierLearner - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
FeatureImportanceConfig - Class in moa.tasks
This class Provides GUI to user so that they can configure parameters for feature importance algorithm.
FeatureImportanceConfig() - Constructor for class moa.tasks.FeatureImportanceConfig
 
featureImportanceDataModelPanel - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
Feature importance data model includes two parts, the dataset and scores which will be shown in table so user can view data and choose which feature importance scores to be shown in line graph.
FeatureImportanceDataModelPanel - Class in moa.gui.featureanalysis
This is a sub panel in FeatureImportance tab.
FeatureImportanceDataModelPanel() - Constructor for class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Creates the attribute selection panel with no initial instances.
FeatureImportanceDataModelPanel(boolean, boolean, boolean, boolean) - Constructor for class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Creates the attribute selection panel with no initial instances.
featureImportanceGraph - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
Show line graphs for user selected feature importance.
FeatureImportanceGraph - Class in moa.gui.featureanalysis
This is a sub panel in FeatureImportance tab.
FeatureImportanceGraph() - Constructor for class moa.gui.featureanalysis.FeatureImportanceGraph
 
FeatureImportanceHoeffdingTree - Class in moa.learners.featureanalysis
HoeffdingTree Feature Importance extends the traditional HoeffdingTree classifier to also yield feature importances.
FeatureImportanceHoeffdingTree() - Constructor for class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
FeatureImportanceHoeffdingTreeEnsemble - Class in moa.learners.featureanalysis
HoeffdingTree Ensemble Feature Importance.
FeatureImportanceHoeffdingTreeEnsemble() - Constructor for class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
featureImportanceLearnerOption - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
featureImportanceOption - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
FeatureImportancePanel - Class in moa.gui.featureanalysis
This panel is the FeatureImportance tab which provides config GUI for feature importance algorithm, run button to trigger the execution of the algorithm, table line graphs to display scores of the the execution result.
featureImportances - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
featureImportances - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
featureImportancesInquiries - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
featureIndexes - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
featureRangeBoxSet(int, int) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
 
featureRanking - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
FeatureRanking - Interface in moa.classifiers.rules.featureranking
 
FeatureRankingMessage - Interface in moa.classifiers.rules.featureranking.messages
 
featureRankingOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
featureRankingOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
featureRankingOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
FEATURES_M - Static variable in class moa.classifiers.meta.AdaptiveRandomForest
 
FEATURES_M - Static variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
FEATURES_M - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
FEATURES_PERCENT - Static variable in class moa.classifiers.meta.AdaptiveRandomForest
 
FEATURES_PERCENT - Static variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
FEATURES_PERCENT - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
FEATURES_SQRT - Static variable in class moa.classifiers.meta.AdaptiveRandomForest
 
FEATURES_SQRT - Static variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
FEATURES_SQRT - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
FEATURES_SQRT_INV - Static variable in class moa.classifiers.meta.AdaptiveRandomForest
 
FEATURES_SQRT_INV - Static variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
FEATURES_SQRT_INV - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
featuresOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
featureVectorList - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
Double list which store the feature data
Fichero - Class in moa.gui.experimentertab.statisticaltests
 
Fichero() - Constructor for class moa.gui.experimentertab.statisticaltests.Fichero
 
fields() - Method in class moa.tasks.ipynb.CodeCellBuilder
 
fields() - Method in class moa.tasks.ipynb.NotebookCellBuilder
Defines the fields of this cell and their contents.
FILE_PREFIX_STRING - Static variable in class com.github.javacliparser.AbstractClassOption
The prefix text to use to indicate file.
FILE_PREFIX_STRING - Static variable in class moa.options.AbstractClassOption
The prefix text to use to indicate file.
fileAliasesOption - Variable in class moa.tasks.Plot
Comma separated list of aliases for the input *csv files.
fileExtension - Variable in class moa.gui.FileExtensionFilter
 
FileExtensionFilter - Class in moa.gui
A filter that is used to restrict the files that are shown.
FileExtensionFilter(String) - Constructor for class moa.gui.FileExtensionFilter
 
fileOption - Variable in class moa.clusterers.meta.EnsembleClustererAbstract
 
fileOption - Variable in class moa.recommender.dataset.impl.FlixsterDataset
 
fileOption - Variable in class moa.recommender.dataset.impl.JesterDataset
 
fileOption - Variable in class moa.recommender.dataset.impl.MovielensDataset
 
FileOption - Class in com.github.javacliparser
File option.
FileOption(String, char, String, String, String, boolean) - Constructor for class com.github.javacliparser.FileOption
 
FileOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a file option.
FileOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.FileOptionEditComponent
 
fileProgressMonitor - Variable in class moa.streams.ArffFileStream
 
fileProgressMonitor - Variable in class moa.streams.clustering.FileStream
 
fileProgressMonitor - Variable in class moa.streams.clustering.SimpleCSVStream
 
fileProgressMonitor - Variable in class moa.streams.MultiTargetArffFileStream
 
fileReader - Variable in class moa.streams.ArffFileStream
 
fileReader - Variable in class moa.streams.clustering.FileStream
 
fileReader - Variable in class moa.streams.clustering.SimpleCSVStream
 
fileReader - Variable in class moa.streams.MultiTargetArffFileStream
 
FileStream - Class in moa.streams.clustering
 
FileStream() - Constructor for class moa.streams.clustering.FileStream
 
fileToInstances(String) - Static method in class moa.classifiers.core.statisticaltests.Cramer
 
fileToMatrix(String) - Static method in class moa.classifiers.core.statisticaltests.Cramer
 
FILTER - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
FILTER_KEY - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
filterChain - Variable in class moa.streams.FilteredStream
 
filterChain - Variable in class moa.streams.MultiFilteredStream
 
filterChain - Variable in class moa.streams.MultiLabelFilteredStream
 
FilteredSparseInstance - Class in com.yahoo.labs.samoa.instances
The Class FilteredSparseInstance.
FilteredSparseInstance(double) - Constructor for class com.yahoo.labs.samoa.instances.FilteredSparseInstance
Instantiates a new sparse instance.
FilteredSparseInstance(double, double[]) - Constructor for class com.yahoo.labs.samoa.instances.FilteredSparseInstance
Instantiates a new sparse instance.
FilteredSparseInstance(double, double[], int[], int) - Constructor for class com.yahoo.labs.samoa.instances.FilteredSparseInstance
Instantiates a new sparse instance.
FilteredSparseInstance(InstanceImpl) - Constructor for class com.yahoo.labs.samoa.instances.FilteredSparseInstance
Instantiates a new sparse instance.
FilteredSparseInstanceData - Class in com.yahoo.labs.samoa.instances
The Class FilteredSparseInstanceData.
FilteredSparseInstanceData(double[], int[], int) - Constructor for class com.yahoo.labs.samoa.instances.FilteredSparseInstanceData
Instantiates a new sparse instance data.
FilteredStream - Class in moa.streams
Class for representing a stream that is filtered.
FilteredStream() - Constructor for class moa.streams.FilteredStream
 
filterInstance(Instance) - Method in class moa.streams.filters.AbstractStreamFilter
 
filterInstance(Instance) - Method in class moa.streams.filters.AddNoiseFilter
 
filterInstance(Instance) - Method in class moa.streams.filters.ReLUFilter
Filter an instance.
filterInstance(Instance) - Method in interface moa.streams.filters.StreamFilter
 
filterInstanceToLeaf(Instance, EFDT.SplitNode, int) - Method in class moa.classifiers.trees.EFDT.Node
 
filterInstanceToLeaf(Instance, EFDT.SplitNode, int) - Method in class moa.classifiers.trees.EFDT.SplitNode
 
filterInstanceToLeaf(Instance, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
filterInstanceToLeaf(Instance, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
filterInstanceToLeaves(Instance, HoeffdingOptionTree.SplitNode, int, boolean) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
filterInstanceToLeaves(Instance, HoeffdingOptionTree.SplitNode, int, List<HoeffdingOptionTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
filterInstanceToLeaves(Instance, HoeffdingOptionTree.SplitNode, int, List<HoeffdingOptionTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, boolean) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>, boolean) - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
filtersOption - Variable in class moa.streams.FilteredStream
 
filtersOption - Variable in class moa.streams.MultiFilteredStream
 
filtersOption - Variable in class moa.streams.MultiLabelFilteredStream
 
FIMTDD - Class in moa.classifiers.trees
Implementation of FIMTDD, regression and model trees for data streams.
FIMTDD() - Constructor for class moa.classifiers.trees.FIMTDD
 
FIMTDD.FIMTDDPerceptron - Class in moa.classifiers.trees
 
FIMTDD.InnerNode - Class in moa.classifiers.trees
 
FIMTDD.LeafNode - Class in moa.classifiers.trees
 
FIMTDD.Node - Class in moa.classifiers.trees
 
FIMTDD.SplitNode - Class in moa.classifiers.trees
 
FIMTDDNumericAttributeClassLimitObserver - Class in moa.classifiers.rules.core.attributeclassobservers
 
FIMTDDNumericAttributeClassLimitObserver() - Constructor for class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
FIMTDDNumericAttributeClassLimitObserver.Node - Class in moa.classifiers.rules.core.attributeclassobservers
 
FIMTDDNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
 
FIMTDDNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
FIMTDDNumericAttributeClassObserver.Node - Class in moa.classifiers.core.attributeclassobservers
 
FIMTDDPerceptron(ARFFIMTDD) - Constructor for class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
FIMTDDPerceptron(ARFFIMTDD.FIMTDDPerceptron) - Constructor for class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
FIMTDDPerceptron(FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
FIMTDDPerceptron(FIMTDD.FIMTDDPerceptron) - Constructor for class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
finalResult - Variable in class moa.gui.experimentertab.ExpTaskThread
 
finalResult - Variable in class moa.tasks.TaskThread
 
findBestSplit(SplitCriterion) - Method in class moa.classifiers.trees.DecisionStump
 
findBestValEntropy(BinaryTreeNumericAttributeClassObserver.Node, DoubleVector, DoubleVector, boolean, double, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
findBestValEntropyNominalAtt(AutoExpandVector<DoubleVector>, int) - Method in class moa.classifiers.rules.RuleClassifier
 
findClassesOfType(String, Class<?>) - Static method in class moa.core.AutoClassDiscovery
 
findClassNames(String) - Static method in class moa.core.AutoClassDiscovery
 
findIndexOfTupleGreaterThan(double) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaQuantileSummary
 
findIndexOfTupleGreaterThan(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
findLearningNodes() - Method in class moa.classifiers.trees.EFDT
 
findLearningNodes() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
findLearningNodes() - Method in class moa.classifiers.trees.HoeffdingTree
 
findLearningNodes(EFDT.Node, EFDT.SplitNode, int, List<EFDT.FoundNode>) - Method in class moa.classifiers.trees.EFDT
 
findLearningNodes(HoeffdingOptionTree.Node, HoeffdingOptionTree.SplitNode, int, List<HoeffdingOptionTree.FoundNode>) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
findLearningNodes(HoeffdingTree.Node, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>) - Method in class moa.classifiers.trees.HoeffdingTree
 
findMaxDelta() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
FindMin() - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
FindMin() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
findNearestNeighbours(Instance, KDTreeNode, int, NearestNeighbourSearch.MyHeap, double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns (in the supplied heap object) the k nearest neighbours of the given instance starting from the give tree node.
findSuitableClasses(Class<?>) - Method in class moa.gui.ClassOptionSelectionPanel
 
findSuitableClasses(Class<?>, String[]) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
findWorstOption() - Method in class moa.classifiers.trees.ORTO
 
fip - Variable in class moa.gui.featureanalysis.FeatureAnalysisTabPanel
Use Singleton design pattern to ensure the object created here and the object created in DataAnalysisPanel.java are the same object in memory.
fip - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
This is the FeatureImportance Tab panel
fireClusterChange(long, String, String) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
Fire a ClusterChangeEvent to all registered listeners
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.active.ALTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.AuxiliarTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.experimentertab.TaskManagerTabPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.MultiLabelTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.MultiTargetTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.active.ALTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.AuxiliarTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.experimentertab.TaskManagerTabPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.MultiLabelTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.MultiTargetTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
fireTaskCompleted() - Method in class moa.tasks.TaskThread
 
first - Variable in class moa.clusterers.outliers.utils.mtree.utils.Pair
The first object.
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.MCOD.MCODBase
 
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
firstClassifierSizeOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
firstHit(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
firstHitNB(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
FirstHitVoteMultiLabel - Class in moa.classifiers.rules.multilabel.core.voting
FirstHitVoteMultiLabel class for weighted votes based on estimates of errors.
FirstHitVoteMultiLabel() - Constructor for class moa.classifiers.rules.multilabel.core.voting.FirstHitVoteMultiLabel
 
firstLeafLevelOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
firstValueOption - Variable in class moa.tasks.RunStreamTasks
 
firstValueOption - Variable in class moa.tasks.RunTasks
 
FIXED_PANEL_WIDTH - Static variable in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
FixedBM - Class in moa.classifiers.active.budget
 
FixedBM() - Constructor for class moa.classifiers.active.budget.FixedBM
 
FixedLengthList<E> - Class in moa.core
FixedLengthList is an extension of an ArrayList with a fixed maximum size.
FixedLengthList(int) - Constructor for class moa.core.FixedLengthList
Constructor
fixedThresholdOption - Variable in class moa.classifiers.active.ALUncertainty
 
FlagOption - Class in com.github.javacliparser
Flag option.
FlagOption(String, char, String) - Constructor for class com.github.javacliparser.FlagOption
 
FlagOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a flag option.
FlagOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.FlagOptionEditComponent
 
FlixsterDataset - Class in moa.recommender.dataset.impl
 
FlixsterDataset() - Constructor for class moa.recommender.dataset.impl.FlixsterDataset
 
FloatOption - Class in com.github.javacliparser
Float option.
FloatOption(String, char, String, double) - Constructor for class com.github.javacliparser.FloatOption
 
FloatOption(String, char, String, double, double, double) - Constructor for class com.github.javacliparser.FloatOption
 
FloatOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a float option.
FloatOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.FloatOptionEditComponent
 
floatToDoubleVector(SingleVector) - Static method in class moa.classifiers.rules.core.Utils
 
floatValueToSliderValue(double) - Method in class com.github.javacliparser.gui.FloatOptionEditComponent
 
fontSelection() - Method in class moa.gui.experimentertab.RankingGraph
Allow to select the text font.
forceAddEvents() - Method in class moa.gui.visualization.GraphCanvas
 
forgetAttributeClass(double, int, double) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
formatInstance(Instance) - Method in class moa.core.utils.Converter
 
forName(Class<?>, String, String[]) - Static method in class moa.core.Utils
Creates a new instance of an object given it's class name and (optional) arguments to pass to it's setOptions method.
forShortName(String) - Static method in enum moa.capabilities.Capability
 
FoundNode(EFDT.Node, EFDT.SplitNode, int) - Constructor for class moa.classifiers.trees.EFDT.FoundNode
 
FoundNode(HoeffdingOptionTree.Node, HoeffdingOptionTree.SplitNode, int) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
FoundNode(HoeffdingTree.Node, HoeffdingTree.SplitNode, int) - Constructor for class moa.classifiers.trees.HoeffdingTree.FoundNode
 
FProbability(double, int, int) - Static method in class moa.core.Statistics
Computes probability of F-ratio.
FRACA - Static variable in class moa.classifiers.core.statisticaltests.Cramer
 
FRACB - Static variable in class moa.classifiers.core.statisticaltests.Cramer
 
fract_before - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
freqTwitterGenerator - Variable in class moa.streams.generators.TextGenerator
 
frequencies - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
fromCommandLine(Class, String) - Static method in class weka.core.MOAUtils
Turns a commandline into an object (classname + optional options).
fromCommandLine(ClassOption, String) - Static method in class weka.core.MOAUtils
Turns a commandline into an object (classname + optional options).
fromOption(ClassOption) - Static method in class weka.core.MOAUtils
Creates a MOA object from the specified class option.
FSTEPS - moa.gui.experimentertab.PlotTab.PlotStyle
 
FSTEPS - moa.tasks.Plot.PlotStyle
 
fullSizeOf(Object) - Static method in class moa.core.SizeOf
Returns the full size of the object.
functionOption - Variable in class moa.streams.generators.AgrawalGenerator
 
functionOption - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
functionOption - Variable in class moa.streams.generators.MixedGenerator
 
functionOption - Variable in class moa.streams.generators.SEAGenerator
 
functionOption - Variable in class moa.streams.generators.SineGenerator
 
functionOption - Variable in class moa.streams.generators.STAGGERGenerator
 

G

g - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
gamma - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
gamma(double) - Static method in class moa.core.Statistics
Returns the Gamma function of the argument.
gammaOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
gammaOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
GaussianEstimator - Class in moa.core
Gaussian incremental estimator that uses incremental method that is more resistant to floating point imprecision.
GaussianEstimator() - Constructor for class moa.core.GaussianEstimator
 
gaussianMeans(Clustering, Clustering) - Static method in class moa.clusterers.KMeans
 
GaussianNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using gaussian estimators.
GaussianNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
GaussInequality - Class in moa.classifiers.rules.core.anomalydetection.probabilityfunctions
Returns the probability for anomaly detection according to a Gauss inequality mean- mean of a data variable sd- standard deviation of a data variable value- current value of the variable
GaussInequality() - Constructor for class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.GaussInequality
 
gb - Variable in class moa.gui.experimentertab.RankingGraph
 
General - Class in moa.evaluation
 
General() - Constructor for class moa.evaluation.General
 
generalEvalOption - Variable in class moa.tasks.EvaluateClustering
 
generalEvalOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
generateCentroids() - Method in class moa.streams.generators.RandomRBFGenerator
 
generateCentroids() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
generateColors(int) - Method in interface moa.gui.colorGenerator.ColorGenerator
Generate numColors unique colors which should be easily distinguishable.
generateColors(int) - Method in class moa.gui.colorGenerator.HSVColorGenerator
Generate numColors unique colors which should be easily distinguishable.
generateConditional(double[], boolean[][]) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
GenerateConditional.
generateCSV() - Method in class moa.gui.experimentertab.Summary
Generate a csv file for the statistical analysis.
generateExample() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates one example of the dataset.
generateExamples() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates all examples of the dataset.
generateFinished() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates a comment string that documentats the data generator.
generateHeader() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
generateHeader() - Method in class moa.streams.generators.HyperplaneGenerator
 
generateHeader() - Method in class moa.streams.generators.RandomRBFGenerator
 
generateHeader() - Method in class moa.streams.generators.RandomTreeGenerator
 
generateHTML(String) - Method in class moa.gui.experimentertab.Summary
Generates an HTML summary, in which the rows are the datasets and the columns the algorithms.
generatekMeansPlusPlusCentroids(int, List<double[]>, Random) - Static method in class moa.clusterers.kmeanspm.CoresetKMeans
Generates the initial centroids like the k-means++ algorithm.
generateLatex(String) - Method in class moa.gui.experimentertab.Summary
Generates a latex summary, in which the rows are the algorithms and the columns the datasets.
generateMultilabelHeader(Instances) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
GenerateMultilabelHeader.
generateNewConfigurations() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
generateOptionsString() - Method in class moa.tasks.ipynb.OptionsString
 
generateRandomTree() - Method in class moa.streams.generators.RandomTreeGenerator
 
generateRandomTreeNode(int, ArrayList<Integer>, double[], double[], Random) - Method in class moa.streams.generators.RandomTreeGenerator
 
generateSizeOption - Variable in class moa.tasks.MeasureStreamSpeed
 
generateStart() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates a comment string that documentates the data generator.
generatorTipText() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns the tooltip displayed in the GUI.
GeometricMovingAverageDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in Geometric Moving Average Test
GeometricMovingAverageDM() - Constructor for class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
get() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the first element and removes it from the heap.
get(int) - Method in class com.yahoo.labs.samoa.instances.Instances
 
get(int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
get(int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
get(int) - Method in class moa.cluster.Clustering
get a cluster from the clustering
get(int) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
get(int) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
get(int) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
get(int) - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
get(int) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
get(int) - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunctions.EuclideanCoordinate
A method to access the index-th component of the coordinate.
get(int) - Method in class moa.clusterers.outliers.utils.mtree.utils.Pair
Accesses an object by its index.
get(int) - Method in class moa.core.AutoExpandVector
 
get(int) - Method in class moa.recommender.rc.utils.DenseVector
 
get(int) - Method in class moa.recommender.rc.utils.SparseVector
 
get(int) - Method in class moa.recommender.rc.utils.Vector
 
get(long) - Method in class moa.clusterers.kmeanspm.CuckooHashing
Gets an element of the hash table.
get(String, String) - Static method in class moa.gui.GUIDefaults
returns the value for the specified property, if non-existent then the default value.
Get_nn_before() - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
Get_nn_before() - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
getAbsNumOfAcqInst() - Method in class moa.evaluation.ALWindowClassificationPerformanceEvaluator
Returns absolute number of acquired labels so far.
getAccumulated() - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking
 
getAccumulated() - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking.RuleInformation
 
getAccumulatedMerit() - Method in class moa.classifiers.rules.featureranking.BasicFeatureRanking.RuleInformation
 
getAccuracy() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getAccuracy() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getActiveXDim() - Method in class moa.gui.visualization.StreamOutlierPanel
 
getActiveXDim() - Method in class moa.gui.visualization.StreamPanel
 
getActiveYDim() - Method in class moa.gui.visualization.StreamOutlierPanel
 
getActiveYDim() - Method in class moa.gui.visualization.StreamPanel
 
getAcuity() - Method in class moa.clusterers.CobWeb
get the acuity value
getAlgNames() - Method in class moa.gui.experimentertab.ReadFile
Returns the name of the algorithms.
getAlgorithm() - Method in class moa.gui.experimentertab.Stream
Returns the list of the algorithms
getAlgorithm0ValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getAlgorithm0ValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getAlgorithm1ValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getAlgorithm1ValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getAlgorithms() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getAlgorithmsID() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getAlgShortNames() - Method in class moa.gui.experimentertab.ReadFile
Returns the short name of the algorithms.
getAllClassNames() - Static method in class moa.core.AutoClassDiscovery
Returns all class names stored in the cache.
getAllValues(int) - Method in class moa.evaluation.MeasureCollection
 
getAMRules() - Method in class moa.classifiers.rules.core.Rule.Builder
 
getAnomalyScore() - Method in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
getAnomalyScore() - Method in interface moa.classifiers.rules.core.anomalydetection.AnomalyDetector
 
getAnomalyScore() - Method in class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
getAnomalyScore() - Method in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
getAnomalyScore() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getAnomalyScore(Instance) - Method in class moa.classifiers.oneclass.Autoencoder
Returns the squared error between the input value and the reconstructed value as the anomaly score for the argument instance.
getAnomalyScore(Instance) - Method in class moa.classifiers.oneclass.HSTrees
Returns the anomaly score for the argument instance.
getAnomalyScore(Instance) - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
Returns the anomaly score for an argument instance based on the distance from it to its nearest neighbour compared to the distance from its nearest neighbour to the neighbour's nearest neighbour.
getAnomalyScore(Instance) - Method in interface moa.classifiers.OneClassClassifier
For use when an anomaly score is needed instead of a vote.
getArgs() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getArrayClass(Class) - Static method in class moa.core.Utils
Returns the basic class of an array class (handles multi-dimensional arrays).
getArrayCopy() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
getArrayCopy() - Method in class moa.core.DoubleVector
 
getArrayDimensions(Class) - Static method in class moa.core.Utils
Returns the dimensions of the given array.
getArrayDimensions(Object) - Static method in class moa.core.Utils
Returns the dimensions of the given array.
getArrayRef() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
getArrayRef() - Method in class moa.core.DoubleVector
 
getAsCLIString() - Method in class com.github.javacliparser.Options
 
getAttIndex() - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getAttribute() - Method in class moa.clusterers.dstream.CharacteristicVector
 
getAttributeDifferentiation() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getAttributeImportance(int) - Method in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking.RuleInformation
 
getAttributeIndex() - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
getAttributeIndex() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getAttributeIndex() - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
getAttributeIndex() - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
getAttributeIndex() - Method in interface moa.classifiers.rules.core.Predicate
 
getAttributeIndex() - Method in class moa.classifiers.rules.featureranking.messages.RuleExpandedMessage
 
getAttributeIndex() - Method in class moa.classifiers.rules.multilabel.core.Literal
 
getAttributeIndex() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getAttributeIndices() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Gets the range of attributes used in the calculation of the distance.
getAttributeIndices() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Gets the range of attributes used in the calculation of the distance.
getAttributeMask() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getAttributeName() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getAttributeNameString(int) - Method in class moa.classifiers.AbstractClassifier
Gets the name of an attribute from the header.
getAttributeNameString(int) - Method in class moa.clusterers.AbstractClusterer
 
getAttributeNameString(InstancesHeader, int) - Static method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getAttributeObservers() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getAttributesImportance() - Method in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking.RuleInformation
 
getAttributesPercentage() - Method in class moa.classifiers.rules.AbstractAMRules
 
getAttributesPercentage() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
getAttributesPercentage() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
getAttributeValue() - Method in class moa.classifiers.rules.Predicates
 
getAttributeValues() - Method in class com.yahoo.labs.samoa.instances.Attribute
Gets the attribute values.
getAttributeValues() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Gets the attribute values.
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Returns an array with the attributes that the test depends on.
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
getAttsTestDependsOn() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getAttValue() - Method in class moa.classifiers.trees.iadem.IademNominalAttributeBinaryTest
 
getAUC() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getAUC() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getAucEstimator() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
getAucEstimator() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
getAverageInputs() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
getAverageInputs() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
getAverageOutputs() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
getAverageOutputs() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
getAvgRatingItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getAvgRatingItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getAvgRatingUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getAvgRatingUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getAWTRenderer() - Method in class moa.classifiers.AbstractClassifier
Returns the AWT Renderer
getAWTRenderer() - Method in class moa.clusterers.AbstractClusterer
 
getAWTRenderer() - Method in interface moa.gui.AWTRenderable
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
Gets the best split suggestion given a criterion and a class distribution
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(MultiLabelSplitCriterion, DoubleVector[], int) - Method in interface moa.classifiers.rules.multilabel.attributeclassobservers.AttributeStatisticsObserver
Gets the best split suggestion given a criterion and a class distribution
getBestEvaluatedSplitSuggestion(MultiLabelSplitCriterion, DoubleVector[], int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
getBestEvaluatedSplitSuggestion(MultiLabelSplitCriterion, DoubleVector[], int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
getBestEvaluatedSplitSuggestion(MultiLabelSplitCriterion, DoubleVector[], int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
getBestSecondBestEntropy(DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
getBestSplitSuggestion() - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getBestSplitSuggestion(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getBestSplitSuggestionIADEM(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getBestSplitSuggestions(SplitCriterion) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getBestSplitSuggestions(SplitCriterion) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
Return the best split suggestions for this node using the given split criteria
getBestSplitSuggestions(SplitCriterion) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
Return the best split suggestions for this node using the given split criteria
getBestSplitSuggestions(SplitCriterion, EFDT) - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
getBestSplitSuggestions(SplitCriterion, EFDT) - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
getBestSplitSuggestions(SplitCriterion, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
getBestSplitSuggestions(SplitCriterion, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
getBestSplitSuggestions(MultiLabelSplitCriterion) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
Return the best split suggestions for this node using the given split criteria
getBestSuggestion() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getBestSuggestion() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getBlockCount() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getBlockSize() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getBlockSize() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getBranchesSplitMerits(DoubleVector[][]) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getBranchesSplitMerits(DoubleVector[][]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getBranchesSplitMerits(DoubleVector[][]) - Method in interface moa.classifiers.rules.multilabel.core.splitcriteria.MultiLabelSplitCriterion
 
getBranchesSplitMerits(DoubleVector[][]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getBranchSplitEntropyOutput(DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getBranchSplitVarianceOutput(DoubleVector[]) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getBranchSplitVarianceOutput(DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getBucketsUsed() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getBuffer() - Method in class moa.clusterers.clustree.Entry
Getter for the buffer.
getBuilder() - Method in class moa.classifiers.rules.core.Rule
 
getBytesRead() - Method in class moa.core.InputStreamProgressMonitor
 
getBytesRemaining() - Method in class moa.core.InputStreamProgressMonitor
 
getCapabilities() - Method in interface moa.capabilities.CapabilitiesHandler
Gets the capabilities of the object.
getCapabilities() - Method in class weka.classifiers.meta.MOA
Returns the Capabilities of this classifier.
getCellByIndex(int) - Method in class moa.tasks.ipynb.NotebookBuilder
 
getCenter() - Method in class moa.cluster.CFCluster
 
getCenter() - Method in class moa.cluster.Cluster
 
getCenter() - Method in class moa.cluster.SphereCluster
 
getCenter() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getCenter() - Method in class moa.clusterers.clustree.ClusKernel
 
getCenter() - Method in class moa.clusterers.denstream.MicroCluster
 
getCenter() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Gets the representation of the ClusteringFeature
getCenterDistance(Instance) - Method in class moa.cluster.SphereCluster
 
getCenterDistance(SphereCluster) - Method in class moa.cluster.SphereCluster
 
getCF() - Method in class moa.cluster.CFCluster
 
getCF() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getCF() - Method in class moa.clusterers.clustree.ClusKernel
 
getCF() - Method in class moa.clusterers.denstream.MicroCluster
 
getCF() - Method in class moa.clusterers.dstream.DensityGrid
Returns a reference to the DensityGrid.
getCF() - Method in class moa.clusterers.macro.NonConvexCluster
 
getCFCluster() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
getChange() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets whether there is change detected.
getChange() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getChange() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets whether there is change detected.
getChange() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getChangedTrees() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getChangeListener() - Method in class moa.options.ClassOptionWithListenerOption
 
getChart() - Method in class moa.gui.experimentertab.ImageChart
Return the chart.
getChart() - Method in class moa.gui.experimentertab.ImageTreePanel
Return the ImageChart array.
getChild() - Method in class moa.clusterers.clustree.Entry
Return the reference to the child of this Entry to navigate in the tree.
getChild(int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
getChild(int) - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
getChild(int) - Method in class moa.classifiers.trees.EFDT.SplitNode
 
getChild(int) - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
getChild(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
getChild(int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
getChild(int) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getChildCount() - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getChildCount() - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getChildIndex(ISOUPTree.Node) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
getChildIndex(ISOUPTree.Node) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
getChildIndex(ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
getChildIndex(ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
getChildIndex(ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
getChildIndex(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
getChildIndex(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getChildIndex(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.Node
 
getChildren() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
getChildren() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Gets a List of the children nodes.
getChosenIndex() - Method in class com.github.javacliparser.MultiChoiceOption
 
getChosenLabel() - Method in class com.github.javacliparser.MultiChoiceOption
 
getChosenObjectCLIString(Class<?>) - Method in class moa.gui.ClassOptionSelectionPanel
 
getChosenObjectCLIString(Class<?>) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
getClassDist() - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getClassDist() - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getClassDist() - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
getClassDist() - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getClassDistribution(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassDistributionAtTimeOfCreation() - Method in class moa.classifiers.trees.EFDT.Node
 
getClassDistributionByLabel(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassDistsResultingFromBinarySplit(double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getClassDistsResultingFromBinarySplit(double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
getClassDistsResultingFromBinarySplit(int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getClassDistsResultingFromMultiwaySplit(int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getClassFullName() - Method in class moa.tasks.ipynb.OptionsString
 
getClassifier() - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
getClassifier() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
getClassifier() - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
getClassifier() - Method in class weka.classifiers.meta.MOA
Returns the current MOA classifier in use.
getClassLabel() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Return the label for the DataObject.
getClassLabelString(int) - Method in class moa.classifiers.AbstractClassifier
Gets the name of a label of the class from the header.
getClassLabelString(int) - Method in class moa.clusterers.AbstractClusterer
 
getClassLabelString(InstancesHeader, int) - Static method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getClassNames() - Method in class moa.options.ClassOptionWithNames
 
getClassNameString() - Method in class moa.classifiers.AbstractClassifier
Gets the name of the attribute of the class from the header.
getClassNameString() - Method in class moa.clusterers.AbstractClusterer
 
getClassNameString(InstancesHeader) - Static method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getClassSeparability() - Method in class moa.evaluation.CMM_GTAnalysis
Calculates how well the original clusters are separable.
getClassShortName() - Method in class moa.tasks.ipynb.OptionsString
 
getClassSum(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassSumByLabel(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassValueDist() - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNB
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNBKirkby
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNodeWeightedVote
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNB
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBAdaptive
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBKirkby
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeWeightedVote
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
getClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3
 
getClassVotes(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.LearningNodeNB
 
getClassVotes(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.LearningNodeNBAdaptive
 
getClassVotes(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.Node
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
getClassVotesFromLeaf(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3
 
getCLIChar() - Method in class com.github.javacliparser.AbstractOption
 
getCLIChar() - Method in interface com.github.javacliparser.Option
Gets the Command Line Interface text of this option
getCLICreationString(Class<?>) - Method in class moa.options.AbstractOptionHandler
 
getCLICreationString(Class<?>) - Method in interface moa.options.OptionHandler
Gets the Command Line Interface text to create the object
getCLIString() - Method in class moa.clusterers.meta.BooleanParameter
 
getCLIString() - Method in class moa.clusterers.meta.CategoricalParameter
 
getCLIString() - Method in class moa.clusterers.meta.IntegerParameter
 
getCLIString() - Method in interface moa.clusterers.meta.IParameter
 
getCLIString() - Method in class moa.clusterers.meta.NumericalParameter
 
getCLIString() - Method in class moa.clusterers.meta.OrdinalParameter
 
getCLIValueString() - Method in class moa.clusterers.meta.BooleanParameter
 
getCLIValueString() - Method in class moa.clusterers.meta.CategoricalParameter
 
getCLIValueString() - Method in class moa.clusterers.meta.IntegerParameter
 
getCLIValueString() - Method in interface moa.clusterers.meta.IParameter
 
getCLIValueString() - Method in class moa.clusterers.meta.NumericalParameter
 
getCLIValueString() - Method in class moa.clusterers.meta.OrdinalParameter
 
getClock() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getClusterClassWeight(int, int) - Method in class moa.evaluation.MembershipMatrix
 
getClusterClassWeightByLabel(int, int) - Method in class moa.evaluation.MembershipMatrix
 
getClusterer0() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getClusterer0() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getClusterer0() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getClusterer1() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getClusterer1() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getClusterer1() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getClusterID() - Method in class moa.gui.visualization.ClusterPanel
 
getClusterID() - Method in class moa.gui.visualization.OutlierPanel
 
getClustering() - Method in class moa.cluster.Clustering
 
getClustering() - Method in interface moa.clusterers.macro.IDenseMacroCluster
 
getClustering() - Method in class moa.clusterers.macro.NonConvexCluster
 
getClustering(long, int) - Method in class moa.clusterers.clustree.ClusTree
 
getClustering(Clustering) - Method in class moa.clusterers.macro.AbstractMacroClusterer
 
getClustering(Clustering) - Method in class moa.clusterers.macro.dbscan.DBScan
 
getClustering(Clustering) - Method in interface moa.clusterers.macro.IMacroClusterer
 
getClusteringCopy() - Method in class moa.cluster.Clustering
 
getClusteringFeature() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Gets the ClusteringFeature of this node.
getClusteringResult() - Method in interface moa.clusterers.Clusterer
 
getClusteringResult() - Method in class moa.clusterers.ClusterGenerator
 
getClusteringResult() - Method in class moa.clusterers.clustream.Clustream
 
getClusteringResult() - Method in class moa.clusterers.clustream.WithKmeans
 
getClusteringResult() - Method in class moa.clusterers.clustree.ClusTree
 
getClusteringResult() - Method in class moa.clusterers.CobWeb
 
getClusteringResult() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getClusteringResult() - Method in class moa.clusterers.dstream.Dstream
 
getClusteringResult() - Method in class moa.clusterers.kmeanspm.BICO
 
getClusteringResult() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
getClusteringResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getClusteringResult() - Method in class moa.clusterers.streamkm.StreamKM
 
getClusteringResult() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getClusteringResult(Clustering) - Method in class moa.clusterers.clustream.WithKmeans
 
getClusterLabel() - Method in class moa.clusterers.dstream.GridCluster
 
getClusterLabel() - Method in class moa.gui.visualization.ClusterPanel
 
getClusterLabel() - Method in class moa.gui.visualization.OutlierPanel
 
getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.cluster.Cluster
 
getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.cluster.SphereCluster
 
getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.clusterers.clustream.ClustreamKernel
 
getClusterSum(int) - Method in class moa.evaluation.MembershipMatrix
 
getColor() - Method in class moa.clusterers.macro.ColorObject
 
getColor(int) - Static method in class moa.clusterers.macro.ColorArray
 
getColorBox() - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Returns the class selection combo box if the parent component wants to place it in itself or in some component other than this component.
getColorCoding() - Method in class moa.tasks.meta.MetaMainTask
Get the color coding for this task (the color which is used for multi-curve plots).
getColoringIndex() - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Get the coloring (class) index for the plot
getColumnCount() - Method in class moa.gui.active.ALTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.AuxiliarTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.experimentertab.TaskManagerTabPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getColumnCount() - Method in class moa.gui.MultiLabelTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.MultiTargetTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.PreviewTableModel
 
getColumnCount() - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.active.ALTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.AuxiliarTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.experimentertab.TaskManagerTabPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getColumnName(int) - Method in class moa.gui.MultiLabelTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.MultiTargetTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.PreviewTableModel
 
getColumnName(int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getConfidence() - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
getConfidence(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
getConnectionValue(CMM_GTAnalysis.CMMPoint, int) - Method in class moa.evaluation.CMM_GTAnalysis
Calculate the connection of a point to a cluster
getCoordinates() - Method in class moa.clusterers.dstream.DensityGrid
 
getCopy() - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getCopy() - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getCopy() - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
Deprecated.
getCopy() - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getCoresetCentres() - Method in class moa.clusterers.streamkm.CoresetCostTriple
 
getCoresetCost() - Method in class moa.clusterers.streamkm.CoresetCostTriple
 
getCountBelow(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getCountNominalAttrib(ArrayList<Predicates>) - Method in class moa.classifiers.rules.RuleClassifier
 
getCPUSecondsElapsed() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getCPUSecondsElapsed() - Method in class moa.tasks.TaskThread
 
getCreationTime() - Method in class moa.clusterers.denstream.MicroCluster
 
getCumulativeSum() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
getCurrent() - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking.RuleInformation
 
getCurrentActivityDescription() - Method in class moa.tasks.NullMonitor
 
getCurrentActivityDescription() - Method in class moa.tasks.StandardTaskMonitor
 
getCurrentActivityDescription() - Method in interface moa.tasks.TaskMonitor
Gets the description of the current activity.
getCurrentActivityFracComplete() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getCurrentActivityFracComplete() - Method in class moa.tasks.TaskThread
 
getCurrentActivityFractionComplete() - Method in class moa.tasks.NullMonitor
 
getCurrentActivityFractionComplete() - Method in class moa.tasks.StandardTaskMonitor
 
getCurrentActivityFractionComplete() - Method in interface moa.tasks.TaskMonitor
Gets the percentage done of the current activity
getCurrentActivityString() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getCurrentActivityString() - Method in class moa.tasks.TaskThread
 
getCurrenTask() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
getCurrentError() - Method in class moa.classifiers.rules.core.Rule
 
getCurrentError() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getCurrentError() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getCurrentError() - Method in class moa.classifiers.rules.errormeasurers.ErrorMeasurement
 
getCurrentError() - Method in class moa.classifiers.rules.errormeasurers.MeanAbsoluteDeviation
 
getCurrentError() - Method in class moa.classifiers.rules.errormeasurers.RootMeanSquaredError
 
getCurrentError() - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
getCurrentError() - Method in interface moa.classifiers.rules.functions.AMRulesLearner
 
getCurrentError() - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
getCurrentError() - Method in class moa.classifiers.rules.functions.Perceptron
 
getCurrentError() - Method in class moa.classifiers.rules.functions.TargetMean
 
getCurrentError() - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
getCurrentError() - Method in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
getCurrentError() - Method in interface moa.classifiers.rules.multilabel.errormeasurers.MultiLabelErrorMeasurer
 
getCurrentError() - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
getCurrentError() - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
getCurrentError() - Method in class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
getCurrentError(int) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
getCurrentError(int) - Method in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
getCurrentError(int) - Method in interface moa.classifiers.rules.multilabel.errormeasurers.MultiLabelErrorMeasurer
 
getCurrentError(int) - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
getCurrentError(int) - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
getCurrentError(int) - Method in class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
getCurrentErrors() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getCurrentErrors() - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
getCurrentErrors() - Method in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
getCurrentErrors() - Method in interface moa.classifiers.rules.multilabel.errormeasurers.MultiLabelErrorMeasurer
 
getCurrentErrors() - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
getCurrentErrors() - Method in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
getCurrentErrors() - Method in class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
getCurrentFeatureImportances() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
getCurrentStatusString() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getCurrentStatusString() - Method in class moa.tasks.TaskThread
 
getCurrentTimestamp() - Static method in class moa.gui.visualization.RunOutlierVisualizer
 
getCurrentTimestamp() - Static method in class moa.gui.visualization.RunVisualizer
 
getCurrGridDensity(int, double) - Method in class moa.clusterers.dstream.CharacteristicVector
 
getCurrTime() - Method in class moa.clusterers.dstream.Dstream
 
getCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
Gets the custom editor component.
getCut(int) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getCut(int) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getCut(int) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
getCut(int) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getCutoff() - Method in class moa.clusterers.CobWeb
get the cutoff
getData() - Method in class moa.clusterers.clustree.Entry
Getter for the data.
getData() - Method in interface moa.core.Example
 
getData() - Method in class moa.core.InstanceExample
 
getData() - Method in class moa.evaluation.preview.Preview
 
getData() - Method in class moa.recommender.data.MemRecommenderData
 
getData() - Method in interface moa.recommender.data.RecommenderData
 
getData() - Method in class moa.recommender.predictor.BaselinePredictor
 
getData() - Method in class moa.recommender.predictor.BRISMFPredictor
 
getData() - Method in interface moa.recommender.predictor.RatingPredictor
 
getData() - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
getData() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getData() - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
getDataObjectArray() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns an array of all the DataObjects in the set.
getDataset(int, int) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getDataSetsPerClass() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Separates the objects in this data set according to their class label
getDecayFactor() - Method in class moa.clusterers.dstream.Dstream
 
getDecayHorizon() - Method in class moa.streams.clustering.ClusteringStream
 
getDecayThreshold() - Method in class moa.streams.clustering.ClusteringStream
 
getDefaultCLIString() - Method in class com.github.javacliparser.AbstractClassOption
 
getDefaultCLIString() - Method in class com.github.javacliparser.FlagOption
 
getDefaultCLIString() - Method in class com.github.javacliparser.FloatOption
 
getDefaultCLIString() - Method in class com.github.javacliparser.IntOption
 
getDefaultCLIString() - Method in class com.github.javacliparser.ListOption
 
getDefaultCLIString() - Method in class com.github.javacliparser.MultiChoiceOption
 
getDefaultCLIString() - Method in interface com.github.javacliparser.Option
Gets the Command Line Interface text
getDefaultCLIString() - Method in class com.github.javacliparser.StringOption
 
getDefaultCLIString() - Method in class moa.options.AbstractClassOption
 
getDefaultEnabled() - Method in class moa.evaluation.Accuracy
 
getDefaultEnabled() - Method in class moa.evaluation.ChangeDetectionMeasures
 
getDefaultEnabled() - Method in class moa.evaluation.CMM
 
getDefaultEnabled() - Method in class moa.evaluation.EntropyCollection
 
getDefaultEnabled() - Method in class moa.evaluation.MeasureCollection
 
getDefaultEnabled() - Method in class moa.evaluation.OutlierPerformance
 
getDefaultEnabled() - Method in class moa.evaluation.RegressionAccuracy
 
getDefaultEnabled() - Method in class moa.evaluation.SilhouetteCoefficient
 
getDefaultEnabled() - Method in class moa.evaluation.SSQ
 
getDefaultEnabled() - Method in class moa.evaluation.StatisticalCollection
 
getDefaultFileExtension() - Method in class com.github.javacliparser.FileOption
 
getDefaultHeight() - Method in class moa.clusterers.clustree.ClusTree
 
getDefaultOptionIndex() - Method in class com.github.javacliparser.MultiChoiceOption
 
getDefaultSplitMeasure() - Static method in class moa.classifiers.trees.iadem.IademSplitCriterion
 
getDefaultTabs() - Static method in class moa.gui.GUIDefaults
returns an array with the classnames of all default tabs to display as tabs in the GUI.
getDelay() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets the length of the delay in the change detected.
getDelay() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets the length of the delay in the change detected.
getDenormalizedOutput(double[]) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
getDensityTimeStamp() - Method in class moa.clusterers.dstream.CharacteristicVector
 
getDescription() - Method in class moa.gui.AbstractTabPanel
Returns a short description (can be used as tool tip) of the tab, or contributor, etc.
getDescription() - Method in class moa.gui.ALTabPanel
 
getDescription() - Method in class moa.gui.AuxiliarTabPanel
 
getDescription() - Method in class moa.gui.ClassificationTabPanel
 
getDescription() - Method in class moa.gui.clustertab.ClusteringTabPanel
 
getDescription() - Method in class moa.gui.ConceptDriftTabPanel
 
getDescription() - Method in class moa.gui.experimentertab.ExperimenterTabPanel
 
getDescription() - Method in class moa.gui.featureanalysis.FeatureAnalysisTabPanel
 
getDescription() - Method in class moa.gui.FileExtensionFilter
 
getDescription() - Method in class moa.gui.MultiLabelTabPanel
 
getDescription() - Method in class moa.gui.MultiTargetTabPanel
 
getDescription() - Method in class moa.gui.outliertab.OutlierTabPanel
 
getDescription() - Method in class moa.gui.RegressionTabPanel
 
getDescription() - Method in class moa.gui.ScriptingTabPanel
Returns a short description (can be used as tool tip) of the tab, or contributor, etc.
getDescription(StringBuilder, int) - Method in class com.github.javacliparser.Options
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.AbstractClassifier
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.active.budget.FixedBM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Returns a string representation of the model.
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
getDescription(StringBuilder, int) - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Returns a string representation of the model.
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.CusumDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.DDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EDDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.RDDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.STEPD
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.statisticaltests.KNN
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.CantellisInequality
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.ChebyshevInequality
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.GaussInequality
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.changedetection.NoChangeDetection
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.Rule
MOA GUI output
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.splitcriteria.VarianceRatioSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.ExpNegErrorWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.MinErrorWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.OneMinusErrorWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.UniformWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.errormeasurers.ErrorMeasurement
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.featureranking.AbstractFeatureRanking
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.Literal
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.inputselectors.MeritThreshold
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.inputselectors.SelectAllInputs
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.instancetransformers.NoInstanceTransformation
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.outputselectors.EntropyThreshold
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.outputselectors.SelectAllOutputs
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.outputselectors.StdDevThreshold
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.outputselectors.VarianceThreshold
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.Predicates
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassification
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.EFDT.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.cluster.Cluster
 
getDescription(StringBuilder, int) - Method in class moa.cluster.Clustering
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.AbstractClusterer
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.denstream.Timestamp
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.dstream.GridCluster
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
 
getDescription(StringBuilder, int) - Method in class moa.core.AutoExpandVector
 
getDescription(StringBuilder, int) - Method in class moa.core.DoubleVector
 
getDescription(StringBuilder, int) - Method in class moa.core.GaussianEstimator
 
getDescription(StringBuilder, int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getDescription(StringBuilder, int) - Method in class moa.core.Measurement
 
getDescription(StringBuilder, int) - Method in class moa.core.utils.Converter
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.LearningEvaluation
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.MeasureCollection
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.preview.LearningCurve
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.preview.PreviewCollection
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in interface moa.MOAObject
Returns a string representation of this object.
getDescription(StringBuilder, int) - Method in class moa.recommender.data.MemRecommenderData
 
getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.JesterDataset
 
getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.MovielensDataset
 
getDescription(StringBuilder, int) - Method in class moa.recommender.predictor.BaselinePredictor
 
getDescription(StringBuilder, int) - Method in class moa.recommender.predictor.BRISMFPredictor
 
getDescription(StringBuilder, int) - Method in class moa.streams.ArffFileStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.BootstrappedStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.CachedInstancesStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.clustering.FileStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
TOOLS
getDescription(StringBuilder, int) - Method in class moa.streams.clustering.SimpleCSVStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.ConceptDriftRealStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.ConceptDriftStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.FilteredStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.AddNoiseFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.RBFFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.ReLUFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.SelectAttributesFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.AgrawalGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.AssetNegotiationGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.HyperplaneGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.LEDGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.LEDGeneratorDrift
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.MixedGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomRBFGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomTreeGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.SEAGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.SineGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.STAGGERGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.TextGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.WaveformGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.WaveformGeneratorDrift
 
getDescription(StringBuilder, int) - Method in class moa.streams.ImbalancedStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.MultiFilteredStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.MultiLabelFilteredStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.MultiTargetArffFileStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.PartitioningStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.RecurrentConceptDriftStream
 
getDescription(StringBuilder, int) - Method in class moa.tasks.AbstractTask
 
getDescription(StringBuilder, int) - Method in class moa.tasks.FailedTaskReport
 
getDescription(StringBuilder, int, InstanceInformation) - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
getDescription(StringBuilder, int, InstanceInformation) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getDescription(StringBuilder, int, InstanceInformation) - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
getDescription(StringBuilder, int, InstanceInformation) - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
getDescription(StringBuilder, int, InstanceInformation) - Method in interface moa.classifiers.rules.core.Predicate
 
getDescription(StringBuilder, int, InstanceInformation) - Method in class moa.classifiers.rules.multilabel.core.Literal
 
getDescriptions() - Static method in enum moa.tasks.Plot.LegendLocation
Gets an array of string descriptions - one for each enum value.
getDescriptions() - Static method in enum moa.tasks.Plot.LegendType
Gets an array of string descriptions - one for each enum value.
getDescriptions() - Static method in enum moa.tasks.Plot.PlotStyle
Gets an array of string descriptions = one for each enum value.
getDescriptions() - Static method in enum moa.tasks.Plot.Terminal
Gets an array of string descriptions - one for each enum value.
getDetect() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getDimensions() - Method in class moa.clusterers.dstream.DensityGrid
 
getDisplayName() - Method in class moa.tasks.meta.MetaMainTask
Get the task's display name consisting of the general task name, indentation showing the tree structure depending on the subtask level and optionally a name suffix given from a supertask.
getDistance(DataPoint) - Method in class moa.gui.visualization.DataPoint
 
getDistanceFunction() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
returns the distance function currently in use.
getDistanceFunction() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
returns the distance function currently in use.
getDistances() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the distances to the kNearest or 1 nearest neighbour currently found with either the kNearestNeighbours or the nearestNeighbour method.
getDistances() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns the distances of the k nearest neighbours.
getDistances() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the distances of the k nearest neighbours.
getDistanceVector(Instance) - Method in class moa.cluster.SphereCluster
 
getDistanceVector(SphereCluster) - Method in class moa.cluster.SphereCluster
 
getDL() - Method in class moa.clusterers.dstream.Dstream
 
getDM() - Method in class moa.clusterers.dstream.Dstream
 
getDontNormalize() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Gets whether if the attribute values are to be normazlied in distance calculation.
getEditComponent(Option) - Static method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
getEditComponent(Option) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getEditComponent(Option) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getEditComponent(Option) - Method in class weka.gui.MOAClassOptionEditor
 
getEditedOption() - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
 
getEditedOption() - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
getEditedOption() - Method in class com.github.javacliparser.gui.FileOptionEditComponent
 
getEditedOption() - Method in class com.github.javacliparser.gui.FlagOptionEditComponent
 
getEditedOption() - Method in class com.github.javacliparser.gui.FloatOptionEditComponent
 
getEditedOption() - Method in class com.github.javacliparser.gui.IntOptionEditComponent
 
getEditedOption() - Method in class com.github.javacliparser.gui.MultiChoiceOptionEditComponent
 
getEditedOption() - Method in interface com.github.javacliparser.gui.OptionEditComponent
Gets the option of this component
getEditedOption() - Method in class com.github.javacliparser.gui.StringOptionEditComponent
 
getEditedOption() - Method in class moa.gui.WEKAClassOptionEditComponent
 
getEMClusteringVariances(double[][], int) - Method in class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
Performs an EM clustering on the provided data set !! Only the variances are calculated and used for point assignments ! !!! the number k' of returned clusters might be smaller than k !!!
getEMClusteringVariancesBestChoice(double[][], int, int) - Method in class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
 
getEnd() - Method in class com.yahoo.labs.samoa.instances.Range
 
getEnd(int) - Method in class moa.streams.filters.Selection
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.ADOB
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.BOLE
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OCBoost
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OzaBoost
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getEnsembleSize() - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
getEntries() - Method in class moa.clusterers.clustree.Node
Return an array with references to the children of this node.
getEntryData(int) - Method in class moa.evaluation.preview.LearningCurve
 
getEntryData(int) - Method in class moa.evaluation.preview.Preview
 
getEntryData(int) - Method in class moa.evaluation.preview.PreviewCollection
 
getEntryData(int) - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
getEntryMeasurementCount(int) - Method in class moa.evaluation.preview.LearningCurve
 
getEpsilon() - Method in class moa.classifiers.functions.AdaGrad
Get the epsilon value.
getEpsilonPrime() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getError() - Method in class moa.classifiers.rules.core.voting.Vote
 
getError() - Method in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
getErrorEstimation() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
getErrorEstimation() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
getErrorEstimation() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
getErrorEstimation() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
getErrors() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getErrorWidth() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
getErrorWidth() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
getErrorWidth() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
getEstimador() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
getEstimation() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets the prediction of next values.
getEstimation() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getEstimation() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets the prediction of next values.
getEstimation() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
getEstimation() - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
getEstimation() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
Gets the prediction of next values.
getEstimatorCopy() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getEstimatorCopy() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
getEstimatorInfo() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getEvalPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getEvalPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getEvaluationFrequency() - Method in class moa.streams.clustering.ClusteringStream
 
getEvaluationMeasurements(Measurement[], LearningPerformanceEvaluator[]) - Method in class moa.tasks.EvaluatePrequentialCV
 
getEvaluationMeasurements(Measurement[], LearningPerformanceEvaluator[]) - Method in class moa.tasks.EvaluatePrequentialDelayedCV
 
getEventsList() - Method in class moa.gui.experimentertab.tasks.ConceptDriftMainTask
 
getEventsList() - Method in class moa.streams.ArffFileStream
 
getEventsList() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getEventsList() - Method in interface moa.streams.generators.cd.ConceptDriftGenerator
 
getEventsList() - Method in class moa.tasks.AuxiliarMainTask
 
getEventsList() - Method in class moa.tasks.ClassificationMainTask
 
getEventsList() - Method in class moa.tasks.ConceptDriftMainTask
 
getEventsList() - Method in class moa.tasks.MultiLabelMainTask
 
getEventsList() - Method in class moa.tasks.MultiTargetMainTask
 
getEventsList() - Method in class moa.tasks.RegressionMainTask
 
getEventType(int) - Method in class moa.evaluation.MeasureCollection
 
getExpandedLearningLiteral() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getF1Statistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getF1Statistic(int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getFailureReason() - Method in class moa.tasks.FailedTaskReport
 
getFastSplitSuggestion(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getFeatureImportances(boolean) - Method in interface moa.learners.featureanalysis.FeatureImportanceClassifier
Obtain the current importance for each feature.
getFeatureImportances(boolean) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
getFeatureImportances(boolean) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
getFeatureRangeEndIndex() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getFeatureRangeStartIndex() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getFeatureRankings() - Method in class moa.classifiers.rules.featureranking.AbstractFeatureRanking
 
getFeatureRankings() - Method in class moa.classifiers.rules.featureranking.BasicFeatureRanking
 
getFeatureRankings() - Method in interface moa.classifiers.rules.featureranking.FeatureRanking
 
getFeatureRankings() - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking
 
getFeatureRankings() - Method in class moa.classifiers.rules.featureranking.NoFeatureRanking
 
getFeatureRankings() - Method in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking
 
getFeatures() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns the features (label attribute excluded).
getFeaturesAsArray() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns an array with all the features of all the objects in the set.
getFFRatio(int) - Method in class moa.classifiers.trees.ORTO.OptionNode
 
getFile() - Method in class com.github.javacliparser.FileOption
 
getFileChooserHeight() - Static method in class moa.gui.GUIDefaults
Returns the height for the file chooser.
getFileChooserWidth() - Static method in class moa.gui.GUIDefaults
Returns the width for the file chooser.
getFileName() - Method in class moa.gui.experimentertab.Measure
 
getFinalResult() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getFinalResult() - Method in class moa.tasks.TaskThread
 
getFirst() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
returns the first element in the list.
getFirst() - Method in class moa.recommender.rc.utils.Pair
 
getFirstBlockTotal() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
getFlag(char, String[]) - Static method in class moa.core.Utils
Checks if the given array contains the flag "-Char".
getFlag(String, String[]) - Static method in class moa.core.Utils
Checks if the given array contains the flag "-String".
getFractionCorrectlyClassified() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getFractionIncorrectlyClassified() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getFrameHeight() - Static method in class moa.gui.GUIDefaults
Returns the height for the frame.
getFrameWidth() - Static method in class moa.gui.GUIDefaults
Returns the width for the frame.
getFriedmanPValue() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Return the p-value computed by Friedman test.
getGeneratingClusters() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getGenerator() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns the current MOA stream generator in use.
getGlobalMean() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getGlobalMean() - Method in interface moa.recommender.rc.data.RecommenderData
 
getGMean() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getGMean() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getGraphCanvas() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getGraphCanvas() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getGridDensity() - Method in class moa.clusterers.dstream.CharacteristicVector
 
getGrids() - Method in class moa.clusterers.dstream.GridCluster
 
getGroundTruth() - Method in class moa.cluster.Cluster
 
getGT0Cluster(int) - Method in class moa.evaluation.CMM_GTAnalysis
Return cluster
getHalf(boolean) - Method in class moa.classifiers.meta.DACC
Returns the best (or worst) half of classifiers in the adaptive ensemble.
getHead() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getHeader() - Method in class moa.streams.ArffFileStream
 
getHeader() - Method in class moa.streams.BootstrappedStream
 
getHeader() - Method in class moa.streams.CachedInstancesStream
 
getHeader() - Method in class moa.streams.clustering.FileStream
 
getHeader() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getHeader() - Method in class moa.streams.clustering.SimpleCSVStream
 
getHeader() - Method in class moa.streams.ConceptDriftRealStream
 
getHeader() - Method in class moa.streams.ConceptDriftStream
 
getHeader() - Method in interface moa.streams.ExampleStream
Gets the header of this stream.
getHeader() - Method in class moa.streams.FilteredStream
 
getHeader() - Method in class moa.streams.filters.AddNoiseFilter
 
getHeader() - Method in class moa.streams.filters.RBFFilter
 
getHeader() - Method in class moa.streams.filters.ReLUFilter
 
getHeader() - Method in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
getHeader() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
getHeader() - Method in class moa.streams.filters.SelectAttributesFilter
 
getHeader() - Method in class moa.streams.generators.AgrawalGenerator
 
getHeader() - Method in class moa.streams.generators.AssetNegotiationGenerator
 
getHeader() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getHeader() - Method in class moa.streams.generators.HyperplaneGenerator
 
getHeader() - Method in class moa.streams.generators.LEDGenerator
 
getHeader() - Method in class moa.streams.generators.MixedGenerator
 
getHeader() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
getHeader() - Method in class moa.streams.generators.multilabel.MultilabelArffFileStream
 
getHeader() - Method in class moa.streams.generators.RandomRBFGenerator
 
getHeader() - Method in class moa.streams.generators.RandomTreeGenerator
 
getHeader() - Method in class moa.streams.generators.SEAGenerator
 
getHeader() - Method in class moa.streams.generators.SineGenerator
 
getHeader() - Method in class moa.streams.generators.STAGGERGenerator
 
getHeader() - Method in class moa.streams.generators.TextGenerator
 
getHeader() - Method in class moa.streams.generators.WaveformGenerator
 
getHeader() - Method in class moa.streams.ImbalancedStream
 
getHeader() - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
getHeader() - Method in class moa.streams.MultiFilteredStream
 
getHeader() - Method in class moa.streams.MultiLabelFilteredStream
 
getHeader() - Method in class moa.streams.MultiTargetArffFileStream
 
getHeader() - Method in class moa.streams.PartitioningStream
 
getHeadOptionCount() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
getHeight() - Method in class moa.clusterers.clustree.ClusTree
Return the current height of the tree.
getHeight() - Method in class moa.gui.experimentertab.ImageChart
Return the height.
getHelp(StringBuilder, int) - Method in class com.github.javacliparser.Options
 
getHelpString() - Method in class com.github.javacliparser.Options
 
getHelpText() - Method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
getHeuristicMeasureLower(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getHeuristicMeasureUpper(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getHighlightedClusterPanel() - Method in class moa.gui.visualization.StreamPanel
 
getHighlightedOutlierPanel() - Method in class moa.gui.visualization.StreamOutlierPanel
 
getHoldoutAUC() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getHullDistance(SphereCluster) - Method in class moa.cluster.SphereCluster
 
getIADEM_HoeffdingBound(double, double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
getId() - Method in class moa.cluster.Cluster
 
getId() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns the id for the DataObject.
getIdxs() - Method in class moa.recommender.rc.utils.DenseVector
 
getIdxs() - Method in class moa.recommender.rc.utils.SparseVector
 
getIdxs() - Method in class moa.recommender.rc.utils.Vector
 
getImanPValue() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Return the p-value Iman and Daveport test.
getInclusionProbability(Instance) - Method in class moa.cluster.CFCluster
 
getInclusionProbability(Instance) - Method in class moa.cluster.Cluster
Returns the probability of the given point belonging to this cluster.
getInclusionProbability(Instance) - Method in class moa.cluster.SphereCluster
 
getInclusionProbability(Instance) - Method in class moa.clusterers.clustream.ClustreamKernel
See interface Cluster
getInclusionProbability(Instance) - Method in class moa.clusterers.clustree.ClusKernel
 
getInclusionProbability(Instance) - Method in class moa.clusterers.denstream.MicroCluster
 
getInclusionProbability(Instance) - Method in class moa.clusterers.dstream.DensityGrid
Provides the probability of the argument instance belonging to the density grid in question.
getInclusionProbability(Instance) - Method in class moa.clusterers.dstream.GridCluster
Iterates through the DensityGrids in the cluster and calculates the inclusion probability for each.
getInclusionProbability(Instance) - Method in class moa.clusterers.macro.NonConvexCluster
 
getInclusionProbability(CMM_GTAnalysis.CMMPoint) - Method in class moa.evaluation.CMM_GTAnalysis.GTCluster
Calculate the probability of the point being covered through the cluster
getIndex() - Method in class moa.gui.experimentertab.Measure
Returns the index of measure
getIndex(ArrayList<PValuePerTwoAlgorithm>, String, String) - Static method in class moa.gui.experimentertab.statisticaltests.PValuePerTwoAlgorithm
 
getIndexCorrespondence(int[], int[]) - Static method in class moa.classifiers.rules.core.Utils
 
getIndexName() - Method in class moa.evaluation.preview.PreviewCollection
 
getIndexValues() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Gets the index values.
getIndicesIrrelevants() - Method in class com.yahoo.labs.samoa.instances.Instances
Returns the indices of the irrelevant features indicesIrrelevants.
getIndicesRelevants() - Method in class com.yahoo.labs.samoa.instances.Instances
Returns the indices of the relevant features indicesRelevants.
getInfo() - Method in class moa.cluster.Cluster
 
getInfo() - Method in class moa.gui.visualization.OutlierPanel
 
getInfo(int, int) - Method in class moa.gui.visualization.DataPoint
 
getInfogainSum() - Method in class moa.classifiers.trees.EFDT.Node
 
getInitalBuildTimestamp() - Method in class moa.evaluation.MembershipMatrix
 
getInitialDirectory() - Static method in class moa.gui.GUIDefaults
Returns the initial directory for the file chooser used for opening datasets.
getInputAttributeNameString(InstancesHeader, int) - Static method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getInputsCovered() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getInputsToLearn() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getInputString() - Method in class moa.tasks.ipynb.OptionsString
 
getInputValues() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getInstance() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Return the Instance of the DataObject.
getInstance() - Static method in class moa.gui.featureanalysis.FeatureImportancePanel
Singleton design pattern
getInstanceInformation() - Method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getInstances() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
returns the instances currently set.
getInstances() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
returns the instances currently set.
getInstances() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
returns the instances currently set.
getInstances() - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Gets the working set of instances.
getInstancesSeen() - Method in class moa.classifiers.rules.core.Rule
 
getInstancesSeen() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getInstancesSeen() - Method in class moa.classifiers.rules.functions.Perceptron
 
getInstanceValues(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getInstNodeCountSinceVirtual() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getInstSeenSinceLastSplitAttempt() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getIntEndIndex() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
GetInterval() - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.ProgressInfo
 
getIntStartIndex() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getInvertSelection() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Gets whether the matching sense of attribute indices is inverted or not.
getInvertSelection() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Gets whether the matching sense of attribute indices is inverted or not.
getIrrelevantEntry(double) - Method in class moa.clusterers.clustree.Node
If there exists an entry, whose relevance is under the threshold given as a parameter to the tree, this entry is returned.
getItemCount() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getItemFeatures(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getItems() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getItems() - Method in interface moa.recommender.rc.data.RecommenderData
 
getKappa() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getKappa() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getKappaStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getKappaTemporalStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getKthNearest() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the kth nearest element or null if none there.
getL() - Method in class moa.core.utils.Converter
 
getLabel() - Method in class moa.clusterers.dstream.CharacteristicVector
 
getLabel() - Method in class moa.evaluation.CMM_GTAnalysis.GTCluster
The original class label the cluster represents
getLambda() - Method in class moa.classifiers.functions.SGD
Get the current value of lambda
getLambda() - Method in class moa.classifiers.functions.SGDMultiClass
Get the current value of lambda
getLambda() - Method in class moa.classifiers.functions.SPegasos
Get the current value of lambda
getLast() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
returns the last element in the list.
getLastCell() - Method in class moa.tasks.ipynb.NotebookBuilder
 
getLastEditTimestamp() - Method in class moa.clusterers.denstream.MicroCluster
 
getLastLabelAcqReport() - Method in interface moa.classifiers.active.ALClassifier
Returns true if the previously chosen instance was added to the training set of the active learner.
getLastLabelAcqReport() - Method in class moa.classifiers.active.ALRandom
 
getLastLabelAcqReport() - Method in class moa.classifiers.active.ALUncertainty
 
getLastLabelAcqReport() - Method in interface moa.classifiers.active.budget.BudgetManager
Returns the number of labels that have been chosen for acquisition since the last report.
getLastLabelAcqReport() - Method in class moa.classifiers.active.budget.FixedBM
 
getLastValue(int) - Method in class moa.evaluation.MeasureCollection
 
getLatestPreviewGrabTimeSeconds() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getLatestPreviewGrabTimeSeconds() - Method in class moa.tasks.TaskThread
 
getLatestResultPreview() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getLatestResultPreview() - Method in class moa.tasks.NullMonitor
 
getLatestResultPreview() - Method in class moa.tasks.StandardTaskMonitor
 
getLatestResultPreview() - Method in interface moa.tasks.TaskMonitor
Gets the current result to preview
getLatestResultPreview() - Method in class moa.tasks.TaskThread
 
getLearnerToUse(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getLearnerToUse(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getLearningAttributes() - Method in class moa.classifiers.rules.featureranking.messages.MeritCheckMessage
 
getLearningCurve() - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
getLearningNode() - Method in class moa.classifiers.rules.core.Rule
getLearningNode Method This is the way to pass info for other classes.
getLearningNode() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getLearningRate() - Method in class moa.classifiers.functions.SGD
Get the learning rate.
getLearningRate() - Method in class moa.classifiers.functions.SGDMultiClass
Get the learning rate.
getLeaves() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getLeaves() - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getLeaves() - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getLeaves() - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getLeftClassDist(double) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getLeftClassDist(double) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getLeftClassDist(double) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
getLeftClassDist(double) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getLeftStreamPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getLeftStreamPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getLevel() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
getLevel() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
getLevel() - Method in class moa.classifiers.trees.FIMTDD.Node
 
getLevel(ClusTree) - Method in class moa.clusterers.clustree.Node
Returns the level at which this node is in the tree.
getList() - Method in class com.github.javacliparser.ListOption
 
getLiterals() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getLogPanel() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getLogPanel() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getLossFunction() - Method in class moa.classifiers.functions.SGD
Get the current loss function.
getLossFunction() - Method in class moa.classifiers.functions.SGDMultiClass
Get the current loss function.
getLossFunction() - Method in class moa.classifiers.functions.SPegasos
Get the current loss function.
getLowerQuartile(int) - Method in class moa.evaluation.MeasureCollection
 
getMainTree() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getMainTree() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
getMajorityClassVotes(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getMaxAltSubtreesPerNode() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getMaxAttValsObserved() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getMaxInclusionProbability(Instance) - Method in class moa.cluster.Clustering
 
getMAXIndexes() - Method in class moa.classifiers.meta.DACC
Returns the classifiers that vote for the final prediction when the MAX combination function is selected
getMaxInstInLeaf() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Get the maximum number of instances in a leaf.
getMaxNestingLevels() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getMaxNumberOfBins() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getMaxOfValues() - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getMaxOfValues() - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getMaxOfValues() - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
getMaxOfValues() - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getMaxRating() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getMaxRating() - Method in interface moa.recommender.rc.data.RecommenderData
 
getMaxRelativeNodeWidth(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the maximum attribute width of instances/points in a KDTreeNode relative to the whole dataset.
getMaxSize() - Method in class moa.core.FixedLengthList
 
getMaxTabUndo() - Static method in class moa.gui.GUIDefaults
Returns the maximum of undos for closing pages/tabs.
getMaxValue() - Method in class com.github.javacliparser.FloatOption
 
getMaxValue() - Method in class com.github.javacliparser.IntOption
 
getMaxValue(int) - Method in class moa.evaluation.MeasureCollection
 
getMaxXValue() - Method in class moa.gui.visualization.AbstractGraphCanvas
Returns the maximum value for the x-axis.
getMaxXValue() - Method in class moa.gui.visualization.ParamGraphCanvas
 
getMaxXValue() - Method in class moa.gui.visualization.ProcessGraphCanvas
 
getMean() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getMean() - Method in class moa.core.GaussianEstimator
 
getMean(int) - Method in class moa.evaluation.MeasureCollection
 
getMeanError() - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
getMeanError() - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
getMeanError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getMeanError() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
getMeanError() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
getMeanError() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getMeanPreviews() - Method in class moa.evaluation.preview.MeanPreviewCollection
 
getMeanRunningTime() - Method in class moa.evaluation.MeasureCollection
 
getMeasure() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getMeasure(String) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the value of the named measure.
getMeasureCollection() - Method in enum moa.gui.experimentertab.ExpPreviewPanel.TypePanel
 
getMeasureCollection() - Method in enum moa.gui.PreviewPanel.TypePanel
 
getMeasurement(int, int) - Method in class moa.evaluation.preview.LearningCurve
 
getMeasurementName(int) - Method in class moa.evaluation.preview.LearningCurve
 
getMeasurementName(int) - Method in class moa.evaluation.preview.Preview
 
getMeasurementName(int) - Method in class moa.evaluation.preview.PreviewCollection
 
getMeasurementName(int) - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
getMeasurementNameCount() - Method in class moa.evaluation.preview.LearningCurve
 
getMeasurementNameCount() - Method in class moa.evaluation.preview.Preview
 
getMeasurementNameCount() - Method in class moa.evaluation.preview.PreviewCollection
 
getMeasurementNameCount() - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
getMeasurementNamed(String, Measurement[]) - Static method in class moa.core.Measurement
 
getMeasurementNames() - Method in class moa.evaluation.preview.Preview
 
getMeasurements() - Method in class moa.evaluation.LearningEvaluation
 
getMeasurementsDescription(Measurement[], StringBuilder, int) - Static method in class moa.core.Measurement
 
getMeasurePerformance() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Gets whether performance statistics are being calculated or not.
getMeasures() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getMeasures() - Method in class moa.gui.experimentertab.ReadFile
Returns the common measures to all algorithms.
getMeasures() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getMeasureSelected() - Method in class moa.gui.visualization.GraphCanvas
 
getMeasuresPerData(List<Stream>) - Method in class moa.gui.experimentertab.Algorithm
Returns a list of measures per dataset.
getMeasureValue(String) - Method in class moa.cluster.Cluster
 
getMeasureValue(String) - Method in class moa.gui.visualization.DataPoint
 
getMedian(int) - Method in class moa.evaluation.MeasureCollection
 
getMemberCliString(int) - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
GetMemoryUsage() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getMerit() - Method in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
getMeritInputAttributes() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getMeritLowerBound() - Method in class moa.classifiers.trees.iadem.IademAttributeSplitSuggestion
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in interface moa.classifiers.core.splitcriteria.SplitCriterion
Computes the merit of splitting for a given ditribution before the split and after it.
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in interface moa.classifiers.rules.core.splitcriteria.AMRulesSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRulesNode
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.VarianceRatioSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.VRSplitCriterion
 
getMeritOfSplit(DoubleVector[], DoubleVector[][]) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getMeritOfSplit(DoubleVector[], DoubleVector[][]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getMeritOfSplit(DoubleVector[], DoubleVector[][]) - Method in interface moa.classifiers.rules.multilabel.core.splitcriteria.MultiLabelSplitCriterion
 
getMeritOfSplit(DoubleVector[], DoubleVector[][]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getMeritOfSplitForOutput(DoubleVector[], DoubleVector[][], int) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getMeritOfSplitForOutput(DoubleVector[], DoubleVector[][], int) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getMeritOfSplitForOutput(DoubleVector[], DoubleVector[][], int) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getMeritOfSplitForOutput(DoubleVector, DoubleVector[]) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getMeritOfSplitForOutput(DoubleVector, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getMeritOfSplitForOutput(DoubleVector, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getMerits() - Method in class moa.classifiers.rules.featureranking.messages.MeritCheckMessage
 
getMessage() - Method in exception moa.classifiers.trees.iadem.IademException
 
getMessage() - Method in class moa.streams.clustering.ClusterEvent
 
getMicroClustering() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getMicroClusteringResult() - Method in class moa.clusterers.AbstractClusterer
 
getMicroClusteringResult() - Method in interface moa.clusterers.Clusterer
 
getMicroClusteringResult() - Method in class moa.clusterers.ClusterGenerator
 
getMicroClusteringResult() - Method in class moa.clusterers.clustream.Clustream
 
getMicroClusteringResult() - Method in class moa.clusterers.clustream.WithKmeans
 
getMicroClusteringResult() - Method in class moa.clusterers.clustree.ClusTree
 
getMicroClusteringResult() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getMicroClusteringResult() - Method in class moa.clusterers.kmeanspm.BICO
 
getMicroClusteringResult() - Method in class moa.clusterers.meta.ConfStream
 
getMicroClusteringResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getMicroClusteringSize() - Method in class moa.clusterers.kmeanspm.BICO
Returns the current size of the micro clustering.
getMicroClusters() - Method in interface moa.clusterers.macro.IDenseMacroCluster
 
getMicroClusters() - Method in class moa.clusterers.macro.NonConvexCluster
 
getMiddle(double[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns value in the middle of the two parameter values.
getMinBoxRelWidth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Gets the minimum relative box width.
getMinimumValue() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
GetMinPrecNeigh(Long) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
GetMinPrecNeigh(Long) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
getMinProcessFrequency() - Method in class moa.gui.visualization.ProcessGraphCanvas
Returns the minimum process frequency.
getMinRating() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getMinRating() - Method in interface moa.recommender.rc.data.RecommenderData
 
getMinValue() - Method in class com.github.javacliparser.FloatOption
 
getMinValue() - Method in class com.github.javacliparser.IntOption
 
getMinValue(int) - Method in class moa.evaluation.MeasureCollection
 
getMinXValue() - Method in class moa.gui.visualization.AbstractGraphCanvas
Returns the minimum value for the x-axis.
getMinXValue() - Method in class moa.gui.visualization.ParamGraphCanvas
 
getMinXValue() - Method in class moa.gui.visualization.ProcessGraphCanvas
 
getModel() - Method in class moa.classifiers.AbstractClassifier
 
getModel() - Method in interface moa.learners.Learner
Gets the model if this learner.
getModelAttIndexToInstanceAttIndex(int, Instance) - Method in class moa.classifiers.rules.AbstractAMRules
 
getModelContext() - Method in class moa.classifiers.AbstractClassifier
 
getModelContext() - Method in class moa.clusterers.AbstractClusterer
 
getModelContext() - Method in interface moa.clusterers.Clusterer
 
getModelContext() - Method in interface moa.learners.Learner
Gets the reference to the header of the data stream.
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.AbstractClassifier
Returns a string representation of the model.
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.active.ALRandom
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.active.ALUncertainty
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.bayes.NaiveBayes
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.MajorityClass
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.NoChange
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.Perceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SGD
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SGDMultiClass
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SPegasos
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNN
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNNwithPAW
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.SAMkNN
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.ADACC
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.ADOB
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.BOLE
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.DACC
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LearnNSE
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LeveragingBag
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LimAttClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OCBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBag
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBagAdwin
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBagASHT
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.PairedLearners
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.RandomRules
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.StreamingRandomPatches
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.WEKAClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.oneclass.Autoencoder
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.oneclass.HSTrees
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.AbstractAMRules
print GUI learn model
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.AMRulesRegressorOld
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.Perceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.TargetMean
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
print GUI learn model
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
print GUI learn model
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ARFFIMTDD
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.DecisionStump
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.EFDT
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.iadem.Iadem2
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.AbstractClusterer
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.ClusterGenerator
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustream.Clustream
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustream.WithKmeans
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustree.ClusTree
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.CobWeb
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.denstream.WithDBSCAN
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.dstream.Dstream
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.kmeanspm.BICO
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.streamkm.StreamKM
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getModelDescription(StringBuilder, int) - Method in class moa.learners.ChangeDetectorLearner
 
getModelDescription(StringBuilder, int) - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
getModelDescription(StringBuilder, int) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
getModelDescription(StringBuilder, int) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
getModelDescriptionNoAnomalyDetection(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
getModelMeasurements() - Method in class moa.classifiers.AbstractClassifier
 
getModelMeasurements() - Method in class moa.clusterers.AbstractClusterer
 
getModelMeasurements() - Method in interface moa.clusterers.Clusterer
 
getModelMeasurements() - Method in interface moa.learners.Learner
Gets the current measurements of this learner.
getModelMeasurementsImpl() - Method in class moa.classifiers.AbstractClassifier
Gets the current measurements of this classifier.

The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.
getModelMeasurementsImpl() - Method in class moa.classifiers.active.ALRandom
 
getModelMeasurementsImpl() - Method in class moa.classifiers.active.ALUncertainty
 
getModelMeasurementsImpl() - Method in class moa.classifiers.bayes.NaiveBayes
 
getModelMeasurementsImpl() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
getModelMeasurementsImpl() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.MajorityClass
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.NoChange
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.Perceptron
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SGD
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SGDMultiClass
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SPegasos
 
getModelMeasurementsImpl() - Method in class moa.classifiers.lazy.kNN
 
getModelMeasurementsImpl() - Method in class moa.classifiers.lazy.SAMkNN
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Adds ensemble weights to the measurements.
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Adds ensemble weights to the measurements.
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.ADACC
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.ADOB
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.BOLE
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.DACC
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LearnNSE
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LeveragingBag
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LimAttClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OCBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Adds ensemble weights to the measurements.
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBag
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBagAdwin
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBagASHT
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.PairedLearners
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.RandomRules
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.StreamingRandomPatches
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.WEKAClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multilabel.MEKAClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
getModelMeasurementsImpl() - Method in class moa.classifiers.oneclass.Autoencoder
 
getModelMeasurementsImpl() - Method in class moa.classifiers.oneclass.HSTrees
 
getModelMeasurementsImpl() - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.AbstractAMRules
print GUI evaluate model
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.Perceptron
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.TargetMean
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
print GUI evaluate model
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
print GUI evaluate model
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.RuleClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.ARFFIMTDD
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.DecisionStump
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.EFDT
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.FIMTDD
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.HoeffdingTree
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.ORTO
 
getModelMeasurementsImpl() - Method in class moa.clusterers.AbstractClusterer
 
getModelMeasurementsImpl() - Method in class moa.clusterers.ClusterGenerator
 
getModelMeasurementsImpl() - Method in class moa.clusterers.clustream.Clustream
 
getModelMeasurementsImpl() - Method in class moa.clusterers.clustream.WithKmeans
 
getModelMeasurementsImpl() - Method in class moa.clusterers.clustree.ClusTree
 
getModelMeasurementsImpl() - Method in class moa.clusterers.CobWeb
 
getModelMeasurementsImpl() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getModelMeasurementsImpl() - Method in class moa.clusterers.dstream.Dstream
 
getModelMeasurementsImpl() - Method in class moa.clusterers.kmeanspm.BICO
 
getModelMeasurementsImpl() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
getModelMeasurementsImpl() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getModelMeasurementsImpl() - Method in class moa.clusterers.streamkm.StreamKM
 
getModelMeasurementsImpl() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getModelMeasurementsImpl() - Method in class moa.learners.ChangeDetectorLearner
 
getModelMeasurementsImpl() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
getModelMeasurementsImpl() - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
getModelMeasurementsImpl() - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
getModelName() - Method in class moa.classifiers.functions.AdaGrad
 
getModelName() - Method in class moa.classifiers.functions.SGD
 
getModelQuality() - Method in class moa.evaluation.CMM_GTAnalysis
Calculates the relative number of errors being caused by the underlying cluster model
getN() - Method in class moa.cluster.CFCluster
 
getNaiveBayesLimit() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getNaiveBayesPrediction(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNB
 
getNaiveBayesPrediction(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNB
 
getName() - Method in class com.github.javacliparser.AbstractOption
 
getName() - Method in interface com.github.javacliparser.Option
Gets the name of this option
getName() - Method in class moa.clusterers.clustream.Clustream
 
getName() - Method in class moa.clusterers.clustream.WithKmeans
 
getName() - Method in class moa.clusterers.macro.ColorObject
 
getName() - Method in class moa.core.Measurement
 
getName() - Method in class moa.gui.experimentertab.ImageChart
Return the name.
getName() - Method in class moa.gui.experimentertab.Measure
 
getName() - Method in class moa.gui.experimentertab.Stream
Returns the name of the stream
getName(int) - Static method in class moa.clusterers.macro.ColorArray
 
getName(int) - Method in class moa.evaluation.MeasureCollection
 
getNames() - Method in class moa.evaluation.Accuracy
 
getNames() - Method in class moa.evaluation.ALMeasureCollection
 
getNames() - Method in class moa.evaluation.ChangeDetectionMeasures
 
getNames() - Method in class moa.evaluation.CMM
 
getNames() - Method in class moa.evaluation.EntropyCollection
 
getNames() - Method in class moa.evaluation.F1
 
getNames() - Method in class moa.evaluation.General
 
getNames() - Method in class moa.evaluation.MeasureCollection
 
getNames() - Method in class moa.evaluation.OutlierPerformance
 
getNames() - Method in class moa.evaluation.RegressionAccuracy
 
getNames() - Method in class moa.evaluation.Separation
 
getNames() - Method in class moa.evaluation.SilhouetteCoefficient
 
getNames() - Method in class moa.evaluation.SSQ
 
getNames() - Method in class moa.evaluation.StatisticalCollection
 
getNanoCPUTimeOfCurrentThread() - Static method in class moa.core.TimingUtils
 
getNanoCPUTimeOfThread(long) - Static method in class moa.core.TimingUtils
 
getNaNSubstitute() - Method in class moa.tasks.FeatureImportanceConfig
 
getNbActiveClassifiers() - Method in class moa.classifiers.meta.ADACC
 
getNbActiveClassifiers() - Method in class moa.classifiers.meta.DACC
Returns the number of classifiers used for prediction which includes the adaptive learners and the snapshots in ADACC
getNbAdaptiveClassifiers() - Method in class moa.classifiers.meta.ADACC
 
getNbAdaptiveClassifiers() - Method in class moa.classifiers.meta.DACC
Returns the number of adaptive classifiers in the ensemble which excludes the static snapshots in ADACC
getNearest(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbor query on the M-Tree, without constraints.
getNearest(DATA, double, int) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbor query on the M-Tree, constrained by distance and/or the number of neighbors.
getNearestByLimit(DATA, int) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbors query on the M-Tree, constrained by the number of neighbors.
getNearestByRange(DATA, double) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbors query on the M-Tree, constrained by distance.
getNeighbours() - Method in class moa.clusterers.dstream.DensityGrid
Generates an Array List of neighbours for this density grid by varying each coordinate by one in either direction.
getNewMeasureCollection() - Method in class moa.gui.experimentertab.TaskTextViewerPanel
 
getNewMeasureCollection() - Method in class moa.gui.TaskTextViewerPanel
 
getNewRuleFromOtherBranch() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getNewRuleFromOtherOutputs() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getNewSplitNode(long, Iadem2.Node, IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
getNewSplitNode(long, Iadem2.Node, IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
getNewSplitNode(long, Iadem2.Node, IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getNewSplitNode(long, Iadem2.Node, IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNominalVirtualNode
 
getNewSplitNode(long, Iadem2.Node, IademAttributeSplitSuggestion, Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
getNext() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getNext() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
getNextInputIndices(AttributeExpansionSuggestion[]) - Method in interface moa.classifiers.rules.multilabel.inputselectors.InputAttributesSelector
 
getNextInputIndices(AttributeExpansionSuggestion[]) - Method in class moa.classifiers.rules.multilabel.inputselectors.MeritThreshold
 
getNextInputIndices(AttributeExpansionSuggestion[]) - Method in class moa.classifiers.rules.multilabel.inputselectors.SelectAllInputs
 
getNextOutputIndices(DoubleVector[], DoubleVector[], int[]) - Method in class moa.classifiers.rules.multilabel.outputselectors.EntropyThreshold
 
getNextOutputIndices(DoubleVector[], DoubleVector[], int[]) - Method in interface moa.classifiers.rules.multilabel.outputselectors.OutputAttributesSelector
 
getNextOutputIndices(DoubleVector[], DoubleVector[], int[]) - Method in class moa.classifiers.rules.multilabel.outputselectors.SelectAllOutputs
 
getNextOutputIndices(DoubleVector[], DoubleVector[], int[]) - Method in class moa.classifiers.rules.multilabel.outputselectors.StdDevThreshold
 
getNextOutputIndices(DoubleVector[], DoubleVector[], int[]) - Method in class moa.classifiers.rules.multilabel.outputselectors.VarianceThreshold
 
getNextPartitionToLeaveOut() - Method in class moa.streams.PartitioningStream
get the partition which is excluded from seeing the next instance
getNode() - Method in class moa.clusterers.clustree.Entry
 
getNodeCount() - Method in class moa.classifiers.trees.HoeffdingTree
 
getNodeList() - Method in class moa.classifiers.rules.core.Rule
 
GetNodesCount() - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
getNodeSplitter() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the splitting method currently in use to split the nodes of the KDTree.
getNodeStatistics() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getNoiseLabel() - Method in class moa.gui.visualization.DataPoint
 
getNoiseSeparability() - Method in class moa.evaluation.CMM_GTAnalysis
Calculates how well noise is separable from the given clusters Small values indicate bad separability, values close to 1 indicate good separability
getNominalAttClassObserver() - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
getNominalValueString(int, int) - Method in class moa.classifiers.AbstractClassifier
Gets the name of a value of an attribute from the header.
getNominalValueString(int, int) - Method in class moa.clusterers.AbstractClusterer
 
getNominalValueString(InstancesHeader, int, int) - Static method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getNormalizedError(Instance, double) - Method in class moa.classifiers.trees.ARFFIMTDD
 
getNormalizedError(Instance, double) - Method in class moa.classifiers.trees.FIMTDD
 
getNormalizedError(MultiLabelInstance, double[]) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
getNormalizedErrors(Prediction, Instance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getNormalizedErrors(Prediction, Instance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
getNormalizedErrors(Prediction, Instance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
getNormalizedInput(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
getNormalizedOutput(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
getNormalizedPrediction(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getNormalizeNodeWidth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Gets the normalize flag.
getNrOfClasses() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Counts the number of classes that are present in the data set.
getNrOfDimensions() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns the number of features (label attribute excluded).
getNrOfDimensions() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Return the dimension of the objects in the DataSet.
getNullString() - Method in class com.github.javacliparser.AbstractClassOption
Gets the null string of this option.
getNullString() - Method in class moa.options.AbstractClassOption
Gets the null string of this option.
getNumberAttributes() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Gets the number attributes.
getNumberAttributes() - Method in class moa.classifiers.functions.Perceptron
 
getNumberChanges() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumberChangesOccurred() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumberClasses() - Method in class moa.classifiers.functions.Perceptron
 
getNumberDetections() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getNumberDetections() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumberOfCutPoints() - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getNumberOfCutPoints() - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getNumberOfCutPoints() - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
getNumberOfCutPoints() - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getNumberOfGT0Classes() - Method in class moa.evaluation.CMM_GTAnalysis
Number of classes/clusters of the new clustering
getNumberOfInstancesProcessed() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getNumberOfLeaves() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getNumberOfNodes() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem2
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getNumberOfNodes(int[]) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
getNumberOfSubtrees() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
getNumberOfSubtrees() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getNumberOfValues(int) - Method in class moa.evaluation.MeasureCollection
 
getNumberVotes() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
getNumberVotes() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
The number of votes added so far.
getNumberVotes() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getNumberVotes() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
The number of votes added so far.
getNumberVotes(int) - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getNumberVotes(int) - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
The number of votes for a given output attribute.
getNumberWarnings() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumBytesWritten() - Method in class com.github.javacliparser.SerializeUtils.ByteCountingOutputStream
 
getNumBytesWritten() - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
getNumClasses() - Method in class moa.evaluation.MembershipMatrix
 
getNumClassLabels() - Method in class moa.core.MultilabelInstancesHeader
 
getNumColors() - Static method in class moa.clusterers.macro.ColorArray
 
getNumericAttClassObserver() - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
getNumericAttObserver() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getNumericValueString(InstancesHeader, int, double) - Static method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
getNumFeatures() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getNumItems() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getNumItems() - Method in interface moa.recommender.rc.data.RecommenderData
 
getNumLabels() - Method in class moa.core.MultilabelInstance
 
getNumLeft() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
getNumMeasures() - Method in class moa.evaluation.MeasureCollection
 
getNumOfTests() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
getNumPoints() - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Returns the number of points of the ClusteringFeature.
getNumRatings() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getNumRatings() - Method in interface moa.recommender.rc.data.RecommenderData
 
getNumRootSplits() - Method in class moa.clusterers.clustree.ClusTree
Return the number of time the tree has grown in size.
getNumSplitAttempts() - Method in class moa.classifiers.trees.EFDT.Node
 
getNumSubtrees() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
getNumSubtrees() - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
getNumSubtrees() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
getNumSubtrees() - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getNumSubtrees() - Method in class moa.classifiers.trees.FIMTDD.Node
 
getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
getNumTrees() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
getNumUsers() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getNumUsers() - Method in interface moa.recommender.rc.data.RecommenderData
 
getObject(int) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns the DataObject at the given position.
getObject(String, String) - Static method in class moa.gui.GUIDefaults
Tries to instantiate the class stored for this property, optional options will be set as well.
getObject(String, String, Class) - Static method in class moa.gui.GUIDefaults
Tries to instantiate the class stored for this property, optional options will be set as well.
getObjectInfo() - Method in class moa.gui.visualization.PointPanel
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
getObjectNamed(String) - Method in interface moa.core.ObjectRepository
 
getObservedClassDistribution() - Method in class moa.classifiers.trees.EFDT.Node
 
getObservedClassDistribution() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
getObservedClassDistribution() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getObservedClassDistributionAtLeavesReachableThroughThisNode() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getObservedClassDistributionAtLeavesReachableThroughThisNode() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
getOldestEntry() - Method in class moa.core.FixedLengthList
 
getOption(char) - Method in class com.github.javacliparser.Options
 
getOption(char, String[]) - Static method in class moa.core.Utils
Gets an option indicated by a flag "-Char" from the given array of strings.
getOption(String) - Method in class com.github.javacliparser.Options
 
getOption(String, String[]) - Static method in class moa.core.Utils
Gets an option indicated by a flag "-String" from the given array of strings.
getOptionArray() - Method in class com.github.javacliparser.Options
 
getOptionDescriptions() - Method in class com.github.javacliparser.MultiChoiceOption
 
getOptionLabels() - Method in class com.github.javacliparser.MultiChoiceOption
 
getOptionPos(char, String[]) - Static method in class moa.core.Utils
Gets the index of an option or flag indicated by a flag "-Char" from the given array of strings.
getOptionPos(String, String[]) - Static method in class moa.core.Utils
Gets the index of an option or flag indicated by a flag "-String" from the given array of strings.
getOptions() - Method in class com.github.javacliparser.JavaCLIParser
 
getOptions() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Gets the current settings of the object.
getOptions() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getOptions() - Method in class moa.options.AbstractOptionHandler
 
getOptions() - Method in interface moa.options.OptionHandler
Gets the options of this object
getOptions() - Method in class moa.tasks.meta.ALMultiParamTask
 
getOptions() - Method in class weka.classifiers.meta.MOA
Gets the current settings of the Classifier.
getOptions() - Method in class weka.datagenerators.classifiers.classification.MOA
Gets the current settings of the datagenerator.
getOrderingMeasurementName() - Method in class moa.evaluation.preview.LearningCurve
 
getOrderingName() - Method in class moa.evaluation.preview.PreviewCollection
 
getOtherBranchLearningLiteral() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getOtherOutputsLearningLiteral() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getOutlierer0() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getOutlierer1() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getOutlierScore(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
GetOutliersFound() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getOutliersResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getOutliersVisibility() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getOutput() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets the output state of the change detection.
getOutput() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets the output state of the change detection.
getOutputAttributesErrors() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getOutputAttributesErrors() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Returns the weighted error.
getOutputsCovered() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getOutputsToLearn() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getOwner() - Method in class moa.classifiers.rules.core.Rule.Builder
 
getParameter() - Method in class moa.clusterers.meta.BooleanParameter
 
getParameter() - Method in class moa.clusterers.meta.CategoricalParameter
 
getParameter() - Method in class moa.clusterers.meta.IntegerParameter
 
getParameter() - Method in interface moa.clusterers.meta.IParameter
 
getParameter() - Method in class moa.clusterers.meta.NumericalParameter
 
getParameter() - Method in class moa.clusterers.meta.OrdinalParameter
 
getParameterString() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getParameterString() - Method in class moa.evaluation.CMM_GTAnalysis
String with main CMM parameters
getParameterString() - Method in class moa.evaluation.CMM
 
getParameterString() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getParamVector(int) - Method in class moa.clusterers.meta.Algorithm
 
getParent() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
Return the parent node
getParent() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
Return the parent node
getParent() - Method in class moa.classifiers.trees.EFDT.EFDTLearningNode
 
getParent() - Method in interface moa.classifiers.trees.EFDT.EFDTNode
 
getParent() - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
getParent() - Method in class moa.classifiers.trees.FIMTDD.Node
Return the parent node
getParent() - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getParentEntry() - Method in class moa.clusterers.clustree.Entry
 
getPath() - Method in class moa.gui.experimentertab.ReadFile
Returns the path of the results.
getPauseInterval() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getPauseInterval() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getPercent() - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
getPercent() - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
getPercent() - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getPercentInCommon() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getPerceptron() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getPerformanceMeasurements() - Method in class moa.evaluation.ALWindowClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getPerformanceMeasurements() - Method in interface moa.evaluation.LearningPerformanceEvaluator
Gets the current measurements monitored by this evaluator.
getPerformanceMeasurements() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getPoint(int) - Method in class moa.evaluation.CMM_GTAnalysis
Get CMM internal point
getPointColorbyClass(DataPoint, float) - Static method in class moa.gui.visualization.PointPanel
 
getPointVisibility() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getPrecisionStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getPrecisionStatistic(int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getPredicate() - Method in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
getPrediction() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getPrediction() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
 
getPrediction(Instance) - Method in class moa.classifiers.rules.core.Rule
 
getPrediction(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getPrediction(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
getPrediction(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
getPrediction(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.SplitNode
 
getPrediction(Instance) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getPrediction(Instance) - Method in class moa.classifiers.trees.FIMTDD.Node
 
getPrediction(Instance) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.Rule
 
getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.OptionNode
 
getPrediction(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
getPrediction(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
getPrediction(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.SplitNode
 
getPredictionError() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getPredictionForInstance(Instance) - Method in class moa.classifiers.AbstractClassifier
 
getPredictionForInstance(Instance) - Method in class moa.classifiers.AbstractMultiLabelLearner
 
getPredictionForInstance(Instance) - Method in interface moa.classifiers.Classifier
Gets the reference to the header of the data stream.
getPredictionForInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.AbstractMultiLabelLearner
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multilabel.meta.OzaBagAdwinML
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multilabel.meta.OzaBagML
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
getPredictionForInstance(MultiLabelInstance) - Method in interface moa.classifiers.MultiLabelLearner
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
getPredictionForInstance(MultiLabelInstance) - Method in interface moa.classifiers.MultiTargetLearnerSemiSupervised
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
getPredictionForInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
getPredictionForInstance(E) - Method in interface moa.learners.Learner
 
getPredictionForInstance(Example<Instance>) - Method in class moa.classifiers.AbstractClassifier
 
getPredictionForInstance(Example<Instance>) - Method in class moa.classifiers.AbstractMultiLabelLearner
 
getPredictionForInstance(Example<Instance>) - Method in class moa.classifiers.multilabel.meta.OzaBagAdwinML
 
getPredictionForInstance(Example<Instance>) - Method in class moa.classifiers.multilabel.meta.OzaBagML
 
getPredictionForInstance(Example<Instance>) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
getPredictionModel(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
Retrieve the class votes using the perceptron learner
getPredictionModel(Instance) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
Retrieve the class votes using the perceptron learner
getPredictionModel(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
Retrieve the class votes using the perceptron learner
getPredictionTargetMean(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
getPredictionTargetMean(Instance) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getPredictionTargetMean(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
getPreferredScrollableViewportSize() - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
 
getPreferredScrollableViewportSize() - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
 
getPreferredSize() - Method in class moa.gui.visualization.GraphCurve
 
getPreMaterializedObject() - Method in class moa.options.AbstractClassOption
Returns the current object.
getPreparedClassOption(ClassOption) - Method in class moa.options.AbstractOptionHandler
Gets a prepared option of this class.
getPreparedClassOption(ClassOption) - Method in class moa.options.OptionsHandler
Gets a prepared option of this class.
getPreview(ResultPreviewListener) - Method in class moa.gui.experimentertab.ExpTaskThread
 
getPreview(ResultPreviewListener) - Method in class moa.tasks.TaskThread
 
getPreviews() - Method in class moa.evaluation.preview.PreviewCollection
 
getPrevious() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getProbability(double, double, double) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.CantellisInequality
 
getProbability(double, double, double) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.ChebyshevInequality
 
getProbability(double, double, double) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.GaussInequality
 
getProbability(double, double, double) - Method in interface moa.classifiers.rules.core.anomalydetection.probabilityfunctions.ProbabilityFunction
 
getProcessFrequencies() - Method in class moa.gui.visualization.ProcessGraphCanvas
Returns the list of registered process frequencies.
getProcessFrequency() - Method in class moa.gui.visualization.GraphCanvas
 
getProgressBar() - Method in class moa.tasks.FeatureImportanceConfig
 
getProgressFraction() - Method in class moa.core.InputStreamProgressMonitor
 
getProperties() - Static method in class moa.gui.GUIDefaults
returns the associated properties file.
getPropotionBelow(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getPurpose() - Method in class com.github.javacliparser.AbstractOption
 
getPurpose() - Method in interface com.github.javacliparser.Option
Gets the purpose of this option
getPurposeString() - Method in class com.github.javacliparser.JavaCLIParser
 
getPurposeString() - Method in class moa.classifiers.AbstractClassifier
 
getPurposeString() - Method in class moa.classifiers.active.ALRandom
 
getPurposeString() - Method in class moa.classifiers.active.ALUncertainty
 
getPurposeString() - Method in class moa.classifiers.active.budget.FixedBM
 
getPurposeString() - Method in class moa.classifiers.bayes.NaiveBayes
 
getPurposeString() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
getPurposeString() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getPurposeString() - Method in class moa.classifiers.functions.AdaGrad
 
getPurposeString() - Method in class moa.classifiers.functions.MajorityClass
 
getPurposeString() - Method in class moa.classifiers.functions.NoChange
 
getPurposeString() - Method in class moa.classifiers.functions.Perceptron
 
getPurposeString() - Method in class moa.classifiers.functions.SGD
 
getPurposeString() - Method in class moa.classifiers.functions.SGDMultiClass
 
getPurposeString() - Method in class moa.classifiers.functions.SPegasos
 
getPurposeString() - Method in class moa.classifiers.lazy.kNN
 
getPurposeString() - Method in class moa.classifiers.lazy.kNNwithPAW
 
getPurposeString() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
getPurposeString() - Method in class moa.classifiers.lazy.SAMkNN
 
getPurposeString() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
getPurposeString() - Method in class moa.classifiers.meta.ADACC
 
getPurposeString() - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
getPurposeString() - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
getPurposeString() - Method in class moa.classifiers.meta.ADOB
 
getPurposeString() - Method in class moa.classifiers.meta.BOLE
 
getPurposeString() - Method in class moa.classifiers.meta.DACC
 
getPurposeString() - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
getPurposeString() - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
getPurposeString() - Method in class moa.classifiers.meta.LeveragingBag
 
getPurposeString() - Method in class moa.classifiers.meta.LimAttClassifier
 
getPurposeString() - Method in class moa.classifiers.meta.OCBoost
 
getPurposeString() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBag
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBagAdwin
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBagASHT
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBoost
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getPurposeString() - Method in class moa.classifiers.meta.RandomRules
 
getPurposeString() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getPurposeString() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getPurposeString() - Method in class moa.classifiers.meta.WEKAClassifier
 
getPurposeString() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getPurposeString() - Method in class moa.classifiers.multilabel.MEKAClassifier
 
getPurposeString() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
getPurposeString() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
getPurposeString() - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
getPurposeString() - Method in class moa.classifiers.oneclass.Autoencoder
 
getPurposeString() - Method in class moa.classifiers.oneclass.HSTrees
 
getPurposeString() - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
 
getPurposeString() - Method in class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
getPurposeString() - Method in class moa.classifiers.rules.core.changedetection.NoChangeDetection
 
getPurposeString() - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
getPurposeString() - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
getPurposeString() - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelClassifier
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressorSemiSuper
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.functions.MultiLabelNaiveBayes
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.functions.MultiLabelPerceptronClassification
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.functions.MultiTargetMeanRegressor
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.functions.MultiTargetPerceptronRegressor
 
getPurposeString() - Method in class moa.classifiers.rules.multilabel.outputselectors.EntropyThreshold
 
getPurposeString() - Method in class moa.classifiers.rules.RuleClassifier
 
getPurposeString() - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree
 
getPurposeString() - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
getPurposeString() - Method in class moa.classifiers.trees.ARFFIMTDD
 
getPurposeString() - Method in class moa.classifiers.trees.ARFHoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.ASHoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.DecisionStump
 
getPurposeString() - Method in class moa.classifiers.trees.EFDT
 
getPurposeString() - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
getPurposeString() - Method in class moa.classifiers.trees.FIMTDD
 
getPurposeString() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
getPurposeString() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getPurposeString() - Method in class moa.classifiers.trees.HoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.ORTO
 
getPurposeString() - Method in class moa.classifiers.trees.RandomHoeffdingTree
 
getPurposeString() - Method in class moa.clusterers.AbstractClusterer
 
getPurposeString() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getPurposeString() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getPurposeString() - Method in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
getPurposeString() - Method in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
 
getPurposeString() - Method in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
getPurposeString() - Method in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
getPurposeString() - Method in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
getPurposeString() - Method in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
getPurposeString() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
getPurposeString() - Method in class moa.options.AbstractOptionHandler
Dictionary with option texts and objects
getPurposeString() - Method in interface moa.options.OptionHandler
Gets the purpose of this object
getPurposeString() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
getPurposeString() - Method in class moa.recommender.dataset.impl.JesterDataset
 
getPurposeString() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
getPurposeString() - Method in class moa.streams.ArffFileStream
 
getPurposeString() - Method in class moa.streams.clustering.FileStream
 
getPurposeString() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getPurposeString() - Method in class moa.streams.clustering.SimpleCSVStream
 
getPurposeString() - Method in class moa.streams.ConceptDriftRealStream
 
getPurposeString() - Method in class moa.streams.ConceptDriftStream
 
getPurposeString() - Method in class moa.streams.FilteredStream
 
getPurposeString() - Method in class moa.streams.filters.AddNoiseFilter
 
getPurposeString() - Method in class moa.streams.filters.RBFFilter
 
getPurposeString() - Method in class moa.streams.filters.ReLUFilter
 
getPurposeString() - Method in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
getPurposeString() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
getPurposeString() - Method in class moa.streams.filters.SelectAttributesFilter
 
getPurposeString() - Method in class moa.streams.generators.AgrawalGenerator
 
getPurposeString() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getPurposeString() - Method in class moa.streams.generators.HyperplaneGenerator
 
getPurposeString() - Method in class moa.streams.generators.LEDGenerator
 
getPurposeString() - Method in class moa.streams.generators.LEDGeneratorDrift
 
getPurposeString() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
getPurposeString() - Method in class moa.streams.generators.multilabel.MultilabelArffFileStream
 
getPurposeString() - Method in class moa.streams.generators.RandomRBFGenerator
 
getPurposeString() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
getPurposeString() - Method in class moa.streams.generators.RandomTreeGenerator
 
getPurposeString() - Method in class moa.streams.generators.SEAGenerator
 
getPurposeString() - Method in class moa.streams.generators.STAGGERGenerator
 
getPurposeString() - Method in class moa.streams.generators.WaveformGenerator
 
getPurposeString() - Method in class moa.streams.generators.WaveformGeneratorDrift
 
getPurposeString() - Method in class moa.streams.MultiFilteredStream
 
getPurposeString() - Method in class moa.streams.MultiLabelFilteredStream
 
getPurposeString() - Method in class moa.streams.MultiTargetArffFileStream
 
getPurposeString() - Method in class moa.streams.RecurrentConceptDriftStream
 
getPurposeString() - Method in class moa.tasks.CacheShuffledStream
 
getPurposeString() - Method in class moa.tasks.EvaluateClustering
 
getPurposeString() - Method in class moa.tasks.EvaluateConceptDrift
 
getPurposeString() - Method in class moa.tasks.EvaluateInterleavedChunks
 
getPurposeString() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
getPurposeString() - Method in class moa.tasks.EvaluateModel
 
getPurposeString() - Method in class moa.tasks.EvaluateModelMultiLabel
 
getPurposeString() - Method in class moa.tasks.EvaluateModelMultiTarget
 
getPurposeString() - Method in class moa.tasks.EvaluateModelRegression
 
getPurposeString() - Method in class moa.tasks.EvaluateMultipleClusterings
 
getPurposeString() - Method in class moa.tasks.EvaluateOnlineRecommender
 
getPurposeString() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequential
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialCV
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialDelayed
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialDelayedCV
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialMultiLabel
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialMultiTarget
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialRegression
 
getPurposeString() - Method in class moa.tasks.FeatureImportanceConfig
 
getPurposeString() - Method in class moa.tasks.LearnModel
 
getPurposeString() - Method in class moa.tasks.LearnModelMultiLabel
 
getPurposeString() - Method in class moa.tasks.LearnModelMultiTarget
 
getPurposeString() - Method in class moa.tasks.LearnModelRegression
 
getPurposeString() - Method in class moa.tasks.MeasureStreamSpeed
 
getPurposeString() - Method in class moa.tasks.meta.ALMultiParamTask
 
getPurposeString() - Method in class moa.tasks.meta.ALPartitionEvaluationTask
 
getPurposeString() - Method in class moa.tasks.meta.ALPrequentialEvaluationTask
 
getPurposeString() - Method in class moa.tasks.Plot
 
getPurposeString() - Method in class moa.tasks.RunStreamTasks
 
getPurposeString() - Method in class moa.tasks.RunTasks
 
getPurposeString() - Method in class moa.tasks.WriteConfigurationToJupyterNotebook
Gets the purpose of this object
getPurposeString() - Method in class moa.tasks.WriteMultipleStreamsToARFF
 
getPurposeString() - Method in class moa.tasks.WriteStreamToARFFFile
 
getQuantile(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getRadii() - Method in class moa.clusterers.streamkm.CoresetCostTriple
 
getRadius() - Method in class moa.cluster.CFCluster
See interface Cluster
getRadius() - Method in class moa.cluster.SphereCluster
 
getRadius() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getRadius() - Method in class moa.clusterers.clustree.ClusKernel
See interface Cluster
getRadius() - Method in class moa.clusterers.denstream.MicroCluster
 
getRadius() - Method in class moa.clusterers.dstream.DensityGrid
Provides the radius of a density grid.
getRadius() - Method in class moa.clusterers.macro.NonConvexCluster
 
getRadius(long) - Method in class moa.clusterers.denstream.MicroCluster
 
getRange() - Method in class com.github.javacliparser.RangeOption
 
getRange() - Method in class moa.clusterers.meta.BooleanParameter
 
getRange() - Method in class moa.clusterers.meta.CategoricalParameter
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
getRangeOfMerit(double[]) - Method in interface moa.classifiers.core.splitcriteria.SplitCriterion
Computes the range of splitting merit
getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
getRangeOfMerit(double[]) - Method in interface moa.classifiers.rules.core.splitcriteria.AMRulesSplitCriterion
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRulesNode
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.rules.core.splitcriteria.VarianceRatioSplitCriterion
 
getRangeOfMerit(DoubleVector[]) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
getRangeOfMerit(DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
getRangeOfMerit(DoubleVector[]) - Method in interface moa.classifiers.rules.multilabel.core.splitcriteria.MultiLabelSplitCriterion
 
getRangeOfMerit(DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
getRanges() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Method to get the ranges.
getRankAlg() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Return the ranking of the algorithms.
getRating(int, int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getRating(int, int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getRatingsItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getRatingsItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getRatingsUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getRatingsUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getRatio() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getRatio() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getRawLevel() - Method in class moa.clusterers.clustree.Node
Return the level number in the node.
getRecall() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getRecall() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getRecallStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getRecallStatistic(int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getRelationName() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
getRelationName() - Method in class com.yahoo.labs.samoa.instances.Instances
Gets the relation name.
getRelevanceStamp() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getRelevantLabels(Instance) - Static method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
getRelevantLabels(Instance) - Method in class moa.core.utils.Converter
 
getRelNumOfAcqInst() - Method in class moa.evaluation.ALWindowClassificationPerformanceEvaluator
Returns relative number of acquired labels so far.
getRemoveTime() - Method in class moa.clusterers.dstream.CharacteristicVector
 
getRequiredType() - Method in class com.github.javacliparser.AbstractClassOption
Gets the class type of this option.
getRequiredType() - Method in class moa.options.AbstractClassOption
Gets the class type of this option.
getResultingNodeStatistics() - Method in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
getResultsFolder() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getRevision() - Method in class weka.classifiers.meta.MOA
Returns the revision string.
getRevision() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns the revision string.
getRightStreamPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getRightStreamPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getRowCount() - Method in class moa.gui.active.ALTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.AuxiliarTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.experimentertab.TaskManagerTabPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getRowCount() - Method in class moa.gui.MultiLabelTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.MultiTargetTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.PreviewTableModel
 
getRowCount() - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getRuleMajorityClassIndex(RuleClassification) - Method in class moa.classifiers.rules.RuleClassifier
 
getRuleNumberID() - Method in class moa.classifiers.rules.core.Rule
 
getRuleNumberID() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getSampleMean() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
getSaveExperimentsPath() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getSaveInstanceData() - Method in class moa.clusterers.CobWeb
Get the value of saveInstances.
getScoredAUC() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
getScoredAUC() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
getScreenSize() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
Get the screen size so that the amplified graph size is the same as the screen size.
getSecond() - Method in class moa.recommender.rc.utils.Pair
 
getSelectedAttributes() - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
Gets an array containing the indices of all selected attributes.
getSelectedAttributes() - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Gets an array containing the indices of all selected attributes.
getSelectedCurrenTask() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
getSelectedMeasures() - Method in class moa.gui.clustertab.ClusteringEvalPanel
 
getSelectedMeasures() - Method in class moa.gui.outliertab.OutlierEvalPanel
 
getSelectedPlotItem() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getSelectedPlotTyeIndex() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
getSelectedTasks() - Method in class moa.gui.active.ALTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
 
getSelectedTasks() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
getSelectionModel() - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
Gets the selection model used by the table.
getSelectionModel() - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Gets the selection model used by the table.
getShapeToPlot() - Method in class moa.gui.LineGraphViewPanel.PlotLine
 
getShowZeroInstancesAsUnknown() - Method in class moa.gui.featureanalysis.InstancesSummaryPanel
Get whether to show zero instances as unknown (i.e.
getSimplePrediction() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getSimplePrediction() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getSingleLineDescription(StringBuilder) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
getSingleLineDescription(StringBuilder) - Method in class moa.core.DoubleVector
 
getSingleLineDescription(StringBuilder, int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
getSingleLineDescription(StringBuilder, int) - Method in class moa.core.DoubleVector
 
getSingleModeFlag() - Method in class weka.datagenerators.classifiers.classification.MOA
Return if single mode is set for the given data generator mode depends on option setting and or generator type.
getSize() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
getSize() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
getSkipIdentical() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Gets whether if identical instances are skipped from the neighbourhood.
GetSpeed() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getSplitDim() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Gets the splitting dimension.
getSplitIndex() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getSplitMeasureOptions() - Static method in class moa.classifiers.trees.iadem.IademSplitCriterion
 
getSplitMeasureText() - Method in class moa.classifiers.trees.iadem.IademSplitCriterion
 
getSplitPointSuggestions() - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getSplitTest() - Method in class moa.classifiers.rules.core.RuleSplitNode
 
getSplitTest() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
getSplitTest() - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getSplitValue() - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
getSplitValue() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Gets the splitting value.
getSplitValue() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getSquareError() - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
getSquareError() - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
getSquareError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getSquareError() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
getSquareError() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
getSquareError() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getStackTraceString(Exception) - Static method in class moa.core.MiscUtils
 
getStart() - Method in class com.yahoo.labs.samoa.instances.Range
 
getStart(int) - Method in class moa.streams.filters.Selection
 
getStateString() - Method in class com.github.javacliparser.AbstractOption
 
getStateString() - Method in class com.github.javacliparser.FlagOption
 
getStateString() - Method in interface com.github.javacliparser.Option
Gets the state of this option in human readable form
getStaticOutput() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getStaticOutput(InstanceInformation) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getStaticOutput(InstanceInformation) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
getStaticOutput(InstanceInformation) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
getStatistics() - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
getStatistics() - Method in class moa.clusterers.outliers.Angiulli.STORMBase
 
getStatistics() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getStatistics() - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
getStatistics() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getStatistics() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
getStatisticsBranchSplit() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getStatisticsNewRuleActiveLearningNode() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getStatisticsOtherBranchSplit() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getStd() - Method in class moa.gui.experimentertab.Measure
Returns the standard deviation
getStdDev() - Method in class moa.core.GaussianEstimator
 
getStdPreviews() - Method in class moa.evaluation.preview.MeanPreviewCollection
 
getStream() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getStream() - Method in class moa.gui.experimentertab.ReadFile
Returns the name of the streams.
getStream() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getStream0() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getStream0() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getStreams() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getStreamsID() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getStreamValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getStreamValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getStringValues() - Static method in enum moa.tasks.Plot.LegendLocation
Get string values for the enum values.
getStringValues() - Static method in enum moa.tasks.Plot.LegendType
Get string values for the enum values.
getStringValues() - Static method in enum moa.tasks.Plot.PlotStyle
Get string values for the enum values.
getStringValues() - Static method in enum moa.tasks.Plot.Terminal
Get string values for the enum values.
getStructure() - Method in class com.yahoo.labs.samoa.instances.ArffLoader
Gets the structure.
getSubClassifiers() - Method in class moa.classifiers.AbstractClassifier
 
getSubClassifiers() - Method in interface moa.classifiers.Classifier
Gets the classifiers of this ensemble.
getSubClassifiers() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
getSubClassifiers() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
getSubClassifiers() - Method in class moa.classifiers.meta.ADOB
 
getSubClassifiers() - Method in class moa.classifiers.meta.BOLE
 
getSubClassifiers() - Method in class moa.classifiers.meta.DACC
 
getSubClassifiers() - Method in class moa.classifiers.meta.LeveragingBag
 
getSubClassifiers() - Method in class moa.classifiers.meta.LimAttClassifier
 
getSubClassifiers() - Method in class moa.classifiers.meta.OCBoost
 
getSubClassifiers() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
getSubClassifiers() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBag
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBagAdwin
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBagASHT
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBoost
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getSubClassifiers() - Method in class moa.classifiers.meta.RandomRules
 
getSubClassifiers() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getSubClassifiers() - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
getSubClusterers() - Method in class moa.clusterers.AbstractClusterer
 
getSubClusterers() - Method in interface moa.clusterers.Clusterer
 
getSublearners() - Method in class moa.classifiers.AbstractClassifier
 
getSublearners() - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
getSublearners() - Method in class moa.classifiers.meta.StreamingRandomPatches
 
getSublearners() - Method in interface moa.learners.Learner
Gets the learners of this ensemble.
getSubtaskLevel() - Method in class moa.tasks.meta.MetaMainTask
Get the tasks subtask level (how deep it is in the tree).
getSubtaskThreads() - Method in class moa.tasks.meta.ALMainTask
 
getSubtaskThreads() - Method in class moa.tasks.meta.ALMultiParamTask
 
getSubtaskThreads() - Method in class moa.tasks.meta.ALPartitionEvaluationTask
 
getSubtaskThreads() - Method in class moa.tasks.meta.ALPrequentialEvaluationTask
 
getSubtaskThreads() - Method in class moa.tasks.meta.MetaMainTask
Get the list of threads for all subtasks and recursively the children's subtasks.
getSubtreeNodeCount() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getSubtreeNodeCount() - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getSubtreeNodeCount() - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
getSubtreeNodeCount() - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
getSubtreeNodeCount() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
getSuggestedCutpoints() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getSumPoints() - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Returns the sum of points of the ClusteringFeature.
getSumSquaredLength() - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Returns the sum of the squared lengths of the ClusteringFeature.
getSVGString(int) - Method in class moa.gui.visualization.ClusterPanel
 
getSVGString(int) - Method in class moa.gui.visualization.OutlierPanel
 
getSVGString(int) - Method in class moa.gui.visualization.PointPanel
 
getSymbol() - Method in class moa.classifiers.rules.Predicates
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.active.ALTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.active.ALTaskManagerPanel.TaskColorCodingCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.AuxiliarTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.experimentertab.TaskManagerTabPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.MultiLabelTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.MultiTargetTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
getTableModel() - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
Get the table model in use (or null if no instances have been set yet).
getTableModel() - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Get the table model in use (or null if no instances have been set yet).
getTabs() - Static method in class moa.gui.GUIDefaults
returns an array with the classnames of all the additional panels to display as tabs in the GUI.
getTabTitle() - Method in class moa.gui.AbstractTabPanel
Returns the string to display as title of the tab.
getTabTitle() - Method in class moa.gui.ALTabPanel
 
getTabTitle() - Method in class moa.gui.AuxiliarTabPanel
 
getTabTitle() - Method in class moa.gui.ClassificationTabPanel
 
getTabTitle() - Method in class moa.gui.clustertab.ClusteringTabPanel
 
getTabTitle() - Method in class moa.gui.ConceptDriftTabPanel
 
getTabTitle() - Method in class moa.gui.experimentertab.ExperimenterTabPanel
 
getTabTitle() - Method in class moa.gui.featureanalysis.FeatureAnalysisTabPanel
 
getTabTitle() - Method in class moa.gui.MultiLabelTabPanel
 
getTabTitle() - Method in class moa.gui.MultiTargetTabPanel
 
getTabTitle() - Method in class moa.gui.outliertab.OutlierTabPanel
 
getTabTitle() - Method in class moa.gui.RegressionTabPanel
 
getTabTitle() - Method in class moa.gui.ScriptingTabPanel
Returns the string to display as title of the tab.
getTail() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getTargetMean() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getTargetMeanError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getTargetSquareError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getTask() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getTask() - Method in class moa.gui.experimentertab.ExpTaskThread
 
getTask() - Method in class moa.tasks.TaskThread
 
getTaskClass() - Method in class moa.evaluation.preview.LearningCurve
 
getTaskClass() - Method in class moa.evaluation.preview.Preview
 
getTaskClass() - Method in class moa.evaluation.preview.PreviewCollection
 
getTaskClass() - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
getTaskName() - Method in class moa.tasks.AbstractTask
Gets the name of this task.
getTaskResultType() - Method in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
getTaskResultType() - Method in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Defines the task's result type.
getTaskResultType() - Method in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
getTaskResultType() - Method in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
getTaskResultType() - Method in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
getTaskResultType() - Method in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
getTaskResultType() - Method in class moa.tasks.CacheShuffledStream
 
getTaskResultType() - Method in class moa.tasks.EvaluateClustering
 
getTaskResultType() - Method in class moa.tasks.EvaluateConceptDrift
 
getTaskResultType() - Method in class moa.tasks.EvaluateInterleavedChunks
Defines the task's result type.
getTaskResultType() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
getTaskResultType() - Method in class moa.tasks.EvaluateModel
 
getTaskResultType() - Method in class moa.tasks.EvaluateModelMultiLabel
 
getTaskResultType() - Method in class moa.tasks.EvaluateModelMultiTarget
 
getTaskResultType() - Method in class moa.tasks.EvaluateModelRegression
 
getTaskResultType() - Method in class moa.tasks.EvaluateMultipleClusterings
 
getTaskResultType() - Method in class moa.tasks.EvaluateOnlineRecommender
 
getTaskResultType() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequential
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialCV
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialDelayed
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialDelayedCV
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialMultiLabel
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialMultiTarget
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialRegression
 
getTaskResultType() - Method in class moa.tasks.FeatureImportanceConfig
 
getTaskResultType() - Method in class moa.tasks.LearnModel
 
getTaskResultType() - Method in class moa.tasks.LearnModelMultiLabel
 
getTaskResultType() - Method in class moa.tasks.LearnModelMultiTarget
 
getTaskResultType() - Method in class moa.tasks.LearnModelRegression
 
getTaskResultType() - Method in class moa.tasks.MeasureStreamSpeed
 
getTaskResultType() - Method in class moa.tasks.meta.ALMultiParamTask
 
getTaskResultType() - Method in class moa.tasks.meta.ALPartitionEvaluationTask
 
getTaskResultType() - Method in class moa.tasks.meta.ALPrequentialEvaluationTask
 
getTaskResultType() - Method in class moa.tasks.Plot
Defines the task's result type.
getTaskResultType() - Method in class moa.tasks.RunStreamTasks
 
getTaskResultType() - Method in class moa.tasks.RunTasks
 
getTaskResultType() - Method in interface moa.tasks.Task
Gets the result type of this task.
getTaskResultType() - Method in class moa.tasks.WriteConfigurationToJupyterNotebook
 
getTaskResultType() - Method in class moa.tasks.WriteMultipleStreamsToARFF
 
getTaskResultType() - Method in class moa.tasks.WriteStreamToARFFFile
 
getThreads() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
getThreshold() - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Returns the threshold of the ClusteringFeature.
getThreshold() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Gets the threshold of this node.
getTimePerObj() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getTimestamp() - Method in class moa.clusterers.clustree.Entry
Return the current timestamp.
getTimestamp() - Method in class moa.clusterers.denstream.Timestamp
 
getTimestamp() - Method in class moa.gui.visualization.DataPoint
 
getTimestamp() - Method in class moa.streams.clustering.ClusterEvent
 
getToolTipText() - Method in class moa.gui.visualization.PointPanel
 
getToolTipText(MouseEvent) - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Returns "<nominal value> [<nominal value count>]" if displaying a bar plot and mouse is on some bar.
getTopKFeatures(int, boolean) - Method in interface moa.learners.featureanalysis.FeatureImportanceClassifier
The output is a double array where values indicates the original feature index and the order of the array its ranking.
getTopKFeatures(int, boolean) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
getTopKFeatures(int, boolean) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
getTotal() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getTotal() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getTotal() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getTotal() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
getTotal() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
getTotal() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
getTotalCount() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getTotalDelay() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getTotalEntries() - Method in class moa.evaluation.MembershipMatrix
 
getTotalWeightObserved() - Method in class moa.core.GaussianEstimator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getTrainingPrediction() - Method in interface moa.classifiers.MultiTargetLearnerSemiSupervised
 
getTrainingPrediction() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
getTrainingPrediction() - Method in interface moa.learners.LearnerSemiSupervised
 
getTree() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getTree() - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
getTreeLevel() - Method in class moa.classifiers.trees.iadem.Iadem3
 
getTreeRoot() - Method in class moa.classifiers.trees.HoeffdingTree
 
getTreeRoot() - Method in class moa.classifiers.trees.iadem.Iadem2
 
getType() - Method in class moa.streams.clustering.ClusterEvent
 
getUpdateTime() - Method in class moa.clusterers.dstream.CharacteristicVector
 
getUpperQuartile(int) - Method in class moa.evaluation.MeasureCollection
 
getUserFeatures(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getUsers() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getUsers() - Method in interface moa.recommender.rc.data.RecommenderData
 
getValue() - Method in class com.github.javacliparser.AbstractClassOption
Returns the current object.
getValue() - Method in class com.github.javacliparser.FloatOption
 
getValue() - Method in class com.github.javacliparser.IntOption
 
getValue() - Method in class com.github.javacliparser.StringOption
 
getValue() - Method in class moa.classifiers.meta.DACC.Pair
 
getValue() - Method in class moa.classifiers.rules.Predicates
 
getValue() - Method in class moa.clusterers.meta.BooleanParameter
 
getValue() - Method in class moa.clusterers.meta.CategoricalParameter
 
getValue() - Method in class moa.clusterers.meta.IntegerParameter
 
getValue() - Method in interface moa.clusterers.meta.IParameter
 
getValue() - Method in class moa.clusterers.meta.NumericalParameter
 
getValue() - Method in class moa.clusterers.meta.OrdinalParameter
 
getValue() - Method in class moa.core.Measurement
 
getValue() - Method in class moa.gui.experimentertab.Measure
 
getValue(int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
getValue(int) - Method in class moa.core.DoubleVector
 
getValue(int, int) - Method in class moa.evaluation.MeasureCollection
 
getValueAsCLIString() - Method in class com.github.javacliparser.AbstractClassOption
 
getValueAsCLIString() - Method in class com.github.javacliparser.ClassOption
 
getValueAsCLIString() - Method in class com.github.javacliparser.FlagOption
 
getValueAsCLIString() - Method in class com.github.javacliparser.FloatOption
 
getValueAsCLIString() - Method in class com.github.javacliparser.IntOption
 
getValueAsCLIString() - Method in class com.github.javacliparser.ListOption
 
getValueAsCLIString() - Method in class com.github.javacliparser.MultiChoiceOption
 
getValueAsCLIString() - Method in interface com.github.javacliparser.Option
Gets the value of a Command Line Interface text as a string
getValueAsCLIString() - Method in class com.github.javacliparser.StringOption
 
getValueAsCLIString() - Method in class moa.options.AbstractClassOption
 
getValueAsCLIString() - Method in class moa.options.ClassOption
 
getValueAsCLIString() - Method in class moa.options.ClassOptionWithNames
 
getValueAsCLIString() - Method in class moa.options.WEKAClassOption
 
getValueAt(int, int) - Method in class moa.gui.active.ALTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.AuxiliarTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.experimentertab.TaskManagerTabPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getValueAt(int, int) - Method in class moa.gui.MultiLabelTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.MultiTargetTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.PreviewTableModel
 
getValueAt(int, int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getValueCount() - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
getValueCount() - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
getValueCount() - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
getValueCount() - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
getValues() - Method in class moa.gui.experimentertab.Measure
 
getValuesOfNominalAttributes(int, Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
getVariance() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getVariance() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
getVariance() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getVariance() - Method in class moa.core.GaussianEstimator
 
getVariances() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Calculates the variance of this data set for each dimension
getVarianceVector() - Method in class moa.clusterers.clustree.ClusKernel
 
getVariedOption(OptionHandler, String) - Static method in class moa.options.DependentOptionsUpdater
Resolve the name of the varied parameter and return the corresponding option.
getVariedParamName() - Method in class moa.evaluation.preview.PreviewCollection
 
getVariedParamValues() - Method in class moa.evaluation.preview.PreviewCollection
 
getVirtualChildren() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
getVote() - Method in class moa.classifiers.rules.core.voting.Vote
 
getVote() - Method in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
getVote(int, int) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
getVote(int, int) - Method in interface com.yahoo.labs.samoa.instances.Prediction
The vote assigned to a class of an output attribute
getVotes() - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
getVotes() - Method in interface com.yahoo.labs.samoa.instances.Prediction
The votes for the first output attribute
getVotes(int) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
getVotes(int) - Method in interface com.yahoo.labs.samoa.instances.Prediction
The votes for a given output attribute
getVotes(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
getVotes extension of the instance method getVotesForInstance in moa.classifier.java returns the prediction of the instance.
getVotes(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
getVotes extension of the instance method getVotesForInstance in moa.classifier.java returns the prediction of the instance.
getVotes(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
getVotes extension of the instance method getVotesForInstance in moa.classifier.java returns the prediction of the instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.AbstractClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.AbstractMultiLabelLearner
 
getVotesForInstance(Instance) - Method in class moa.classifiers.active.ALRandom
 
getVotesForInstance(Instance) - Method in class moa.classifiers.active.ALUncertainty
 
getVotesForInstance(Instance) - Method in class moa.classifiers.bayes.NaiveBayes
 
getVotesForInstance(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in interface moa.classifiers.Classifier
Predicts the class memberships for a given instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.MajorityClass
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.NoChange
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.Perceptron
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SGD
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SGDMultiClass
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SPegasos
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.lazy.kNN
 
getVotesForInstance(Instance) - Method in class moa.classifiers.lazy.SAMkNN
Predicts the label of a given sample by using the STM, LTM and the CM.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Predicts a class for an example.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Predicts a class for an example.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.ADOB
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.BOLE
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.DACC
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LearnNSE
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LeveragingBag
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LimAttClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OCBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Predicts a class for an example.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBag
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBagAdwin
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBagASHT
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.PairedLearners
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.RandomRules
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.RCD
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.StreamingRandomPatches
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.WEKAClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.meta.OzaBagAdwinML
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.meta.OzaBagML
 
getVotesForInstance(Instance) - Method in class moa.classifiers.oneclass.Autoencoder
Calculates the error between the autoencoder's reconstruction of the input and the argument instances.
getVotesForInstance(Instance) - Method in class moa.classifiers.oneclass.HSTrees
Combine the anomaly scores from each HSTree in the forest and convert into a vote score.
getVotesForInstance(Instance) - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
Calculates the distance between the argument instance and its nearest neighbour as well as the distance between that nearest neighbour and its own nearest neighbour.
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
getVotesForInstance extension of the instance method getVotesForInstance in moa.classifier.java returns the prediction of the instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.FadingTargetMean
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.DecisionStump
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.EFDT
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.FIMTDD
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
getVotesForInstance(Instance) - Method in interface moa.clusterers.Clusterer
 
getVotesForInstance(Instance) - Method in class moa.clusterers.ClusterGenerator
 
getVotesForInstance(Instance) - Method in class moa.clusterers.clustream.Clustream
 
getVotesForInstance(Instance) - Method in class moa.clusterers.clustream.WithKmeans
 
getVotesForInstance(Instance) - Method in class moa.clusterers.clustree.ClusTree
 
getVotesForInstance(Instance) - Method in class moa.clusterers.CobWeb
Classifies a given instance.
getVotesForInstance(Instance) - Method in class moa.clusterers.denstream.WithDBSCAN
 
getVotesForInstance(Instance) - Method in class moa.clusterers.dstream.Dstream
 
getVotesForInstance(Instance) - Method in class moa.clusterers.kmeanspm.BICO
 
getVotesForInstance(Instance) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
getVotesForInstance(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getVotesForInstance(Instance) - Method in class moa.clusterers.streamkm.StreamKM
 
getVotesForInstance(Instance) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getVotesForInstance(Instance) - Method in class moa.learners.ChangeDetectorLearner
 
getVotesForInstance(Instance) - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
getVotesForInstance(Instance) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
getVotesForInstance(Instance) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
getVotesForInstance(E) - Method in interface moa.learners.Learner
Predicts the class memberships for a given instance.
getVotesForInstance(Example<Instance>) - Method in class moa.classifiers.AbstractClassifier
 
getVotesForInstanceBinary(Instance) - Method in class moa.classifiers.meta.LeveragingBag
 
getVotesForInstanceBinary(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getVotesForInstancePerceptron(double[][], int[], int) - Method in class moa.classifiers.meta.LimAttClassifier
 
getWaitWinFull() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getWarning() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getWarningZone() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets whether the change detector is in the warning zone, after a warning alert and before a change alert.
getWarningZone() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets whether the change detector is in the warning zone, after a warning alert and before a change alert.
getWeight() - Method in class moa.cluster.CFCluster
See interface Cluster
getWeight() - Method in class moa.cluster.Cluster
Returns the weight of this cluster, not neccessarily normalized.
getWeight() - Method in class moa.cluster.SphereCluster
 
getWeight() - Method in class moa.clusterers.clustree.ClusKernel
 
getWeight() - Method in class moa.clusterers.denstream.MicroCluster
 
getWeight() - Method in class moa.clusterers.dstream.GridCluster
 
getWeightedError() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
getWeightedError() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Returns the weighted error.
getWeightedError() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getWeightedError() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Returns the weighted error.
getWeights() - Method in class moa.classifiers.functions.Perceptron
 
getWeights() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
getWeights() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Return the weights error.
getWeights() - Method in class moa.classifiers.rules.functions.Perceptron
 
getWeights() - Method in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
getWeights() - Method in interface moa.classifiers.rules.multilabel.core.voting.ErrorWeightedVoteMultiLabel
Return the weights error.
getWeights() - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
getWeights() - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
getWeightSeen() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getWeightSeen() - Method in class moa.classifiers.rules.RuleClassifier
 
getWeightSeen() - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
getWeightSeen() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
getWeightSeen() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
getWeightSeenSinceExpansion() - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
getWeightSeenSinceExpansion() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
getWidth() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getWidth() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
getWidth() - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
getWidth() - Method in class moa.gui.experimentertab.ImageChart
Return the width.
getWidthT() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getWindowSize() - Method in class moa.gui.featureanalysis.FeatureImportancePanel
 
getWindowSize() - Method in class moa.tasks.FeatureImportanceConfig
 
getWorkbenchInfoString() - Static method in class moa.core.Globals
 
getWorstError() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getWVDIndexes() - Method in class moa.classifiers.meta.DACC
Returns the classifiers that vote for the final prediction when the WVD combination function is selected
getYoungestEntry() - Method in class moa.core.FixedLengthList
 
GIF - moa.gui.experimentertab.PlotTab.Terminal
 
GIF - moa.tasks.Plot.Terminal
 
GiniSplitCriterion - Class in moa.classifiers.core.splitcriteria
Class for computing splitting criteria using Gini with respect to distributions of class values.
GiniSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns a string describing this object.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns a string describing this object.
globalInfo() - Method in class weka.classifiers.meta.MOA
Returns a string describing the classifier.
globalInfo() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns a string describing this data generator.
Globals - Class in moa.core
Class for storing global information about current version of MOA.
Globals() - Constructor for class moa.core.Globals
 
gnuplotPathOption - Variable in class moa.tasks.Plot
Path to gunplot's binary directory, for example C:\Tools\Gnuplot\binary.
gr(double, double) - Static method in class moa.core.Utils
Tests if a is greater than b.
gracePeriodOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
gracePeriodOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
gracePeriodOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
gracePeriodOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
gracePeriodOption - Variable in class moa.classifiers.rules.RuleClassifier
 
gracePeriodOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
gracePeriodOption - Variable in class moa.classifiers.trees.DecisionStump
 
gracePeriodOption - Variable in class moa.classifiers.trees.EFDT
 
gracePeriodOption - Variable in class moa.classifiers.trees.FIMTDD
 
gracePeriodOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
gracePeriodOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
gracePeriodOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
gracePerionOption - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
GradualChangeGenerator - Class in moa.streams.generators.cd
 
GradualChangeGenerator() - Constructor for class moa.streams.generators.cd.GradualChangeGenerator
 
graph() - Method in class moa.clusterers.CobWeb
Generates the graph string of the Cobweb tree
GraphAxes - Class in moa.gui.visualization
 
GraphAxes() - Constructor for class moa.gui.visualization.GraphAxes
Creates new form GraphAxes
GraphCanvas - Class in moa.gui.visualization
 
GraphCanvas() - Constructor for class moa.gui.visualization.GraphCanvas
Creates new form GraphCanvas
GraphCurve - Class in moa.gui.visualization
 
GraphCurve() - Constructor for class moa.gui.visualization.GraphCurve
Creates new form GraphCurve
GraphMultiCurve - Class in moa.gui.visualization
GraphMultiCurve is an an implementation of AbstractGraphPlot that draws several curves on a Canvas.
GraphMultiCurve() - Constructor for class moa.gui.visualization.GraphMultiCurve
 
GraphScatter - Class in moa.gui.visualization
GraphScatter is an implementation of AbstractGraphPlot that draws a scatter plot.
GraphScatter() - Constructor for class moa.gui.visualization.GraphScatter
 
greaterThan - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
GreenwaldKhannaNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using Greenwald and Khanna methodology.
GreenwaldKhannaNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
GreenwaldKhannaQuantileSummary - Class in moa.core
Class for representing summaries of Greenwald and Khanna quantiles.
GreenwaldKhannaQuantileSummary(int) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary
 
GreenwaldKhannaQuantileSummary.Tuple - Class in moa.core
 
gridBagConstraints - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
gridBagConstraints - Variable in class moa.gui.TaskTextViewerPanel
 
GridCluster - Class in moa.clusterers.dstream
Grid Clusters are defined in Definition 3.6 of Chen and Tu 2007 as: Let G =(g1, ·· · ,gm) be a grid group, if every inside grid of G is a dense grid and every outside grid is either a dense grid or a transitional grid, then G is a grid cluster.
GridCluster(CFCluster, List<CFCluster>, int) - Constructor for class moa.clusterers.dstream.GridCluster
 
GridCluster(CFCluster, List<CFCluster>, HashMap<DensityGrid, Boolean>, int) - Constructor for class moa.clusterers.dstream.GridCluster
 
grOrEq(double, double) - Static method in class moa.core.Utils
Tests if a is greater or equal to b.
growthAllowed - Variable in class moa.classifiers.trees.EFDT
 
growthAllowed - Variable in class moa.classifiers.trees.HoeffdingTree
 
GUI - Class in moa.gui
The main class for the MOA gui.
GUI() - Constructor for class moa.gui.GUI
 
GUIDefaults - Class in moa.gui
This class offers get methods for the default GUI settings in the props file moa/gui/GUI.props.
GUIDefaults() - Constructor for class moa.gui.GUIDefaults
 
GUIUtils - Class in moa.gui
This class offers util methods for displaying dialogs showing errors or exceptions.
GUIUtils() - Constructor for class moa.gui.GUIUtils
 

H

handler - Variable in class com.github.javacliparser.JavaCLIParser
 
has(Capability) - Static method in class moa.capabilities.CapabilityRequirement
Creates a requirement that a given set of capabilities must have the given capability.
hasAll(Capability...) - Static method in class moa.capabilities.CapabilityRequirement
Creates a requirement that a given set of capabilities have all of the specified capabilities.
hasAny(Capability...) - Static method in class moa.capabilities.CapabilityRequirement
Creates a requirement that a given set of capabilities have at least on of the specified capabilities.
hasCapability(Capability) - Method in class moa.capabilities.Capabilities
Returns whether this capabilities object contains the given capability.
hasEmptyConstructor(Class<?>) - Static method in class moa.core.AutoClassDiscovery
 
hash(long) - Method in class moa.clusterers.kmeanspm.DietzfelbingerHash
Dietzfelbinger hash function.
Hash - Class in moa.recommender.rc.utils
 
Hash() - Constructor for class moa.recommender.rc.utils.Hash
 
hashCode() - Method in class moa.clusterers.dstream.DensityGrid
Overrides Object's method hashCode to generate a hashCode for DensityGrids based on their coordinates.
hashCode() - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
hashCode() - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
hashCode() - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
hashCode() - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
hashCode(int) - Static method in class moa.recommender.rc.utils.Hash
 
hasInformation() - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
hasInformation() - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
hasInformation() - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
hasInformationToSplit() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
hasModel - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
hasMore() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
hasMoreInstances() - Method in class moa.streams.ArffFileStream
 
hasMoreInstances() - Method in class moa.streams.BootstrappedStream
 
hasMoreInstances() - Method in class moa.streams.CachedInstancesStream
 
hasMoreInstances() - Method in class moa.streams.clustering.FileStream
 
hasMoreInstances() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
hasMoreInstances() - Method in class moa.streams.clustering.SimpleCSVStream
 
hasMoreInstances() - Method in class moa.streams.ConceptDriftRealStream
 
hasMoreInstances() - Method in class moa.streams.ConceptDriftStream
 
hasMoreInstances() - Method in interface moa.streams.ExampleStream
Gets whether this stream has more instances to output.
hasMoreInstances() - Method in class moa.streams.FilteredStream
 
hasMoreInstances() - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
 
hasMoreInstances() - Method in class moa.streams.filters.AbstractStreamFilter
 
hasMoreInstances() - Method in class moa.streams.generators.AgrawalGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.AssetNegotiationGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.HyperplaneGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.LEDGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.MixedGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.RandomRBFGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.RandomTreeGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.SEAGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.SineGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.STAGGERGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.TextGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.WaveformGenerator
 
hasMoreInstances() - Method in class moa.streams.ImbalancedStream
 
hasMoreInstances() - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
hasMoreInstances() - Method in class moa.streams.MultiFilteredStream
 
hasMoreInstances() - Method in class moa.streams.MultiLabelFilteredStream
 
hasMoreInstances() - Method in class moa.streams.MultiTargetArffFileStream
 
hasMoreInstances() - Method in class moa.streams.PartitioningStream
 
hasMoreTime() - Method in interface moa.clusterers.clustree.util.Budget
A function for the tree to ask if there is budget(time) left.
hasMoreTime() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
hasNewRuleFromOtherOutputs() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
hasNext() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
 
hasNext() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
hasNext() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
hasNoChildren() - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Returns true if this node contains no children nodes.
hasNoiseClass() - Method in class moa.evaluation.MembershipMatrix
 
hasStarted - Variable in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
hasStarted - Variable in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
hasStarted - Variable in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
hasStarted - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
hasStarted - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
hasStarted - Variable in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
hasStarted - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
hasStarted - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
hasStarted - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
hasStarted - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
hasTree(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem3
 
hasVotesForAttribute(int) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
hasVotesForAttribute(int) - Method in interface com.yahoo.labs.samoa.instances.Prediction
Checks if there are votes for a given output attribute
HDDM_A_Test - Class in moa.classifiers.core.driftdetection
Online drift detection method based on Hoeffding's bounds.
HDDM_A_Test() - Constructor for class moa.classifiers.core.driftdetection.HDDM_A_Test
 
HDDM_W_Test - Class in moa.classifiers.core.driftdetection
Online drift detection method based on McDiarmid's bounds.
HDDM_W_Test() - Constructor for class moa.classifiers.core.driftdetection.HDDM_W_Test
 
HDDM_W_Test.SampleInfo - Class in moa.classifiers.core.driftdetection
 
header - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
header - Variable in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
header - Variable in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
headerToString() - Method in class moa.evaluation.preview.LearningCurve
 
headerToString() - Method in class moa.evaluation.preview.PreviewCollection
 
height - Variable in class moa.gui.visualization.AbstractGraphAxes
 
helpButton - Variable in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
HeterogeneousEnsembleAbstract - Class in moa.classifiers.meta
BLAST (Best Last) for Heterogeneous Ensembles Abstract Base Class
HeterogeneousEnsembleAbstract() - Constructor for class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
HeterogeneousEnsembleBlast - Class in moa.classifiers.meta
BLAST (Best Last) for Heterogeneous Ensembles implemented with Fading Factors
HeterogeneousEnsembleBlast() - Constructor for class moa.classifiers.meta.HeterogeneousEnsembleBlast
 
HeterogeneousEnsembleBlastFadingFactors - Class in moa.classifiers.meta
BLAST (Best Last) for Heterogeneous Ensembles implemented with Fading Factors
HeterogeneousEnsembleBlastFadingFactors() - Constructor for class moa.classifiers.meta.HeterogeneousEnsembleBlastFadingFactors
 
heuristicMeasureUpdated - Variable in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
hFunctions - Static variable in class moa.streams.generators.WaveformGenerator
 
hiddenLayerOption - Variable in class moa.classifiers.oneclass.Autoencoder
 
highlight(boolean) - Method in class moa.gui.visualization.ClusterPanel
 
highlight(boolean) - Method in class moa.gui.visualization.OutlierPanel
 
highlight(boolean) - Method in class moa.gui.visualization.PointPanel
 
highligted - Variable in class moa.gui.visualization.ClusterPanel
 
highligted - Variable in class moa.gui.visualization.OutlierPanel
 
highligted - Variable in class moa.gui.visualization.PointPanel
 
HINGE - Static variable in class moa.classifiers.functions.SGD
 
HINGE - Static variable in class moa.classifiers.functions.SGDMultiClass
 
HINGE - Static variable in class moa.classifiers.functions.SPegasos
 
HISTEPS - moa.gui.experimentertab.PlotTab.PlotStyle
 
HISTEPS - moa.tasks.Plot.PlotStyle
 
historyTotal - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
hitEndOfFile - Variable in class moa.streams.ArffFileStream
 
hitEndOfFile - Variable in class moa.streams.clustering.FileStream
 
hitEndOfFile - Variable in class moa.streams.clustering.SimpleCSVStream
 
hitEndOfFile - Variable in class moa.streams.MultiTargetArffFileStream
 
HoeffdingAdaptiveTree - Class in moa.classifiers.trees
Hoeffding Adaptive Tree for evolving data streams.
HoeffdingAdaptiveTree() - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree
 
HoeffdingAdaptiveTree.AdaLearningNode - Class in moa.classifiers.trees
 
HoeffdingAdaptiveTree.AdaSplitNode - Class in moa.classifiers.trees
 
HoeffdingAdaptiveTree.NewNode - Interface in moa.classifiers.trees
 
HoeffdingAdaptiveTreeClassifLeaves - Class in moa.classifiers.trees
Hoeffding Adaptive Tree for evolving data streams that has a classifier at the leaves.
HoeffdingAdaptiveTreeClassifLeaves() - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves
 
HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier - Class in moa.classifiers.trees
 
HoeffdingOptionTree - Class in moa.classifiers.trees
Hoeffding Option Tree.
HoeffdingOptionTree() - Constructor for class moa.classifiers.trees.HoeffdingOptionTree
 
HoeffdingOptionTree.ActiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.FoundNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.InactiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.LearningNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.LearningNodeNB - Class in moa.classifiers.trees
 
HoeffdingOptionTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
HoeffdingOptionTree.Node - Class in moa.classifiers.trees
 
HoeffdingOptionTree.SplitNode - Class in moa.classifiers.trees
 
HoeffdingTree - Class in moa.classifiers.trees
Hoeffding Tree or VFDT.
HoeffdingTree() - Constructor for class moa.classifiers.trees.HoeffdingTree
 
HoeffdingTree.ActiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingTree.FoundNode - Class in moa.classifiers.trees
 
HoeffdingTree.InactiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingTree.LearningNode - Class in moa.classifiers.trees
 
HoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
HoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
HoeffdingTree.Node - Class in moa.classifiers.trees
 
HoeffdingTree.SplitNode - Class in moa.classifiers.trees
 
HoeffdingTreeClassifLeaves - Class in moa.classifiers.trees
Hoeffding Tree that have a classifier at the leaves.
HoeffdingTreeClassifLeaves() - Constructor for class moa.classifiers.trees.HoeffdingTreeClassifLeaves
 
HoeffdingTreeClassifLeaves.LearningNodeClassifier - Class in moa.classifiers.trees
 
hoeffdingTreeFeatureImportanceOption - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
holdoutNumNeg - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
holdoutNumPos - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
holdoutSortedScores - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
holmTest() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Return the p-values computed by the Holm test.
HOMOGENEOUS - Static variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
horizonOption - Variable in class moa.clusterers.clustree.ClusTree
 
horizonOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
horizonOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
hsAttributesIndices - Variable in class com.yahoo.labs.samoa.instances.Instances
A Hash that stores the indices of features.
HSTreeNode - Class in moa.classifiers.oneclass
A node in an HSTree.
HSTreeNode(double[], double[], int, int) - Constructor for class moa.classifiers.oneclass.HSTreeNode
Constructor for an HSTreeNode.
HSTrees - Class in moa.classifiers.oneclass
Implements the Streaming Half-Space Trees one-class classifier described in S.
HSTrees() - Constructor for class moa.classifiers.oneclass.HSTrees
 
HSVColorGenerator - Class in moa.gui.colorGenerator
This class generates colors in the HSV space.
HSVColorGenerator() - Constructor for class moa.gui.colorGenerator.HSVColorGenerator
constructor which sets the range to: hue - [0.0, 1.0) saturation - [1.0, 1.0] brightness - [1.0, 1.0]
HSVColorGenerator(float, float, float, float) - Constructor for class moa.gui.colorGenerator.HSVColorGenerator
constructor which sets the range of the hue to [0,1) and sets the ranges for saturation and brightness to the parameter
HSVColorGenerator(float, float, float, float, float, float) - Constructor for class moa.gui.colorGenerator.HSVColorGenerator
constructor which sets the ranges for saturation and brightness to the parameter
htFeatureImportanceBase - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
HyperplaneGenerator - Class in moa.streams.generators
Stream generator for Hyperplane data stream.
HyperplaneGenerator() - Constructor for class moa.streams.generators.HyperplaneGenerator
 

I

i - Variable in class moa.classifiers.meta.PairedLearners
 
i - Variable in class moa.gui.experimentertab.statisticaltests.Relation
 
Iadem2 - Class in moa.classifiers.trees.iadem
 
Iadem2() - Constructor for class moa.classifiers.trees.iadem.Iadem2
 
Iadem2.LeafNode - Class in moa.classifiers.trees.iadem
 
Iadem2.LeafNodeNB - Class in moa.classifiers.trees.iadem
 
Iadem2.LeafNodeNBKirkby - Class in moa.classifiers.trees.iadem
 
Iadem2.LeafNodeWeightedVote - Class in moa.classifiers.trees.iadem
 
Iadem2.Node - Class in moa.classifiers.trees.iadem
 
Iadem2.NominalVirtualNode - Class in moa.classifiers.trees.iadem
 
Iadem2.NumericVirtualNode - Class in moa.classifiers.trees.iadem
 
Iadem2.SplitNode - Class in moa.classifiers.trees.iadem
 
Iadem2.VirtualNode - Class in moa.classifiers.trees.iadem
 
Iadem3 - Class in moa.classifiers.trees.iadem
 
Iadem3() - Constructor for class moa.classifiers.trees.iadem.Iadem3
 
Iadem3.AdaptiveLeafNode - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveLeafNodeNB - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveLeafNodeNBAdaptive - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveLeafNodeNBKirkby - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveLeafNodeWeightedVote - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveNominalVirtualNode - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveNumericVirtualNode - Class in moa.classifiers.trees.iadem
 
Iadem3.AdaptiveSplitNode - Class in moa.classifiers.trees.iadem
 
Iadem3.restartsVariablesAtDrift - Interface in moa.classifiers.trees.iadem
 
Iadem3Subtree - Class in moa.classifiers.trees.iadem
 
Iadem3Subtree(Iadem2.Node, int, Iadem3, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem3Subtree
 
IademAttributeSplitSuggestion - Class in moa.classifiers.trees.iadem
 
IademAttributeSplitSuggestion(InstanceConditionalTest, double[][], double, double) - Constructor for class moa.classifiers.trees.iadem.IademAttributeSplitSuggestion
 
IademCommonProcedures - Class in moa.classifiers.trees.iadem
 
IademCommonProcedures(double) - Constructor for class moa.classifiers.trees.iadem.IademCommonProcedures
 
IademException - Exception in moa.classifiers.trees.iadem
 
IademException(String, String, String) - Constructor for exception moa.classifiers.trees.iadem.IademException
 
IademGaussianNumericAttributeClassObserver - Class in moa.classifiers.trees.iadem
 
IademGaussianNumericAttributeClassObserver() - Constructor for class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
IademGaussianNumericAttributeClassObserver(int) - Constructor for class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
IademGreenwaldKhannaNumericAttributeClassObserver - Class in moa.classifiers.trees.iadem
 
IademGreenwaldKhannaNumericAttributeClassObserver() - Constructor for class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
IademGreenwaldKhannaNumericAttributeClassObserver(int) - Constructor for class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
IademGreenwaldKhannaQuantileSummary - Class in moa.classifiers.trees.iadem
 
IademGreenwaldKhannaQuantileSummary(int) - Constructor for class moa.classifiers.trees.iadem.IademGreenwaldKhannaQuantileSummary
 
IademNominalAttributeBinaryTest - Class in moa.classifiers.trees.iadem
 
IademNominalAttributeBinaryTest(int, int) - Constructor for class moa.classifiers.trees.iadem.IademNominalAttributeBinaryTest
 
IademNominalAttributeMultiwayTest - Class in moa.classifiers.trees.iadem
 
IademNominalAttributeMultiwayTest(int, int) - Constructor for class moa.classifiers.trees.iadem.IademNominalAttributeMultiwayTest
 
IademNumericAttributeBinaryTest - Class in moa.classifiers.trees.iadem
 
IademNumericAttributeBinaryTest(int, double, boolean) - Constructor for class moa.classifiers.trees.iadem.IademNumericAttributeBinaryTest
 
IademNumericAttributeObserver - Interface in moa.classifiers.trees.iadem
 
IademSplitCriterion - Class in moa.classifiers.trees.iadem
 
IademSplitCriterion() - Constructor for class moa.classifiers.trees.iadem.IademSplitCriterion
 
IademSplitCriterion(String) - Constructor for class moa.classifiers.trees.iadem.IademSplitCriterion
 
IademVFMLNumericAttributeClassObserver - Class in moa.classifiers.trees.iadem
 
IademVFMLNumericAttributeClassObserver() - Constructor for class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
IademVFMLNumericAttributeClassObserver(int) - Constructor for class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
IademVFMLNumericAttributeClassObserver.Bin - Class in moa.classifiers.trees.iadem
 
ICVarianceReduction - Class in moa.classifiers.multilabel.core.splitcriteria
 
ICVarianceReduction() - Constructor for class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
id - Variable in class moa.classifiers.rules.core.Rule.Builder
 
id - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
id - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
id - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
id - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
id - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
id(int) - Method in class moa.classifiers.rules.core.Rule.Builder
 
ID - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
ID - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
ID - Variable in class moa.classifiers.trees.FIMTDD.Node
 
ID - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
IDenseMacroCluster - Interface in moa.clusterers.macro
 
illegalNameCharacters - Static variable in class com.github.javacliparser.AbstractOption
Array of characters not valid to use in option names.
IMacroClusterer - Interface in moa.clusterers.macro
 
image - Variable in class moa.gui.experimentertab.RankingGraph
 
ImageChart - Class in moa.gui.experimentertab
This class allows to handle the properties of the graph created by JFreeChart.
ImageChart() - Constructor for class moa.gui.experimentertab.ImageChart
Default constructor.
ImageChart(String, JFreeChart) - Constructor for class moa.gui.experimentertab.ImageChart
Constructor.
ImageChart(String, JFreeChart, int, int) - Constructor for class moa.gui.experimentertab.ImageChart
Constructor.
ImagePanel - Class in moa.gui.experimentertab
This class creates a panel with an image.
ImagePanel(JFreeChart) - Constructor for class moa.gui.experimentertab.ImagePanel
Class Constructor.
ImageTreePanel - Class in moa.gui.experimentertab
This class creates a JTree panel to show the images generated with JFreeChart.
ImageTreePanel(ImageChart[]) - Constructor for class moa.gui.experimentertab.ImageTreePanel
Constructor.
ImageViewer - Class in moa.gui.experimentertab
This class creates a window where images generated with JFreeChart are displayed.
ImageViewer(ImageTreePanel, String) - Constructor for class moa.gui.experimentertab.ImageViewer
Class constructor.
iMaxMemUsage - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ImbalancedStream - Class in moa.streams
Imbalanced Stream.
ImbalancedStream() - Constructor for class moa.streams.ImbalancedStream
 
imgPath - Variable in class moa.gui.experimentertab.RankingGraph
 
ImmutableCapabilities - Class in moa.capabilities
Set of capabilities that cannot be modified after creation.
ImmutableCapabilities(Capability...) - Constructor for class moa.capabilities.ImmutableCapabilities
Creates an immutable set of capabilities.
implementsMicroClusterer() - Method in class moa.clusterers.AbstractClusterer
 
implementsMicroClusterer() - Method in interface moa.clusterers.Clusterer
 
implementsMicroClusterer() - Method in class moa.clusterers.ClusterGenerator
 
implementsMicroClusterer() - Method in class moa.clusterers.clustream.Clustream
 
implementsMicroClusterer() - Method in class moa.clusterers.clustream.WithKmeans
Miscellaneous
implementsMicroClusterer() - Method in class moa.clusterers.clustree.ClusTree
 
implementsMicroClusterer() - Method in class moa.clusterers.denstream.WithDBSCAN
 
implementsMicroClusterer() - Method in class moa.clusterers.kmeanspm.BICO
 
implementsMicroClusterer() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
improveObjectOnce(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
IMPULSES - moa.gui.experimentertab.PlotTab.PlotStyle
 
IMPULSES - moa.tasks.Plot.PlotStyle
 
inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.EFDT
 
inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingTree
 
inactiveLeafNodeCount - Variable in class moa.classifiers.trees.EFDT
 
inactiveLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
inactiveLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
 
InactiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.EFDT.InactiveLearningNode
 
InactiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.InactiveLearningNode
 
InactiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.InactiveLearningNode
 
incompleteBeta(double, double, double) - Static method in class moa.core.Statistics
Returns the Incomplete Beta Function evaluated from zero to xx.
incompleteBetaFraction1(double, double, double) - Static method in class moa.core.Statistics
Continued fraction expansion #1 for incomplete beta integral.
incompleteBetaFraction2(double, double, double) - Static method in class moa.core.Statistics
Continued fraction expansion #2 for incomplete beta integral.
incompleteGamma(double, double) - Static method in class moa.core.Statistics
Returns the Incomplete Gamma function.
incompleteGammaComplement(double, double) - Static method in class moa.core.Statistics
Returns the Complemented Incomplete Gamma function.
incrCutPoint - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
increase() - Method in class moa.clusterers.denstream.Timestamp
 
incrementValueOption - Variable in class moa.tasks.RunStreamTasks
 
incrementValueOption - Variable in class moa.tasks.RunTasks
 
incrNumberOfInstancesProcessed() - Method in class moa.classifiers.trees.iadem.Iadem2
 
independentBoundedConditionSum - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
 
index - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
the index of this element.
index - Variable in class moa.classifiers.meta.ADACC
Current stability index
index - Variable in class moa.classifiers.meta.LearnNSE
 
index - Variable in class moa.classifiers.meta.RCD
 
index(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Index.
index(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the index of the attribute given the index of the array in a sparse representation.
index(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Index.
index(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Index.
index(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Index.
indexOf(Attribute) - Method in class com.yahoo.labs.samoa.instances.Instances
Returns the index of an Attribute.
indexOfAttribute(Attribute) - Method in interface com.yahoo.labs.samoa.instances.Instance
Index of an Attribute.
indexOfAttribute(Attribute) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
indexOfValue(String) - Method in class com.yahoo.labs.samoa.instances.Attribute
Index of value.
indexOriginal - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
indexOriginal - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
indexOriginal - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
indexValues - Variable in class com.yahoo.labs.samoa.instances.AttributesInformation
 
indexValues - Variable in class com.yahoo.labs.samoa.instances.SparseInstanceData
The index values.
indexValues - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
indexValues - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
indice - Variable in class moa.gui.experimentertab.statisticaltests.Pareja
 
indicesIrrelevants - Variable in class com.yahoo.labs.samoa.instances.Instances
Indices of irrelevant features.
indicesRelevants - Variable in class com.yahoo.labs.samoa.instances.Instances
Indices of relevant features.
info(int[]) - Static method in class moa.core.Utils
Computes entropy for an array of integers.
InfoGainSplitCriterion - Class in moa.classifiers.core.splitcriteria
Class for computing splitting criteria using information gain with respect to distributions of class values.
InfoGainSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
InfoGainSplitCriterionMultilabel - Class in moa.classifiers.core.splitcriteria
Class for computing splitting criteria using information gain with respect to distributions of class values for Multilabel data.
InfoGainSplitCriterionMultilabel() - Constructor for class moa.classifiers.core.splitcriteria.InfoGainSplitCriterionMultilabel
 
InfoPanel - Class in moa.gui.visualization
 
InfoPanel(JFrame) - Constructor for class moa.gui.visualization.InfoPanel
Creates new form InfoPanel
init() - Method in class moa.classifiers.lazy.SAMkNN
 
init() - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
init() - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
init() - Method in class moa.classifiers.rules.multilabel.functions.MultiLabelNaiveBayes
 
init() - Method in class moa.classifiers.rules.multilabel.functions.MultiLabelPerceptronClassification
 
init() - Method in class moa.classifiers.rules.multilabel.functions.MultiTargetMeanRegressor
 
init() - Method in class moa.classifiers.rules.multilabel.functions.MultiTargetPerceptronRegressor
 
init() - Method in class moa.clusterers.meta.Algorithm
 
init() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
init() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
init() - Method in class moa.recommender.dataset.impl.JesterDataset
 
init() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
Init() - Method in class moa.clusterers.outliers.AbstractC.AbstractC
 
Init() - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
Init() - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
Init() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
Init() - Method in class moa.clusterers.outliers.MCOD.MCOD
 
Init() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
Init() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
initCache() - Static method in class moa.core.AutoClassDiscovery
Initializes the class cache
initClassifiers - Variable in class moa.classifiers.meta.LimAttClassifier
 
initEnsemble(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
initEnsemble(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
initEnsemble(Instance) - Method in class moa.classifiers.meta.StreamingRandomPatches
 
initHeader(Instances) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
INITIAL_DIR - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
INITIAL_DIR_KEY - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
initialDBScan() - Method in class moa.clusterers.denstream.WithDBSCAN
 
initialisePerceptron - Variable in class moa.classifiers.rules.functions.Perceptron
 
initialize() - Method in class moa.classifiers.core.driftdetection.RDDM
 
initialize() - Method in class moa.classifiers.core.driftdetection.STEPD
 
initialize() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
initializes the ranges and the attributes being used.
initialize(Collection<Instance>) - Method in class moa.classifiers.oneclass.Autoencoder
Initializes the Autoencoder classifier on the argument trainingPoints.
initialize(Collection<Instance>) - Method in class moa.classifiers.oneclass.HSTrees
Initializes the Streaming HS-Trees classifier on the argument trainingPoints.
initialize(Collection<Instance>) - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
Initializes the Nearest Neighbour Distance (NN-d) classifier with the argument training points.
initialize(Collection<Instance>) - Method in interface moa.classifiers.OneClassClassifier
Allows a one class classifier to be initialized with a starting set of training instances.
initialize(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
initialize(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
initializeAlternateTree() - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
initializeAlternateTree() - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
initializeAlternateTree(ISOUPTree) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
initializeAttibutesMask(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
initializeAttributeIndices() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
initializes the attribute indices.
initialized - Variable in class moa.clusterers.streamkm.StreamKM
 
initializeEntry(Entry, long) - Method in class moa.clusterers.clustree.Entry
When this entry is empty, give it it's first values.
initializeRanges() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the ranges using all instances of the dataset.
initializeRanges(int[]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the ranges of a subset of the instances of this dataset.
initializeRanges(int[], int, int) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the ranges of a subset of the instances of this dataset.
initializeRangesEmpty(int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Used to initialize the ranges.
initializeRuleStatistics(RuleClassification, Predicates, Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
initializeWeights() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
initialNumInstancesOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
initialPauseInterval - Static variable in class moa.gui.visualization.RunOutlierVisualizer
the pause interval, being read from the gui at startup
initialPauseInterval - Static variable in class moa.gui.visualization.RunVisualizer
the pause interval, being read from the gui at startup
initialString - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
initialWindowSizeOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
initKernels() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
initKm1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
initMatrixCodes - Variable in class moa.classifiers.meta.LeveragingBag
 
initMatrixCodes - Variable in class moa.classifiers.meta.LimAttClassifier
 
initMatrixCodes - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
InitNode() - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
initObject(int, double[]) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
initPointsOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
initVariables() - Method in class moa.classifiers.meta.ADACC
 
initVariables() - Method in class moa.classifiers.meta.DACC
Initializes the method variables
initVisualEvalPanel() - Method in class moa.gui.experimentertab.TaskTextViewerPanel
 
initVisualEvalPanel() - Method in class moa.gui.TaskTextViewerPanel
 
INLIER_MC - moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
 
INLIER_PD - moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
 
INMEM_PREFIX_STRING - Static variable in class com.github.javacliparser.AbstractClassOption
The prefix text to use to indicate inmem.
INMEM_PREFIX_STRING - Static variable in class moa.options.AbstractClassOption
The prefix text to use to indicate inmem.
InnerNode(ISOUPTree) - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
InnerNode(ARFFIMTDD) - Constructor for class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
InnerNode(FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.InnerNode
 
input(boolean) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
input(double) - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Adding a numeric value to the change detector

The output of the change detector is modified after the insertion of a new item inside.
input(double) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
input(double) - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Adding a numeric value to the change detector

The output of the change detector is modified after the insertion of a new item inside.
input(double) - Method in class moa.classifiers.core.driftdetection.CusumDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.DDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.EDDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
input(double) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
input(double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
input(double) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.RDDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
input(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
input(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
input(double) - Method in class moa.classifiers.core.driftdetection.STEPD
 
input(double) - Method in class moa.classifiers.rules.core.changedetection.NoChangeDetection
 
inputAttribute(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets an input attribute given its index.
inputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
inputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
inputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
inputAttributeIndex(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
InputAttributesSelector - Interface in moa.classifiers.rules.multilabel.inputselectors
 
inputByteSize - Variable in class moa.core.InputStreamProgressMonitor
The number of bytes to read in total
inputBytesRead - Variable in class moa.core.InputStreamProgressMonitor
The number of bytes read so far
inputFilesOption - Variable in class moa.tasks.Plot
Comma separated list of input *csv files.
inputInstance - Variable in class moa.streams.ConceptDriftRealStream
 
inputSelector - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
inputSelectorOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
inputSelectorOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
inputsSelected - Variable in class moa.streams.filters.SelectAttributesFilter
 
inputsToLearn - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
inputStream - Variable in class moa.streams.ConceptDriftRealStream
 
inputStream - Variable in class moa.streams.ConceptDriftStream
 
inputStream - Variable in class moa.streams.filters.AbstractMultiLabelStreamFilter
The input stream to this filter.
inputStream - Variable in class moa.streams.filters.AbstractStreamFilter
The input stream to this filter.
InputStreamProgressMonitor - Class in moa.core
Class for monitoring the progress of reading an input stream.
InputStreamProgressMonitor(InputStream) - Constructor for class moa.core.InputStreamProgressMonitor
 
inputStringOption - Variable in class moa.streams.filters.SelectAttributesFilter
 
inputValues - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
inRanges(Instance, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Test if an instance is within the given ranges.
insert(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
insert(Instance, long) - Method in class moa.clusterers.clustream.ClustreamKernel
 
insert(Instance, long) - Method in class moa.clusterers.denstream.MicroCluster
 
insert(CFCluster) - Method in class moa.clusterers.macro.NonConvexCluster
 
insert(ClusKernel, Budget, long) - Method in class moa.clusterers.clustree.ClusTree
Insert a new point in the Tree.
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
 
Insert(ISBIndex.ISBNode, Long) - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
Insert(ISBIndex.ISBNode, Long) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
insertAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
 
insertAttributeAt(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Insert attribute at.
insertAttributeAt(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Inserts an attribute.
insertAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Insert attribute at.
insertAttributeAt(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
 
insertAttributeAt(Attribute, int) - Method in class com.yahoo.labs.samoa.instances.AttributesInformation
 
insertAttributeAt(Attribute, int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
insertAttributeAt(Attribute, int) - Method in class com.yahoo.labs.samoa.instances.Instances
Insert attribute at.
insertEntry(LearningEvaluation) - Method in class moa.evaluation.preview.LearningCurve
 
insertLotsHoles(ArrayList<Double>, ArrayList<Integer>, double, double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
insertSorted(double, Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Inserts an instance neighbor into the list, maintaining the list sorted by distance.
insertTuple(GreenwaldKhannaQuantileSummary.Tuple, int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
insertValue(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
insertValue(double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
Insert a new value into the tree, updating both the sum of values and sum of squared values arrays
insertValue(double, double, double) - Method in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
Insert a new value into the tree, updating both the sum of values and sum of squared values arrays
insertValue(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
inst - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
inst - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
inst - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
inst - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
inst - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
install() - Static method in class moa.gui.LookAndFeel
Installs the look and feel.
installJavaLookAndFeel(String) - Static method in class moa.gui.LookAndFeel
Attempts to install the specified Java Look'n'Feel.
installJideLookAndFeel(int) - Static method in class moa.gui.LookAndFeel
Attempts to install the specified JIDE style.
instance - Variable in class moa.classifiers.rules.RuleClassifier
 
instance - Variable in class moa.core.InstanceExample
 
instance(int) - Method in class com.yahoo.labs.samoa.instances.Instances
Instance.
Instance - Interface in com.yahoo.labs.samoa.instances
The Interface Instance.
InstanceAttributesSelector - Class in moa.classifiers.rules.multilabel.instancetransformers
Transforms instances considering both a subset of input attributes and a subset of output attributes
InstanceAttributesSelector(InstancesHeader, int[], int[]) - Constructor for class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.EFDT.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
instanceChildIndex(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.SplitNode
 
InstanceConditionalBinaryTest - Class in moa.classifiers.core.conditionaltests
Abstract binary conditional test for instances to use to split nodes in Hoeffding trees.
InstanceConditionalBinaryTest() - Constructor for class moa.classifiers.core.conditionaltests.InstanceConditionalBinaryTest
 
InstanceConditionalTest - Class in moa.classifiers.core.conditionaltests
Abstract conditional test for instances to use to split nodes in Hoeffding trees.
InstanceConditionalTest() - Constructor for class moa.classifiers.core.conditionaltests.InstanceConditionalTest
 
instanceConverter - Variable in class moa.classifiers.meta.WEKAClassifier
 
instanceConverter - Variable in class moa.classifiers.multilabel.MEKAClassifier
 
instanceConverter - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
instanceConverter - Variable in class weka.classifiers.meta.MOA
 
instanceConverter - Variable in class weka.datagenerators.classifiers.classification.MOA
 
instanceData - Variable in class com.yahoo.labs.samoa.instances.InstanceImpl
The instance data.
InstanceData - Interface in com.yahoo.labs.samoa.instances
The Interface InstanceData.
InstanceExample - Class in moa.core
 
InstanceExample(Instance) - Constructor for class moa.core.InstanceExample
 
instanceGenerated - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
instanceGenerated - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
instanceHeader - Variable in class com.yahoo.labs.samoa.instances.InstanceImpl
The instance information.
instanceHeader - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
InstanceImpl - Class in com.yahoo.labs.samoa.instances
The Class InstanceImpl.
InstanceImpl(double, double[]) - Constructor for class com.yahoo.labs.samoa.instances.InstanceImpl
Instantiates a new instance.
InstanceImpl(double, double[], int[], int) - Constructor for class com.yahoo.labs.samoa.instances.InstanceImpl
Instantiates a new instance.
InstanceImpl(double, InstanceData) - Constructor for class com.yahoo.labs.samoa.instances.InstanceImpl
Instantiates a new instance.
InstanceImpl(int) - Constructor for class com.yahoo.labs.samoa.instances.InstanceImpl
Instantiates a new instance.
InstanceImpl(InstanceImpl) - Constructor for class com.yahoo.labs.samoa.instances.InstanceImpl
Instantiates a new instance.
instanceInformation - Variable in class com.yahoo.labs.samoa.instances.ArffLoader
The instance information.
instanceInformation - Variable in class com.yahoo.labs.samoa.instances.Instances
The instance information.
instanceInformation - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
instanceInformation - Variable in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
InstanceInformation - Class in com.yahoo.labs.samoa.instances
The Class InstanceInformation.
InstanceInformation() - Constructor for class com.yahoo.labs.samoa.instances.InstanceInformation
Instantiates a new instance information.
InstanceInformation(InstanceInformation) - Constructor for class com.yahoo.labs.samoa.instances.InstanceInformation
Instantiates a new instance information.
InstanceInformation(String, Attribute[]) - Constructor for class com.yahoo.labs.samoa.instances.InstanceInformation
Instantiates a new instance information.
InstanceInformation(String, List<Attribute>) - Constructor for class com.yahoo.labs.samoa.instances.InstanceInformation
Instantiates a new instance information.
instanceLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
instanceLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Allows to define the maximum number of instances to test/train on (-1 = no limit).
instanceLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
instanceLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
instanceLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
instanceLimitOption - Variable in class moa.tasks.EvaluateClustering
 
instanceLimitOption - Variable in class moa.tasks.EvaluateConceptDrift
 
instanceLimitOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the maximum number of instances to test/train on (-1 = no limit).
instanceLimitOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequential
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
instanceLimitOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
InstanceOutputAttributesSelector - Class in moa.classifiers.rules.multilabel.instancetransformers
Transforms instances considering only a subset of output attributes
InstanceOutputAttributesSelector() - Constructor for class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
InstanceOutputAttributesSelector(InstancesHeader, int[]) - Constructor for class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
instanceRandom - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
instanceRandom - Variable in class moa.streams.generators.AgrawalGenerator
 
instanceRandom - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
instanceRandom - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
instanceRandom - Variable in class moa.streams.generators.HyperplaneGenerator
 
instanceRandom - Variable in class moa.streams.generators.LEDGenerator
 
instanceRandom - Variable in class moa.streams.generators.MixedGenerator
 
instanceRandom - Variable in class moa.streams.generators.RandomRBFGenerator
 
instanceRandom - Variable in class moa.streams.generators.RandomTreeGenerator
 
instanceRandom - Variable in class moa.streams.generators.SEAGenerator
 
instanceRandom - Variable in class moa.streams.generators.SineGenerator
 
instanceRandom - Variable in class moa.streams.generators.STAGGERGenerator
 
instanceRandom - Variable in class moa.streams.generators.TextGenerator
 
instanceRandom - Variable in class moa.streams.generators.WaveformGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
instanceRandomSeedOption - Variable in class moa.streams.generators.AgrawalGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.LEDGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.MixedGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.SEAGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.SineGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.STAGGERGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.TextGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.WaveformGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.ImbalancedStream
 
instanceRandomSeedOption - Variable in class moa.streams.IrrelevantFeatureAppenderStream
 
instances - Variable in class com.yahoo.labs.samoa.instances.Instances
The instances.
instances - Variable in class moa.classifiers.meta.PairedLearners
 
instances - Variable in class moa.streams.ArffFileStream
 
instances - Variable in class moa.streams.clustering.FileStream
 
instances - Variable in class moa.streams.MultiTargetArffFileStream
 
Instances - Class in com.yahoo.labs.samoa.instances
The Class Instances.
Instances() - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(Instances) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(Instances, int) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(Instances, int, int) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(Reader, int, int) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(Reader, Range) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(StringReader, int) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(String, Attribute[], int) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
Instances(String, List<Attribute>, int) - Constructor for class com.yahoo.labs.samoa.instances.Instances
Instantiates a new instances.
INSTANCES_BETWEEN_MONITOR_UPDATES - Static variable in class moa.tasks.MainTask
The number of instances between monitor updates.
instancesBuffer - Variable in class moa.classifiers.meta.WEKAClassifier
 
instancesBuffer - Variable in class moa.classifiers.multilabel.MEKAClassifier
 
instancesBuffer - Variable in class moa.streams.ImbalancedStream
 
InstancesHeader - Class in com.yahoo.labs.samoa.instances
Class for storing the header or context of a data stream.
InstancesHeader() - Constructor for class com.yahoo.labs.samoa.instances.InstancesHeader
 
InstancesHeader(Instances) - Constructor for class com.yahoo.labs.samoa.instances.InstancesHeader
 
instancesSeen - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
instancesSeen - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
instancesSeen - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
instancesSeen - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
instancesSeen - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
instancesSeen - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
instancesSeen - Variable in class moa.classifiers.rules.RuleClassification
 
instancesSeen - Variable in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
instancesSeen - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
instancesSeen - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
instancesSeenTest - Variable in class moa.classifiers.rules.RuleClassification
 
InstancesSummaryPanel - Class in moa.gui.featureanalysis
This panel just displays relation name, number of instances, and number of attributes.
InstancesSummaryPanel() - Constructor for class moa.gui.featureanalysis.InstancesSummaryPanel
Creates the instances panel with no initial instances.
InstanceStream - Interface in moa.streams
Interface representing a data stream of instances.
instanceTransformer - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
InstanceTransformer - Interface in moa.classifiers.rules.multilabel.instancetransformers
Interface for instance transformation
instantiationComplete() - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
We've been instantiated and now have access to the main application and PerspectiveManager
instNodeCountSinceReal - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
instNodeCountSinceVirtual - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
instSeenSinceLastSplitAttempt - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
instTreeCountSinceReal - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
INT_ADD - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
INT_DIV - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
INT_MULT - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
integerAddition() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that an integer addition has been performed by the tree.
integerAddition() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerAddition(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of integer additions have been done.
integerAddition(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerDivision() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a integer division has been performed by the tree.
integerDivision() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerDivision(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of integer divisions have been performed.
integerDivision(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerMultiplication() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a integer multiplicaton has been performed by the tree.
integerMultiplication() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerMultiplication(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of integer multiplications have been performed.
integerMultiplication(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
IntegerParameter - Class in moa.clusterers.meta
 
IntegerParameter(IntegerParameter) - Constructor for class moa.clusterers.meta.IntegerParameter
 
IntegerParameter(ParameterConfiguration) - Constructor for class moa.clusterers.meta.IntegerParameter
 
interchangedTrees - Variable in class moa.classifiers.trees.iadem.Iadem3
 
INTERNAL_DRIFT - Static variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
IntOption - Class in com.github.javacliparser
Int option.
IntOption(String, char, String, int) - Constructor for class com.github.javacliparser.IntOption
 
IntOption(String, char, String, int, int, int) - Constructor for class com.github.javacliparser.IntOption
 
IntOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit an integer option.
IntOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.IntOptionEditComponent
 
intToCLIString(int) - Static method in class com.github.javacliparser.IntOption
 
invalidate() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
invalidates all initializations.
inverseError(double) - Static method in class moa.clusterers.clustream.ClustreamKernel
Approximates the inverse error function.
InverseErrorWeightedVote - Class in moa.classifiers.rules.core.voting
InverseErrorWeightedVoteMultiLabel class for weighted votes based on estimates of errors.
InverseErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
 
InverseErrorWeightedVoteMultiLabel - Class in moa.classifiers.rules.multilabel.core.voting
InverseErrorWeightedVoteMuliLabel class for weighted votes based on estimates of errors.
InverseErrorWeightedVoteMultiLabel() - Constructor for class moa.classifiers.rules.multilabel.core.voting.InverseErrorWeightedVoteMultiLabel
 
invertedSumariesPerMeasure(String) - Method in class moa.gui.experimentertab.Summary
Generates a latex summary, in which the rows are the datasets and the columns the algorithms.
invertSelectionTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns the tip text for this property.
IParameter - Interface in moa.clusterers.meta
 
IrrelevantFeatureAppenderStream - Class in moa.streams
IrrelevantFeatureAppender Stream.
IrrelevantFeatureAppenderStream() - Constructor for class moa.streams.IrrelevantFeatureAppenderStream
 
isAbove(double) - Method in interface moa.classifiers.active.budget.BudgetManager
Returns true if the given value is above an internal threshold and the label should be acquired.
isAbove(double) - Method in class moa.classifiers.active.budget.FixedBM
 
isALeaf() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Checks if node is a leaf.
isAllAttUsed() - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.Rule
 
isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
isAttChanged() - Method in class moa.clusterers.dstream.CharacteristicVector
 
ISB - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
ISB - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
ISB - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
ISB_PD - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
isBackgroundLearner - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
isBackgroundLearner - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
isBackgroundLearner - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
ISBIndex - Class in moa.clusterers.outliers.AbstractC
 
ISBIndex - Class in moa.clusterers.outliers.Angiulli
 
ISBIndex - Class in moa.clusterers.outliers.MCOD
 
ISBIndex - Class in moa.clusterers.outliers.SimpleCOD
 
ISBIndex(double, double) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex
 
ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex
 
ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex
 
ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.AbstractC
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.Angiulli
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.MCOD
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.SimpleCOD
 
ISBIndex.ISBNode.NodeType - Enum in moa.clusterers.outliers.MCOD
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.AbstractC
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.Angiulli
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.MCOD
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.SimpleCOD
 
ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
ISBNodeAppr(Instance, StreamObj, Long, int) - Constructor for class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
ISBNodeExact(Instance, StreamObj, Long, int) - Constructor for class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
 
ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
 
ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
 
ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
 
isBufferStoring - Variable in class moa.classifiers.meta.WEKAClassifier
 
isCancelled() - Method in class moa.tasks.NullMonitor
 
isCancelled() - Method in class moa.tasks.StandardTaskMonitor
 
isCancelled() - Method in interface moa.tasks.TaskMonitor
Gets whether the task monitored is cancelled.
isCancelled() - Method in class moa.tasks.TaskThread
 
isCellEditable(int, int) - Method in class moa.gui.active.ALTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.AuxiliarTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.experimentertab.TaskManagerTabPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
isCellEditable(int, int) - Method in class moa.gui.MultiLabelTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.MultiTargetTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
isChangeDetected - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Change was detected
isChangeDetected() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
isClassificationEnabled - Variable in class moa.classifiers.meta.WEKAClassifier
 
isClassificationEnabled - Variable in class moa.classifiers.multilabel.MEKAClassifier
 
isClustered() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
isComplete - Variable in class moa.tasks.StandardTaskMonitor
 
isComplete() - Method in class moa.gui.experimentertab.ExpTaskThread
 
isComplete() - Method in class moa.tasks.TaskThread
 
isCompleted - Variable in class moa.gui.experimentertab.ExpTaskThread
 
isConnected() - Method in class moa.clusterers.dstream.GridCluster
Tests a grid cluster for connectedness according to Definition 3.4, Grid Group, from Chen and Tu 2007.
isCovering(Instance) - Method in class moa.classifiers.rules.core.Rule
 
isCovering(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
isDate - Variable in class com.yahoo.labs.samoa.instances.Attribute
The is date.
isDefault - Variable in class moa.clusterers.meta.Algorithm
 
isDense(double) - Method in class moa.clusterers.dstream.CharacteristicVector
Implements the test for whether a density grid is dense given in eq 8 of Chen and Tu 2007.
isEmpty() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Gets whether the list is empty.
isEmpty() - Method in class moa.clusterers.clustream.ClustreamKernel
Check if this cluster is empty or not.
isEmpty() - Method in class moa.clusterers.clustree.ClusKernel
Check if this cluster is empty or not.
isEmpty() - Method in class moa.clusterers.clustree.Entry
Check if this Entry is empty or not.
isEmpty() - Method in class moa.clusterers.kmeanspm.CuckooHashing
Returns true if this hash table contains no elements.
isEnabled(int) - Method in class moa.evaluation.MeasureCollection
 
isEnabledDrawClustering() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawGroundTruth() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawMicroclustering() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawOutliers() - Method in class moa.gui.outliertab.OutlierVisualTab
 
isEnabledDrawPoints() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawPoints() - Method in class moa.gui.outliertab.OutlierVisualTab
 
isEqual(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isEqualOrLess() - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
isEqualOrLess() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isEqualOrLess() - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
isEqualOrLess() - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
isEqualOrLess() - Method in interface moa.classifiers.rules.core.Predicate
 
isEqualsPassesTest() - Method in class moa.classifiers.trees.iadem.IademNumericAttributeBinaryTest
 
isFailed() - Method in class moa.tasks.TaskThread
 
isFirstAfterExpansion() - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking.RuleInformation
 
isFull() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
isGroundTruth() - Method in class moa.cluster.Cluster
 
isIncludedInRuleNode(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isInitialized - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
The change detector has been initialized with the option values
isInitialized - Variable in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
isInitialized - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
isInside(DensityGrid) - Method in class moa.clusterers.dstream.GridCluster
Inside Grids are defined in Definition 3.5 of Chen and Tu 2007 as: Consider a grid group G and a grid g ∈ G, suppose g =(j1, ··· ,jd), if g has neighboring grids in every dimension i =1, ·· · ,d, then g is an inside grid in G.Otherwise g is an outside grid in G.
isInside(DensityGrid, DensityGrid) - Method in class moa.clusterers.dstream.GridCluster
Inside Grids are defined in Definition 3.5 of Chen and Tu 2007 as: Consider a grid group G and a grid g ∈ G, suppose g =(j1, ··· ,jd), if g has neighboring grids in every dimension i =1, ·· · ,d, then g is an inside grid in G.
isIrrelevant(double) - Method in class moa.clusterers.clustree.Entry
Returns true if this entry is irrelevant with respecto the given threshold.
isJavaVersionOK() - Static method in class moa.DoTask
Checks if the Java version is recent enough to run MOA.
isLastSubtaskOnLevel - Variable in class moa.tasks.meta.MetaMainTask
 
isLeaf() - Method in class moa.classifiers.trees.EFDT.Node
 
isLeaf() - Method in class moa.classifiers.trees.EFDT.SplitNode
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
isLeaf() - Method in class moa.clusterers.clustree.Node
Checks if this node is a leaf.
isMetBy(Class<?>) - Method in class moa.capabilities.CapabilityRequirement
Tests if the requirement is met by the given class.
isMetBy(Capabilities) - Method in class moa.capabilities.CapabilityRequirement
Tests if the requirement is met by the given set of capabilities.
isMetBy(CapabilitiesHandler) - Method in class moa.capabilities.CapabilityRequirement
Tests if the requirement is met by the given capabilities handler.
isMissing(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Checks if is missing.
isMissing(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Checks if an attribute is missing.
isMissing(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Checks if is missing.
isMissing(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Checks if is missing.
isMissing(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Checks if is missing.
isMissing(Attribute) - Method in interface com.yahoo.labs.samoa.instances.Instance
Checks if an attribute is missing.
isMissing(Attribute) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
isMissingSparse(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Checks if is missing sparse.
isMissingSparse(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Checks if the attribute is missing sparse.
isMissingSparse(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Checks if is missing sparse.
isMissingSparse(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Checks if is missing sparse.
isMissingSparse(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Checks if is missing sparse.
isMissingValue(double) - Static method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Tests if the given value codes "missing".
isMissingValue(double) - Static method in class moa.core.Utils
Tests if the given value codes "missing".
isNextInstanceFromPartition() - Method in class moa.streams.PartitioningStream
check if this stream is excluded from seeing the next instance
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.Angiulli.STORMBase
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
isNoise() - Method in class moa.gui.visualization.DataPoint
 
isNominal - Variable in class com.yahoo.labs.samoa.instances.Attribute
The is nominal.
isNominal() - Method in class com.yahoo.labs.samoa.instances.Attribute
Checks if is nominal.
isNullError() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
isNullError() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
isNullError() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
isNumeric - Variable in class com.yahoo.labs.samoa.instances.Attribute
The is numeric.
isNumeric() - Method in class com.yahoo.labs.samoa.instances.Attribute
Checks if is numeric.
isOnlyBinaryTest() - Method in class moa.classifiers.trees.iadem.Iadem2
 
isOnlyMultiwayTest() - Method in class moa.classifiers.trees.iadem.Iadem2
 
ISOUPTree - Class in moa.classifiers.multilabel.trees
iSOUPTrees class for structured output prediction.
ISOUPTree() - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree
 
ISOUPTree.InnerNode - Class in moa.classifiers.multilabel.trees
 
ISOUPTree.LeafNode - Class in moa.classifiers.multilabel.trees
 
ISOUPTree.MultitargetPerceptron - Class in moa.classifiers.multilabel.trees
 
ISOUPTree.Node - Class in moa.classifiers.multilabel.trees
 
ISOUPTree.SplitNode - Class in moa.classifiers.multilabel.trees
 
isOutiler() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
 
isOutlier(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
isOutputFile - Variable in class com.github.javacliparser.FileOption
 
isOutputFile() - Method in class com.github.javacliparser.FileOption
 
isPaintable() - Method in class weka.gui.MOAClassOptionEditor
Returns true since this editor is paintable.
isPaused() - Method in class moa.tasks.NullMonitor
 
isPaused() - Method in class moa.tasks.StandardTaskMonitor
 
isPaused() - Method in interface moa.tasks.TaskMonitor
Gets whether the task monitored is paused.
isPositive - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator.Score
True if example's true label is positive
isPositive - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator.Score
True if example's true label is positive
isPresent() - Static method in class moa.core.SizeOf
Checks whteher the agent is present.
isPublicConcreteClassOfType(String, Class<?>) - Static method in class moa.core.AutoClassDiscovery
 
isRandomizable() - Method in class moa.classifiers.active.ALRandom
 
isRandomizable() - Method in class moa.classifiers.active.ALUncertainty
 
isRandomizable() - Method in class moa.classifiers.bayes.NaiveBayes
 
isRandomizable() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
isRandomizable() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
isRandomizable() - Method in class moa.classifiers.functions.MajorityClass
 
isRandomizable() - Method in class moa.classifiers.functions.NoChange
 
isRandomizable() - Method in class moa.classifiers.functions.Perceptron
 
isRandomizable() - Method in class moa.classifiers.functions.SGD
 
isRandomizable() - Method in class moa.classifiers.functions.SGDMultiClass
 
isRandomizable() - Method in class moa.classifiers.functions.SPegasos
 
isRandomizable() - Method in class moa.classifiers.lazy.kNN
 
isRandomizable() - Method in class moa.classifiers.lazy.kNNwithPAW
 
isRandomizable() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
isRandomizable() - Method in class moa.classifiers.lazy.SAMkNN
 
isRandomizable() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Determines whether the classifier is randomizable.
isRandomizable() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Determines whether the classifier is randomizable.
isRandomizable() - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
isRandomizable() - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
isRandomizable() - Method in class moa.classifiers.meta.ADOB
 
isRandomizable() - Method in class moa.classifiers.meta.BOLE
 
isRandomizable() - Method in class moa.classifiers.meta.DACC
 
isRandomizable() - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
isRandomizable() - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
isRandomizable() - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
isRandomizable() - Method in class moa.classifiers.meta.LearnNSE
 
isRandomizable() - Method in class moa.classifiers.meta.LeveragingBag
 
isRandomizable() - Method in class moa.classifiers.meta.LimAttClassifier
 
isRandomizable() - Method in class moa.classifiers.meta.OCBoost
 
isRandomizable() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines whether the classifier is randomizable.
isRandomizable() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBag
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBagAdwin
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBagASHT
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBoost
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
isRandomizable() - Method in class moa.classifiers.meta.PairedLearners
 
isRandomizable() - Method in class moa.classifiers.meta.RandomRules
 
isRandomizable() - Method in class moa.classifiers.meta.StreamingRandomPatches
 
isRandomizable() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
isRandomizable() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
isRandomizable() - Method in class moa.classifiers.meta.WEKAClassifier
 
isRandomizable() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
isRandomizable() - Method in class moa.classifiers.multilabel.MEKAClassifier
 
isRandomizable() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
isRandomizable() - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
isRandomizable() - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
isRandomizable() - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
isRandomizable() - Method in class moa.classifiers.oneclass.Autoencoder
Autoencoder is randomizable.
isRandomizable() - Method in class moa.classifiers.oneclass.HSTrees
HSTrees is randomizable.
isRandomizable() - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
Nearest Neighbour Description is not randomizable.
isRandomizable() - Method in class moa.classifiers.rules.AbstractAMRules
description of the Methods used.
isRandomizable() - Method in class moa.classifiers.rules.AMRulesRegressorOld
 
isRandomizable() - Method in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
isRandomizable() - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
isRandomizable() - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
isRandomizable() - Method in class moa.classifiers.rules.functions.Perceptron
 
isRandomizable() - Method in class moa.classifiers.rules.functions.TargetMean
 
isRandomizable() - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
isRandomizable() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
isRandomizable() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
isRandomizable() - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
isRandomizable() - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
isRandomizable() - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
isRandomizable() - Method in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
isRandomizable() - Method in class moa.classifiers.rules.RuleClassifier
 
isRandomizable() - Method in class moa.classifiers.trees.ARFFIMTDD
 
isRandomizable() - Method in class moa.classifiers.trees.ARFHoeffdingTree
 
isRandomizable() - Method in class moa.classifiers.trees.DecisionStump
 
isRandomizable() - Method in class moa.classifiers.trees.EFDT
 
isRandomizable() - Method in class moa.classifiers.trees.FIMTDD
 
isRandomizable() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
isRandomizable() - Method in class moa.classifiers.trees.HoeffdingTree
 
isRandomizable() - Method in class moa.classifiers.trees.iadem.Iadem2
 
isRandomizable() - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
isRandomizable() - Method in class moa.classifiers.trees.RandomHoeffdingTree
 
isRandomizable() - Method in interface moa.clusterers.Clusterer
 
isRandomizable() - Method in class moa.clusterers.ClusterGenerator
 
isRandomizable() - Method in class moa.clusterers.clustream.Clustream
 
isRandomizable() - Method in class moa.clusterers.clustream.WithKmeans
 
isRandomizable() - Method in class moa.clusterers.clustree.ClusTree
 
isRandomizable() - Method in class moa.clusterers.CobWeb
 
isRandomizable() - Method in class moa.clusterers.denstream.WithDBSCAN
 
isRandomizable() - Method in class moa.clusterers.dstream.Dstream
 
isRandomizable() - Method in class moa.clusterers.kmeanspm.BICO
 
isRandomizable() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
isRandomizable() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
isRandomizable() - Method in class moa.clusterers.streamkm.StreamKM
 
isRandomizable() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
isRandomizable() - Method in class moa.learners.ChangeDetectorLearner
 
isRandomizable() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
isRandomizable() - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
isRandomizable() - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
isRandomizable() - Method in interface moa.learners.Learner
Gets whether this learner needs a random seed.
isRegression - Variable in class moa.classifiers.meta.RandomRules
 
isRegression - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
isRegression - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
isRestartable() - Method in class moa.streams.ArffFileStream
 
isRestartable() - Method in class moa.streams.BootstrappedStream
 
isRestartable() - Method in class moa.streams.CachedInstancesStream
 
isRestartable() - Method in class moa.streams.clustering.FileStream
 
isRestartable() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
isRestartable() - Method in class moa.streams.clustering.SimpleCSVStream
 
isRestartable() - Method in class moa.streams.ConceptDriftRealStream
 
isRestartable() - Method in class moa.streams.ConceptDriftStream
 
isRestartable() - Method in interface moa.streams.ExampleStream
Gets whether this stream can restart.
isRestartable() - Method in class moa.streams.FilteredStream
 
isRestartable() - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
 
isRestartable() - Method in class moa.streams.filters.AbstractStreamFilter
 
isRestartable() - Method in class moa.streams.generators.AgrawalGenerator
 
isRestartable() - Method in class moa.streams.generators.AssetNegotiationGenerator
 
isRestartable() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
isRestartable() - Method in class moa.streams.generators.HyperplaneGenerator
 
isRestartable() - Method in class moa.streams.generators.LEDGenerator
 
isRestartable() - Method in class moa.streams.generators.MixedGenerator
 
isRestartable() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
isRestartable() - Method in class moa.streams.generators.RandomRBFGenerator
 
isRestartable() - Method in class moa.streams.generators.RandomTreeGenerator
 
isRestartable() - Method in class moa.streams.generators.SEAGenerator
 
isRestartable() - Method in class moa.streams.generators.SineGenerator
 
isRestartable() - Method in class moa.streams.generators.STAGGERGenerator
 
isRestartable() - Method in class moa.streams.generators.TextGenerator
 
isRestartable() - Method in class moa.streams.generators.WaveformGenerator
 
isRestartable() - Method in class moa.streams.ImbalancedStream
 
isRestartable() - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
isRestartable() - Method in class moa.streams.MultiFilteredStream
 
isRestartable() - Method in class moa.streams.MultiLabelFilteredStream
 
isRestartable() - Method in class moa.streams.MultiTargetArffFileStream
 
isRestartable() - Method in class moa.streams.PartitioningStream
 
isRestaurarVectoresPrediccion() - Method in class moa.classifiers.trees.iadem.Iadem3
 
isRoot() - Method in class moa.classifiers.trees.EFDT.EFDTLearningNode
 
isRoot() - Method in interface moa.classifiers.trees.EFDT.EFDTNode
 
isRoot() - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
isSet - Variable in class com.github.javacliparser.FlagOption
 
isSet() - Method in class com.github.javacliparser.FlagOption
 
isSignicativeBetterThan(double) - Method in class moa.gui.experimentertab.statisticaltests.PValuePerTwoAlgorithm
 
isSignificantlyGreaterThan(double, double, int, int) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeWeightedVote
 
isSparse(double) - Method in class moa.clusterers.dstream.CharacteristicVector
Implements the test for whether a density grid is sparse given in eq 9 of Chen and Tu 2007.
isSpecialization() - Method in class moa.classifiers.rules.featureranking.messages.RuleExpandedMessage
 
isSporadic() - Method in class moa.clusterers.dstream.CharacteristicVector
 
isStandardDeviationPainted - Variable in class moa.gui.visualization.AbstractGraphPlot
 
isSubtask() - Method in class moa.tasks.meta.MetaMainTask
Check if the task is a subtask of another parent.
IsTested() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Block
 
isTransitional(double, double) - Method in class moa.clusterers.dstream.CharacteristicVector
Implements the test for whether a density grid is transitional given in eq 10 of Chen and Tu 2007.
isType() - Method in class moa.gui.experimentertab.Measure
Returns the type of measure
isUseless(int) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
isUsingSameAttribute(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isValidCluster() - Method in class moa.gui.visualization.ClusterPanel
 
isValidCluster() - Method in class moa.gui.visualization.OutlierPanel
 
isVisited() - Method in class moa.clusterers.dstream.DensityGrid
 
isVisited() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
isWarningDetected() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
isWarningZone - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Warning Zone: after a warning and before a change
isWarningZone - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
isWekaVersionOK() - Static method in class moa.core.WekaUtils
Checks if the Weka version is recent enough to run MOA.
isWekaVersionOK() - Static method in class moa.DoTask
Checks if the Weka version is recent enough to run MOA.
itemExists(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
itemExists(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
itemFeature - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
itemID - Variable in class moa.recommender.rc.utils.Rating
 
itemsStats - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
iterationControl - Variable in class moa.classifiers.active.ALUncertainty
 
iterationsOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
iterator() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
An iterator for the set.
iterator() - Method in class moa.clusterers.outliers.utils.mtree.MTree.Query
 
iterator() - Method in class moa.recommender.rc.utils.DenseVector
 
iterator() - Method in class moa.recommender.rc.utils.SparseVector
 
iterator() - Method in class moa.recommender.rc.utils.Vector
 

J

j - Variable in class moa.gui.experimentertab.statisticaltests.Relation
 
JavaCLIParser - Class in com.github.javacliparser
Java Command Line Interface Parser.
JavaCLIParser(Object, String) - Constructor for class com.github.javacliparser.JavaCLIParser
 
JesterDataset - Class in moa.recommender.dataset.impl
 
JesterDataset() - Constructor for class moa.recommender.dataset.impl.JesterDataset
 
joinClustersOption - Variable in class moa.clusterers.ClusterGenerator
 
joinOptions(String[]) - Static method in class moa.core.Utils
Joins all the options in an option array into a single string, as might be used on the command line.
JPEG - moa.gui.experimentertab.PlotTab.Terminal
 
JPEG - moa.tasks.Plot.Terminal
 
jTablePanel - Variable in class moa.gui.experimentertab.SummaryViewer
 

K

KDTree - Class in moa.classifiers.lazy.neighboursearch
Class implementing the KDTree search algorithm for nearest neighbour search.
The connection to dataset is only a reference.
KDTree() - Constructor for class moa.classifiers.lazy.neighboursearch.KDTree
Creates a new instance of KDTree.
KDTree(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.KDTree
Creates a new instance of KDTree.
KDTreeNode - Class in moa.classifiers.lazy.neighboursearch.kdtrees
A class representing a KDTree node.
KDTreeNode() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Constructor.
KDTreeNode(int, int, int, double[][]) - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Constructor.
KDTreeNode(int, int, int, double[][], double[][]) - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
 
KDTreeNodeSplitter - Class in moa.classifiers.lazy.neighboursearch.kdtrees
Class that splits up a KDTreeNode.
KDTreeNodeSplitter() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
default constructor.
KDTreeNodeSplitter(int[], Instances, EuclideanDistance) - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Creates a new instance of KDTreeNodeSplitter.
keepClassLabel() - Method in class moa.clusterers.AbstractClusterer
 
keepClassLabel() - Method in interface moa.clusterers.Clusterer
 
keepClassLabel() - Method in class moa.clusterers.ClusterGenerator
 
keepClassLabel() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
keepClassLabel() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
keepNonNumericalAttrOption - Variable in class moa.streams.clustering.FileStream
 
kernelOption - Variable in class moa.classifiers.core.statisticaltests.Cramer
 
kernelRadiFactorOption - Variable in class moa.clusterers.clustream.Clustream
 
kernelRadiFactorOption - Variable in class moa.clusterers.clustream.WithKmeans
 
kernelRadiiOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
kernelRadiiRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
KEY_JIDELOOKANDFEEL - Static variable in class moa.gui.LookAndFeel
the LnF for JIDE property in the GUI defaults.
KEY_LOOKANDFEEL - Static variable in class moa.gui.LookAndFeel
the LnF property in the GUI defaults.
killSubtree(EFDT) - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
killTreeChilds(HoeffdingAdaptiveTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
killTreeChilds(HoeffdingAdaptiveTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
killTreeChilds(HoeffdingAdaptiveTree) - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
Km1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
kMeans(int, List<? extends Cluster>) - Static method in class moa.clusterers.clustream.Clustream
 
kMeans(int, Cluster[], List<? extends Cluster>) - Static method in class moa.clusterers.clustream.Clustream
 
kMeans(int, Cluster[], List<? extends Cluster>) - Static method in class moa.clusterers.clustream.WithKmeans
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
kMeans(List<double[]>, List<double[]>) - Static method in class moa.clusterers.kmeanspm.CoresetKMeans
Executes the k-means algorithm with the given initial centroids until the costs converges.
kMeans(Cluster[], List<? extends Cluster>) - Static method in class moa.clusterers.KMeans
This kMeans implementation clusters a big number of microclusters into a smaller amount of macro clusters.
KMeans - Class in moa.clusterers
A kMeans implementation for microclusterings.
KMeans() - Constructor for class moa.clusterers.KMeans
 
kMeans_gta(int, Clustering, Clustering) - Static method in class moa.clusterers.clustream.WithKmeans
k-means of (micro)clusters, with ground-truth-aided initialization.
kMeans_rand(int, Clustering) - Static method in class moa.clusterers.clustream.WithKmeans
k-means of (micro)clusters, with randomized initialization.
KMeansInpiredMethod - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a node into two such that the overall sum of squared distances of points to their centres on both sides of the (axis-parallel) splitting plane is minimum.

For more information see also:

Ashraf Masood Kibriya (2007).
KMeansInpiredMethod() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
 
kNearestNeighbours(Instance, int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the k nearest neighbours of the supplied instance.
kNearestNeighbours(Instance, int) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns k nearest instances in the current neighbourhood to the supplied instance.
kNearestNeighbours(Instance, int) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns k nearest instances in the current neighbourhood to the supplied instance.
kNN - Class in moa.classifiers.lazy
k Nearest Neighbor.
kNN() - Constructor for class moa.classifiers.lazy.kNN
 
KNN - Class in moa.classifiers.core.statisticaltests
Implements the multivariate non-parametric KNN statistical test.
KNN() - Constructor for class moa.classifiers.core.statisticaltests.KNN
 
knnInCluster - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
knn distnace within own cluster
knnIndices - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
knn indices (for debugging only)
kNNwithPAW - Class in moa.classifiers.lazy
k Nearest Neighbor ADAPTIVE with PAW.
kNNwithPAW() - Constructor for class moa.classifiers.lazy.kNNwithPAW
 
kNNwithPAWandADWIN - Class in moa.classifiers.lazy
k Nearest Neighbor ADAPTIVE with ADWIN+PAW.
kNNwithPAWandADWIN() - Constructor for class moa.classifiers.lazy.kNNwithPAWandADWIN
 
kOption - Variable in class moa.classifiers.core.statisticaltests.Cramer
 
kOption - Variable in class moa.classifiers.lazy.kNN
 
kOption - Variable in class moa.classifiers.lazy.SAMkNN
 
kOption - Variable in class moa.clusterers.clustream.WithKmeans
 
kOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
 
kOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
kOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
kOption - Variable in class moa.clusterers.outliers.MCOD.MCOD
 
kOption - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
kStatBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
kStatLearner - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
kStatReset - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
kStatResetBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
kthSmallestValue(double[], int) - Static method in class moa.core.Utils
Returns the kth-smallest value in the array
kthSmallestValue(int[], int) - Static method in class moa.core.Utils
Returns the kth-smallest value in the array.
kValueOption - Variable in class moa.classifiers.core.statisticaltests.KNN
 

L

L - Variable in class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
labelCardinalityOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
labelCardinalityRatioOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
labelCardinalityVarOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
labelDelayOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
labelDependencyChangeRatioOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
lambda - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
lambdaFN - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
lambdaFN - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
lambdaFP - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
lambdaFP - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
lambdaNeg - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.EWMAChartDM
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
lambdaOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
lambdaOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
lambdaOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
lambdaOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
lambdaPos - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
lambdaRegularizationOption - Variable in class moa.classifiers.functions.SGD
 
lambdaRegularizationOption - Variable in class moa.classifiers.functions.SGDMultiClass
 
lambdaRegularizationOption - Variable in class moa.classifiers.functions.SPegasos
 
lambdaSc - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
lambdaSc - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
lambdaSum - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
lambdaSum - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
lambdaSw - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
lambdaSw - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
lambdaSw - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
lambdaTN - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
lambdaTP - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
laplaceCorrectionOption - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
 
lastDriftOn - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
lastDriftOn - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
lastEvalTaskCLIString - Variable in class moa.options.DependentOptionsUpdater
 
lastInstanceRead - Variable in class moa.streams.ArffFileStream
 
lastInstanceRead - Variable in class moa.streams.clustering.FileStream
 
lastInstanceRead - Variable in class moa.streams.clustering.SimpleCSVStream
 
lastInstanceRead - Variable in class moa.streams.MultiTargetArffFileStream
 
lastLabelAcq - Variable in class moa.classifiers.active.ALUncertainty
 
lastNominalValues - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
lastPrediction - Variable in class moa.classifiers.trees.iadem.Iadem3
 
lastPredictionInLeaf - Variable in class moa.classifiers.trees.iadem.Iadem3
 
lastSeenClass - Variable in class moa.classifiers.functions.NoChange
 
lastTargetMean - Variable in class moa.classifiers.rules.core.Rule.Builder
 
lastTargetMean - Variable in class moa.classifiers.rules.core.RuleSplitNode
 
lastValueOption - Variable in class moa.tasks.RunStreamTasks
 
lastValueOption - Variable in class moa.tasks.RunTasks
 
lastWarningOn - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
lastWarningOn - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
lastX - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
lastY - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
latestPreviewChanged() - Method in class moa.gui.active.ALPreviewPanel
 
latestPreviewChanged() - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
latestPreviewChanged() - Method in class moa.gui.PreviewPanel
 
latestPreviewChanged() - Method in interface moa.tasks.ResultPreviewListener
This method is used to receive a signal from TaskMonitor that the lastest preview has changed.
latestPreviewGrabTime - Variable in class moa.gui.experimentertab.ExpTaskThread
 
latestPreviewGrabTime - Variable in class moa.tasks.TaskThread
 
latestResultPreview - Variable in class moa.tasks.StandardTaskMonitor
 
LATEX - moa.gui.experimentertab.PlotTab.Terminal
 
LATEX - moa.tasks.Plot.Terminal
 
leaf - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
leafFractionOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
LeafNode(ISOUPTree) - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
Create a new LeafNode
LeafNode(ARFFIMTDD, int) - Constructor for class moa.classifiers.trees.ARFFIMTDD.LeafNode
Create a new LeafNode
LeafNode(FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.LeafNode
Create a new LeafNode
LeafNode(Iadem2, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, boolean, boolean, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
leafNodeCount - Variable in class moa.classifiers.trees.ARFFIMTDD
 
leafNodeCount - Variable in class moa.classifiers.trees.FIMTDD
 
LeafNodeNB(Iadem2, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, boolean, boolean, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem2.LeafNodeNB
 
LeafNodeNBKirkby(Iadem2, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, boolean, boolean, AbstractChangeDetector, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem2.LeafNodeNBKirkby
 
LeafNodeWeightedVote(Iadem2, Iadem2.Node, long, long, double[], IademNumericAttributeObserver, int, boolean, boolean, AbstractChangeDetector, Instance) - Constructor for class moa.classifiers.trees.iadem.Iadem2.LeafNodeWeightedVote
 
leafpredictionOption - Variable in class moa.classifiers.trees.EFDT
 
leafpredictionOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
leafpredictionOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
leafPredictionOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
learner - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
learner - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
learner - Variable in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
learner - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
learner - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
Learner<E extends Example> - Interface in moa.learners
Learner interface for incremental learning models.
learnerBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
learnerListOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
learnerOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Type of classifier to use as a component classifier.
learnerOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Type of classifier to use as a component classifier.
learnerOption - Variable in class moa.classifiers.meta.DACC
Base classifier
learnerOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Type of classifier to use as a component classifier.
learnerOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
learnerOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
learnerOption - Variable in class moa.classifiers.trees.HoeffdingTreeClassifLeaves
 
learnerOption - Variable in class moa.tasks.EvaluateClustering
 
learnerOption - Variable in class moa.tasks.EvaluateConceptDrift
 
learnerOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to select the trained classifier.
learnerOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
learnerOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
learnerOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
learnerOption - Variable in class moa.tasks.EvaluatePrequential
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
learnerOption - Variable in class moa.tasks.FeatureImportanceConfig
Provides GUI to user so that they can configure parameters for feature importance algorithm.
learnerOption - Variable in class moa.tasks.LearnModel
 
learnerOption - Variable in class moa.tasks.LearnModelMultiLabel
 
learnerOption - Variable in class moa.tasks.LearnModelMultiTarget
 
learnerOption - Variable in class moa.tasks.LearnModelRegression
 
learnerOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
learnerReset - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
learnerResetBal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
learners - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Ensemble classifiers.
LearnerSemiSupervised<E extends Example> - Interface in moa.learners
 
learnFromInstance(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNBKirkby
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNodeWeightedVote
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBAdaptive
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBKirkby
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNominalVirtualNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3
 
learnFromInstance(Instance) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
learnFromInstance(Instance, boolean) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
Method to learn from an instance that passes the new instance to the perceptron learner, and also prevents the class value from being truncated to an int when it is passed to the attribute observer
learnFromInstance(Instance, boolean, ARFFIMTDD) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
Method to learn from an instance that passes the new instance to the perceptron learner, and also prevents the class value from being truncated to an int when it is passed to the attribute observer
learnFromInstance(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
learnFromInstance(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.EFDTLearningNode
 
learnFromInstance(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.InactiveLearningNode
 
learnFromInstance(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.LearningNode
 
learnFromInstance(Instance, EFDT) - Method in class moa.classifiers.trees.EFDT.LearningNodeNBAdaptive
 
learnFromInstance(Instance, EFDT, EFDT.EFDTSplitNode, int) - Method in class moa.classifiers.trees.EFDT.EFDTLearningNode
 
learnFromInstance(Instance, EFDT, EFDT.EFDTSplitNode, int) - Method in interface moa.classifiers.trees.EFDT.EFDTNode
 
learnFromInstance(Instance, EFDT, EFDT.EFDTSplitNode, int) - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
learnFromInstance(Instance, HoeffdingAdaptiveTree, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
learnFromInstance(Instance, HoeffdingAdaptiveTree, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
learnFromInstance(Instance, HoeffdingAdaptiveTree, HoeffdingTree.SplitNode, int) - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.InactiveLearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelInactiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.ARFHoeffdingTree.RandomLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.InactiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
learnFromInstance(MultiLabelInstance, double[], boolean) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
Method to learn from an instance that passes the new instance to the perceptron learner, and also prevents the class value from being truncated to an int when it is passed to the attribute observer
LearningCurve - Class in moa.evaluation.preview
Class that stores and keeps the history of evaluation measurements.
LearningCurve(String) - Constructor for class moa.evaluation.preview.LearningCurve
 
LearningCurve(String, Class<?>) - Constructor for class moa.evaluation.preview.LearningCurve
 
LearningEvaluation - Class in moa.evaluation
Class that stores an array of evaluation measurements.
LearningEvaluation(Measurement[]) - Constructor for class moa.evaluation.LearningEvaluation
 
LearningEvaluation(Measurement[], LearningPerformanceEvaluator, Learner) - Constructor for class moa.evaluation.LearningEvaluation
 
LearningEvaluation(LearningPerformanceEvaluator, Learner) - Constructor for class moa.evaluation.LearningEvaluation
 
learningLiteral - Variable in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
LearningLiteral - Class in moa.classifiers.rules.multilabel.core
 
LearningLiteral() - Constructor for class moa.classifiers.rules.multilabel.core.LearningLiteral
 
LearningLiteral(int[]) - Constructor for class moa.classifiers.rules.multilabel.core.LearningLiteral
 
LearningLiteralClassification - Class in moa.classifiers.rules.multilabel.core
This class contains the functions for learning the literals for Multi-label classification (in same way as Multi-Target regression).
LearningLiteralClassification() - Constructor for class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
LearningLiteralClassification(int[]) - Constructor for class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
LearningLiteralRegression - Class in moa.classifiers.rules.multilabel.core
 
LearningLiteralRegression() - Constructor for class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
LearningLiteralRegression(int[]) - Constructor for class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
learningModel - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.LeafNode
 
learningModel - Variable in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
learningModel - Variable in class moa.classifiers.trees.FIMTDD.LeafNode
 
learningNode - Variable in class moa.classifiers.rules.core.Rule
 
LearningNode(double[]) - Constructor for class moa.classifiers.trees.EFDT.LearningNode
 
LearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.LearningNode
 
LearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.LearningNode
 
LearningNodeClassifier(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
LearningNodeClassifier(double[], Classifier, HoeffdingTreeClassifLeaves) - Constructor for class moa.classifiers.trees.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
LearningNodeHATClassifier(double[]) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
LearningNodeHATClassifier(double[], Classifier, HoeffdingAdaptiveTreeClassifLeaves) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves.LearningNodeHATClassifier
 
LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.EFDT.LearningNodeNB
 
LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
 
LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
 
LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
 
LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
 
LearningNodeNB(double[], int) - Constructor for class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNB
 
LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.EFDT.LearningNodeNBAdaptive
 
LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
LearningNodeNBAdaptive(double[], int) - Constructor for class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNBAdaptive
 
LearningPerformanceEvaluator<E extends Example> - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the learning process.
learningRateDecay - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRateDecayFactorOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
learningRateDecayFactorOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
learningRateDecayFactorOption - Variable in class moa.classifiers.trees.FIMTDD
 
learningRateDecayOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRateDecayOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
learningRateOption - Variable in class moa.classifiers.functions.SGD
 
learningRateOption - Variable in class moa.classifiers.functions.SGDMultiClass
 
learningRateOption - Variable in class moa.classifiers.oneclass.Autoencoder
 
learningRatio - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRatio2ndLayerOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
learningRatioConstOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
learningRatioConstOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
learningRatioConstOption - Variable in class moa.classifiers.trees.FIMTDD
 
learningRatioOption - Variable in class moa.classifiers.functions.Perceptron
 
learningRatioOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
learningRatioOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
learningRatioOption - Variable in class moa.classifiers.rules.AMRulesRegressorOld
 
learningRatioOption - Variable in class moa.classifiers.rules.core.Rule.Builder
 
learningRatioOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRatioOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
learningRatioOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
learningRatioOption - Variable in class moa.classifiers.trees.FIMTDD
 
LearnModel - Class in moa.tasks
Task for learning a model without any evaluation.
LearnModel() - Constructor for class moa.tasks.LearnModel
 
LearnModel(Classifier, InstanceStream, int, int) - Constructor for class moa.tasks.LearnModel
 
LearnModelMultiLabel - Class in moa.tasks
Task for learning a model without any evaluation.
LearnModelMultiLabel() - Constructor for class moa.tasks.LearnModelMultiLabel
 
LearnModelMultiLabel(Classifier, InstanceStream, int, int) - Constructor for class moa.tasks.LearnModelMultiLabel
 
LearnModelMultiTarget - Class in moa.tasks
Task for learning a model without any evaluation.
LearnModelMultiTarget() - Constructor for class moa.tasks.LearnModelMultiTarget
 
LearnModelMultiTarget(Classifier, InstanceStream, int, int) - Constructor for class moa.tasks.LearnModelMultiTarget
 
LearnModelRegression - Class in moa.tasks
Task for learning a model without any evaluation.
LearnModelRegression() - Constructor for class moa.tasks.LearnModelRegression
 
LearnModelRegression(Classifier, InstanceStream, int, int) - Constructor for class moa.tasks.LearnModelRegression
 
LearnNSE - Class in moa.classifiers.meta
Ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time.
LearnNSE() - Constructor for class moa.classifiers.meta.LearnNSE
 
learnObject(double[]) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
leaveLearnerOption - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves
 
LEDGenerator - Class in moa.streams.generators
Stream generator for the problem of predicting the digit displayed on a 7-segment LED display.
LEDGenerator() - Constructor for class moa.streams.generators.LEDGenerator
 
LEDGeneratorDrift - Class in moa.streams.generators
Stream generator for the problem of predicting the digit displayed on a 7-segment LED display with drift.
LEDGeneratorDrift() - Constructor for class moa.streams.generators.LEDGeneratorDrift
 
leeFichero(String) - Static method in class moa.gui.experimentertab.statisticaltests.Fichero
 
left - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
left - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
left - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
LEFT_INSIDE - moa.tasks.Plot.LegendLocation
 
LEFT_OUTSIDE - moa.tasks.Plot.LegendLocation
 
leftStatistics - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
leftStatistics - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
leftStatistics - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
legendLocationOption - Variable in class moa.tasks.Plot
Legend (key) location on the plot.
legendTypeOption - Variable in class moa.tasks.Plot
Legend elements' alignment.
len - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
len - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator.BasicEstimator
 
len - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
length - Variable in class moa.clusterers.streamkm.StreamKM
 
lengthOption - Variable in class moa.clusterers.streamkm.StreamKM
 
lengthTweet - Variable in class moa.streams.generators.TextGenerator
 
lenWindow - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
lenWindow - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
lenWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
lenWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
lessThan - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
leveraginBagAlgorithmOption - Variable in class moa.classifiers.meta.LeveragingBag
 
LeveragingBag - Class in moa.classifiers.meta
Leveraging Bagging for evolving data streams using ADWIN.
LeveragingBag() - Constructor for class moa.classifiers.meta.LeveragingBag
 
LimAttClassifier - Class in moa.classifiers.meta
Ensemble Combining Restricted Hoeffding Trees using Stacking.
LimAttClassifier() - Constructor for class moa.classifiers.meta.LimAttClassifier
 
LimAttClassifier.CombinationGenerator - Class in moa.classifiers.meta
 
LimAttHoeffdingTree - Class in moa.classifiers.trees
Hoeffding decision trees with a restricted number of attributes for data streams.
LimAttHoeffdingTree() - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree
 
LimAttHoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
LimAttHoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
LimAttHoeffdingTree.LimAttLearningNode - Class in moa.classifiers.trees
 
LimAttLearningNode(double[]) - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
limitNaiveBayes - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNB
 
limitOption - Variable in class moa.classifiers.lazy.kNN
 
limitOption - Variable in class moa.classifiers.lazy.SAMkNN
 
LineAndScatterPanel - Class in moa.gui.featureanalysis
This is a sub panel in VisualizeFeatures tab.
LineAndScatterPanel() - Constructor for class moa.gui.featureanalysis.LineAndScatterPanel
 
LinearNNSearch - Class in moa.classifiers.lazy.neighboursearch
Class implementing the brute force search algorithm for nearest neighbour search.
LinearNNSearch() - Constructor for class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Constructor.
LinearNNSearch(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Constructor that uses the supplied set of instances.
linearOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines whether additional information should be sent to the output.
LineGraphViewPanel - Class in moa.gui
This panel displays an evaluation learning curve.
LineGraphViewPanel() - Constructor for class moa.gui.LineGraphViewPanel
 
LineGraphViewPanel.PlotLine - Class in moa.gui
 
LineGraphViewPanel.PlotPanel - Class in moa.gui
 
LineGraphViewPanel.PlotTableModel - Class in moa.gui
 
LINES - moa.gui.experimentertab.PlotTab.PlotStyle
 
LINES - moa.tasks.Plot.PlotStyle
 
LINESPOINTS - moa.gui.experimentertab.PlotTab.PlotStyle
 
LINESPOINTS - moa.tasks.Plot.PlotStyle
 
lineWidthOption - Variable in class moa.tasks.Plot
Plotted line width.
listAttributes - Variable in class moa.classifiers.meta.RandomRules
 
listAttributes - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
listAttributes - Variable in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
listAttributes - Variable in class moa.classifiers.trees.ARFHoeffdingTree.RandomLearningNode
 
listAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
listAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree
 
listAttributes - Variable in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
listener - Variable in class moa.options.ClassOptionWithListenerOption
 
ListOption - Class in com.github.javacliparser
List option.
ListOption(String, char, String, Option, Option[], char) - Constructor for class com.github.javacliparser.ListOption
 
ListOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a list option.
ListOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.ListOptionEditComponent
 
listOptions() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.meta.MOA
Returns an enumeration describing the available options.
listOptions() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns an enumeration describing the available options.
Literal - Class in moa.classifiers.rules.multilabel.core
 
Literal(Predicate) - Constructor for class moa.classifiers.rules.multilabel.core.Literal
 
literalList - Variable in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
literalStatistics - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
lloydPlusPlus(int, int, int, Point[]) - Method in class moa.clusterers.streamkm.StreamKM
 
lnGamma(double) - Static method in class moa.core.Statistics
Returns natural logarithm of gamma function.
locateIndex(int) - Method in class com.yahoo.labs.samoa.instances.AttributesInformation
Locates the greatest index that is not greater than the given index.
locateIndex(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Locates the greatest index that is not greater than the given index.
locateSizeOfAg() - Method in class moa.gui.ScriptingTabPanel
Locates the sizeofag jar in the classpath.
log(double, double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
LOG - Static variable in class moa.classifiers.core.statisticaltests.Cramer
 
log2 - Static variable in class moa.core.Utils
The natural logarithm of 2.
log2(double) - Static method in class moa.core.Utils
Returns the logarithm of a for base 2.
LOGGER - Static variable in class moa.gui.LookAndFeel
for logging output.
logKm1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
LOGLOSS - Static variable in class moa.classifiers.functions.SGD
 
LOGLOSS - Static variable in class moa.classifiers.functions.SGDMultiClass
 
LOGLOSS - Static variable in class moa.classifiers.functions.SPegasos
 
LOGPI - Static variable in class moa.core.Statistics
 
logs2probs(double[]) - Static method in class moa.core.Utils
Converts an array containing the natural logarithms of probabilities stored in a vector back into probabilities.
LookAndFeel - Class in moa.gui
Manages setting the look and feel.
LookAndFeel() - Constructor for class moa.gui.LookAndFeel
 
lossExamplesSeen - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
lossExamplesSeen - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
lossExamplesSeen - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
lossFadedSumAlternate - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
lossFadedSumAlternate - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
lossFadedSumAlternate - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
lossFadedSumOriginal - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
lossFadedSumOriginal - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
lossFadedSumOriginal - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
lossFunctionOption - Variable in class moa.classifiers.functions.SGD
 
lossFunctionOption - Variable in class moa.classifiers.functions.SGDMultiClass
 
lossFunctionOption - Variable in class moa.classifiers.functions.SPegasos
 
lossNumQiTests - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
lossNumQiTests - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
lossNumQiTests - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
lossSumQi - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
lossSumQi - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
lossSumQi - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
lower_x_value - Variable in class moa.gui.visualization.AbstractGraphAxes
 
lower_x_value - Variable in class moa.gui.visualization.AbstractGraphPlot
 
lowerBound - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
lowerBound - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver.Bin
 
LowPassFilteredLearner - Class in moa.classifiers.rules.functions
 
LowPassFilteredLearner() - Constructor for class moa.classifiers.rules.functions.LowPassFilteredLearner
 
lRate - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
lRateOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
LS - Variable in class moa.cluster.CFCluster
Linear sum of all the points added to the cluster.
LST - Variable in class moa.clusterers.clustream.ClustreamKernel
 
lt_cnt - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 

M

m_A - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_ActiveIndices - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
The boolean flags, whether an attribute will be used or not.
m_ActualClassifier - Variable in class weka.classifiers.meta.MOA
the actual moa classifier to use for learning.
m_ActualGenerator - Variable in class weka.datagenerators.classifiers.classification.MOA
the actual data generator.
m_acuity - Variable in class moa.clusterers.CobWeb
Acuity (minimum standard deviation).
m_allEqualWeights - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Do all instances have the same weight
m_as - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
This holds the attribute stats of the current attribute on display.
m_asCache - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
Cache of attribute stats info for the current data set
m_AttPanel - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Panel to let the user toggle attributes
m_attribIndex - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
This holds the index of the current attribute on display and should be set through setAttribute(int idx).
m_attributeIndex - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The attribute index starting from 0
m_attributeName - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
Attribute name
m_AttributeNameLab - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Displays the name of the relation
m_attributeNames - Variable in class moa.gui.featureanalysis.FeatureImportanceGraph
Attribute names of dataset except the class attribute.
m_AttributeStats - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Cached stats on the attributes we've summarized so far
m_AttributeTypeLab - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Displays the type of attribute
m_AttSummaryPanel - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Displays summary stats on the selected attribute
m_AttVisualizePanel - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The visualization of the attribute values
m_barRange - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
Contains the range of each bar in a histogram.
m_bias - Variable in class moa.classifiers.functions.SGD
 
m_bias - Variable in class moa.classifiers.functions.SGDMultiClass
 
m_biasVelocity - Variable in class moa.classifiers.functions.AdaGrad
 
m_BinaryGenerator - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_Cache - Static variable in class moa.core.AutoClassDiscovery
 
m_Capabilities - Variable in class moa.capabilities.Capabilities
The set of capabilities.
m_Classifier - Variable in class weka.classifiers.meta.MOA
the moa classifier option (this object is used in the GenericObjectEditor).
m_classIndex - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
Contains the current class index.
m_classTotals - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
sum of weight_of_instance * word_count_of_instance for each class
m_cobwebTree - Variable in class moa.clusterers.CobWeb
Holds the root of the Cobweb tree.
m_colorAttrib - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
This stores and lets the user select a class attribute.
m_CustomEditor - Variable in class weka.gui.MOAClassOptionEditor
the custom editor.
m_cutoff - Variable in class moa.clusterers.CobWeb
Cutoff (minimum category utility).
m_data - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
This holds the current set of instances
m_data - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
This holds the current set of instances
m_Data - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
the instances used internally.
m_DateFormat - Variable in class com.yahoo.labs.samoa.instances.Attribute
Date format specification for date attributes
m_Distance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
The distance from the current instance to this neighbor.
m_DistanceFunction - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
the distance function used.
m_DistanceList - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Array holding the distances of the nearest neighbours.
m_Distances - Variable in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Array holding the distances of the nearest neighbours.
m_DistinctLab - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Displays the number of distinct values
m_doNotNormalizeFeatureScore - Variable in class moa.tasks.FeatureImportanceConfig
The default doNotNormalizeFeatureScore parameter for feature importance algorithm.
m_DontNormalize - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
True if normalization is turned off (default false).
m_EditComponent - Variable in class weka.gui.MOAClassOptionEditor
the component for editing.
m_End - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
The end index of the portion of the master index array, which stores indices of the instances/points the node contains.
m_endIndex - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The start instance index label to prompt user to input end index number
m_endInstanceInput - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Format m_intEndIndex
m_epsilon - Variable in class moa.classifiers.functions.AdaGrad
The epsilon value
m_EuclideanDistance - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
The euclidean distance function to use.
m_EuclideanDistance - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
The distance function used for building the tree.
m_featureImportance - Variable in class moa.gui.featureanalysis.FeatureImportanceGraph
Store feature importance scores.
m_featureRange - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The string of feature range.
m_featureRangeBox - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Set feature range shown in a popup window In default, Nine plots is shown in every popup window at most.
m_featureRangeEndIndex - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The feature range end index.
m_featureRangeStartIndex - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The feature range start index.
m_FileChooser - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The file chooser for selecting data files
m_First - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
The first node in the list.
m_Fraction - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_Generator - Variable in class weka.datagenerators.classifiers.classification.MOA
for manipulating the generator through the GUI.
m_graphPanel - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
This panel is used to draw line graphs or scatter diagrams
m_headerInfo - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
copy of header information for use in toString method
m_histBarCounts - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
This array holds the count (or height) for the each of the bars in a barplot or a histogram.
m_IncludeAll - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
Press to select all attributes
m_IncludeAll - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Press to select all attributes
m_Instance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
The neighbor instance.
m_instances - Variable in class moa.tasks.FeatureImportanceConfig
This holds the current set of instances
m_Instances - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
The instances that'll be used for tree construction.
m_Instances - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
The neighbourhood of instances to find neighbours in.
m_Instances - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
The instances we're playing with
m_Instances - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
The dataset.
m_Instances - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
This holds the current set of instances
m_Instances - Variable in class moa.gui.featureanalysis.InstancesSummaryPanel
The instances we're playing with
m_Instances - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The working instances
m_InstancesTemplate - Variable in class moa.core.utils.Converter
 
m_InstList - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Indexlist of the instances of this kdtree.
m_InstList - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
The master index array that'll be reshuffled as nodes are split and the tree is constructed.
m_InstSummaryPanel - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Displays simple stats on the working instances
m_intEndIndex - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The end instance index of x axis for line graph or scatter diagram
m_intEndIndex - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The end instance index of x axis for line graph or scatter diagram
m_intStartIndex - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The start instance index of x axis for line graph or scatter diagram
m_intStartIndex - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The start instance index of x axis for line graph or scatter diagram
m_Invert - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
Press to invert the current selection
m_Invert - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Press to invert the current selection
m_IOThread - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
A thread for loading/saving instances from a file or URL
m_k - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_k - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_k - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_kNN - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
The number of neighbours to find.
m_L - Variable in class moa.core.utils.Converter
 
m_L - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_lambda - Variable in class moa.classifiers.functions.SGD
The regularization parameter
m_lambda - Variable in class moa.classifiers.functions.SGDMultiClass
The regularization parameter
m_lambda - Variable in class moa.classifiers.functions.SPegasos
The regularization parameter
m_Last - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
The last node in the list.
m_learningRate - Variable in class moa.classifiers.functions.SGD
The learning rate
m_learningRate - Variable in class moa.classifiers.functions.SGDMultiClass
The learning rate
m_Left - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
left subtree; contains instances with smaller or equal to split value.
m_Length - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
The number of nodes to attempt to maintain in the list.
m_Log - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The message logger
m_loss - Variable in class moa.classifiers.functions.SGD
The current loss function to minimize
m_loss - Variable in class moa.classifiers.functions.SGDMultiClass
The current loss function to minimize
m_loss - Variable in class moa.classifiers.functions.SPegasos
The current loss function to minimize
m_MaxDepth - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Tree stats.
m_MaxInstInLeaf - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
maximal number of instances in a leaf.
m_maxValue - Variable in class moa.gui.featureanalysis.AttributeVisualizationPanel
This holds the max value of the current attribute.
m_MeasurePerformance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Should we measure Performance.
m_MetaRandom - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_MinBoxRelWidth - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
minimal relative width of a KDTree rectangle.
m_MissingLab - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Displays the number of missing values
m_Model - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
The table model containing attribute names and selection status
m_Model - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
The table model containing attribute names and selection status
m_MultilabelInstancesHeader - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_NaNSubstitute - Variable in class moa.tasks.FeatureImportanceConfig
When scores of feature importance are NaNs, NaNs will be replaced by NaNSubstitute shown in feature importance line graph.
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_Next - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
A link to the next neighbor instance.
m_NodeNumber - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
node number (only for debug).
m_NodeRanges - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
lowest and highest value and width (= high - low) for each dimension.
m_NodesRectBounds - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
The lo and high bounds of the hyper rectangle described by the node.
m_nOnlyInlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_nOnlyInlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_nOnlyInlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_nOnlyInlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_normal - Static variable in class moa.clusterers.CobWeb
Normal constant.
m_NormalizeNodeWidth - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Stores whether if the width of a KDTree node is normalized or not.
m_NumAttributesLab - Variable in class moa.gui.featureanalysis.InstancesSummaryPanel
Displays the number of attributes
m_numberMerges - Variable in class moa.clusterers.CobWeb
the number of merges that happened
m_numberOfClusters - Variable in class moa.clusterers.CobWeb
Number of clusters (nodes in the tree).
m_numberOfClustersDetermined - Variable in class moa.clusterers.CobWeb
whether the number of clusters was already determined
m_numberSplits - Variable in class moa.clusterers.CobWeb
the number of splits that happened
m_numClasses - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
number of class values
m_numInstances - Variable in class moa.classifiers.functions.SGD
The number of training instances
m_numInstances - Variable in class moa.classifiers.functions.SGDMultiClass
The number of training instances
m_NumInstancesLab - Variable in class moa.gui.featureanalysis.InstancesSummaryPanel
Displays the number of instances
m_NumLeaves - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Tree stats.
m_NumNodes - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Tree stats.
m_OpenFileBut - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Click to load base instances from a file
m_outlier - Variable in class moa.gui.visualization.RunOutlierVisualizer
 
m_PanelJShell - Variable in class moa.gui.ScriptingTabPanel
the panel to use.
m_Pattern - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
Press to enter a perl regular expression for selection
m_Pattern - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Press to enter a perl regular expression for selection
m_PatternRegEx - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
The current regular expression.
m_PatternRegEx - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
The current regular expression.
m_plotAmplify - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Click to amplify line graph or scatter diagram so that user can see plot more clearly
m_plotTypeBox - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
plot type drop list: "plot type: Line graph" "plot type: Scatter diagram" "No plot type"
m_Present - Static variable in class moa.core.SizeOf
whether the agent is present.
m_probOfClass - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
the probability of a class (i.e.
m_QueryFreq - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_radius - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_radius - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_radius - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_radius - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_Ranges - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
The range of the attributes.
m_RelationNameLab - Variable in class moa.gui.featureanalysis.InstancesSummaryPanel
Displays the name of the relation
m_RemoveAll - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
Press to deselect all attributes
m_RemoveAll - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Press to deselect all attributes
m_RemoveButton - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Button for removing attributes
m_Right - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
right subtree; contains instances with larger than split value.
m_Root - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
The root node of the tree.
m_samoaToWekaInstanceConverter - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
 
m_samoaToWekaInstanceConverter - Variable in class moa.gui.featureanalysis.InstancesSummaryPanel
 
m_samoaToWekaInstanceConverter - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Instance converter from Samoa instance to Weak Instance
m_SaveBut - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Click to apply filters and save the results
m_saveInstances - Variable in class moa.clusterers.CobWeb
Output instances in graph representation of Cobweb tree (Allows instances at nodes in the tree to be visualized in the Explorer).
m_selectedAttributeIndices - Variable in class moa.gui.featureanalysis.FeatureImportanceGraph
The selected attribute indices.
m_selectedAttributeIndices - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
The selected attribute indices.
m_selectedPlotTyeIndex - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
plot type drop list: "plot type: Line graph" "plot type: Scatter diagram" "No plot type" m_selectedPlotTyeIndex means the selected plot index
m_selectedPlotTyeItem - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
The string of the the selected plot type such as "plot type: Line graph"
m_selectedPlotTypeIndex - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The index of the selected plot type index
m_sendToPerspective - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
For sending instances to various perspectives/tabs
m_showZeroInstancesAsUnknown - Variable in class moa.gui.featureanalysis.InstancesSummaryPanel
Whether to display 0 or ? for the number of instances in cases where a dataset has only structure.
m_SkipIdentical - Variable in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Whether to skip instances from the neighbours that are identical to the query instance.
m_SplitDim - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
attribute to split on.
m_Splitter - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
The node splitter.
m_SplitValue - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
value to split on.
m_Start - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
The start index of the portion of the master index array, which stores the indices of the instances/points the node contains.
m_startIndex - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
The start instance index label to prompt user to input start index number
m_startInstanceInput - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Format m_intStartIndex
m_StatsTable - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Displays other stats in a table
m_Support - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Manages sending notifications to people when we change the set of working instances.
m_t - Variable in class moa.classifiers.functions.SGD
Holds the current iteration number
m_t - Variable in class moa.classifiers.functions.SGDMultiClass
Holds the current iteration number
m_t - Variable in class moa.classifiers.functions.SPegasos
Holds the current iteration number
m_Table - Variable in class moa.gui.featureanalysis.AttributeSelectionPanel
The table displaying attribute names and selection status
m_Table - Variable in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
The table displaying attribute names and selection status
m_theta - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_TopCombinations - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_UniqueLab - Variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Displays the number of unique values
m_Validated - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Whether all the necessary preparations have been done.
m_velocity - Variable in class moa.classifiers.functions.AdaGrad
Stores the weights (+ bias in the last element)
m_visAllGraphBut - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Visualize all line graphs or scatter diagrams, not histograms or bar charts
m_weights - Variable in class moa.classifiers.functions.SGD
Stores the weights (+ bias in the last element)
m_weights - Variable in class moa.classifiers.functions.SGDMultiClass
Stores the weights (+ bias in the last element)
m_weights - Variable in class moa.classifiers.functions.SPegasos
Stores the weights (+ bias in the last element)
m_wekaToSamoaInstanceConverter - Variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Instance converter from Weak instance to Samoa Instance
m_windowSize - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
The default windowSize parameter for feature importance algorithm.
m_windowSize - Variable in class moa.tasks.FeatureImportanceConfig
The default windowSize parameter for feature importance algorithm.
m_WindowSize - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_WindowSize - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_WindowSize - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_WindowSize - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_wordTotalForClass - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
probability that a word (w) exists in a class (H) (i.e.
MACHEP - Static variable in class moa.core.Statistics
Some constants
magChangeOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
main(String[]) - Static method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
main(String[]) - Static method in class moa.classifiers.core.statisticaltests.Cramer
 
main(String[]) - Static method in class moa.classifiers.core.statisticaltests.KNN
 
main(String[]) - Static method in class moa.clusterers.meta.ConfStream
 
main(String[]) - Static method in class moa.clusterers.meta.EnsembleClustererAbstract
 
main(String[]) - Static method in class moa.clusterers.meta.TruncatedNormal
 
main(String[]) - Static method in class moa.clusterers.outliers.AbstractC.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.Angiulli.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.MCOD.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.SimpleCOD.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.TestSpeed
 
main(String[]) - Static method in class moa.core.AutoClassDiscovery
Outputs all class names below "moa" either to stdout or to the file provided as first argument.
main(String[]) - Static method in class moa.DoTask
Main method for running tasks from the command line.
main(String[]) - Static method in class moa.gui.AuxiliarTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.BatchCmd
 
main(String[]) - Static method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.experimentertab.AnalyzeTab
Main class method.
main(String[]) - Static method in class moa.gui.experimentertab.ImageTreePanel
 
main(String[]) - Static method in class moa.gui.experimentertab.PlotTab
 
main(String[]) - Static method in class moa.gui.experimentertab.SummaryTab
The main method
main(String[]) - Static method in class moa.gui.experimentertab.TaskManagerForm
 
main(String[]) - Static method in class moa.gui.experimentertab.TaskManagerTabPanel
Main method
main(String[]) - Static method in class moa.gui.featureanalysis.AttributeSelectionPanel
Tests the attribute selection panel from the command line.
main(String[]) - Static method in class moa.gui.featureanalysis.AttributeSummaryPanel
Tests out the attribute summary panel from the command line.
main(String[]) - Static method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Main method to test this class from command line
main(String[]) - Static method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Tests the attribute selection panel from the command line.
main(String[]) - Static method in class moa.gui.featureanalysis.FeatureImportancePanel
 
main(String[]) - Static method in class moa.gui.featureanalysis.InstancesSummaryPanel
Tests out the instance summary panel from the command line.
main(String[]) - Static method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Tests out the instance-preprocessing panel from the command line.
main(String[]) - Static method in class moa.gui.GUI
 
main(String[]) - Static method in class moa.gui.GUIDefaults
only for testing - prints the content of the props file.
main(String[]) - Static method in class moa.gui.MultiLabelTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.MultiTargetTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.RegressionTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.TaskLauncher
 
main(String[]) - Static method in class moa.gui.TaskManagerPanel
 
main(String[]) - Static method in class moa.MakeObject
Main method for writing an object to a file from the command line.
main(String[]) - Static method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
main(String[]) - Static method in class weka.classifiers.meta.MOA
Main method for testing this class.
main(String[]) - Static method in class weka.datagenerators.classifiers.classification.MOA
Main method for executing this class.
mainFindBestValEntropy(BinaryTreeNumericAttributeClassObserver.Node) - Method in class moa.classifiers.rules.RuleClassifier
 
MainTask - Class in moa.tasks
Abstract Main Task.
MainTask() - Constructor for class moa.tasks.MainTask
 
mainTree - Variable in class moa.classifiers.trees.iadem.Iadem3Subtree
 
maj - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
MajorityClass - Class in moa.classifiers.functions
Majority class learner.
MajorityClass() - Constructor for class moa.classifiers.functions.MajorityClass
 
majorityClassError - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNBKirkby
 
majorityClassError - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNodeWeightedVote
 
majorityClassError - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBAdaptive
 
majorityClassError - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBKirkby
 
MajorityLabelset - Class in moa.classifiers.multilabel
Majority Labelset classifier.
MajorityLabelset() - Constructor for class moa.classifiers.multilabel.MajorityLabelset
 
MakeObject - Class in moa
Class for writing a MOA object to a file from the command line.
MakeObject() - Constructor for class moa.MakeObject
 
makeOlder(long, double) - Method in class moa.clusterers.clustree.ClusKernel
Make this cluster older.
makeOlder(long, double) - Method in class moa.clusterers.clustree.Entry
Ages this entrie's data AND buffer according to the given time and aging constant.
makeOlder(long, double) - Method in class moa.clusterers.clustree.Node
 
makeTrue(Instance) - Method in interface moa.streams.generators.AssetNegotiationGenerator.ClassFunction
 
manageMemory(int, int) - Method in class moa.classifiers.bayes.NaiveBayes
 
manageMemory(int, int) - Method in class moa.classifiers.rules.RuleClassifier
 
manager - Variable in class moa.clusterers.streamkm.StreamKM
 
manipulateIds() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
resets the ids, so that the set contains ids from 0 to noOfObjects-1
MapUtil() - Constructor for class moa.streams.filters.ReplacingMissingValuesFilter.MapUtil
 
MarkDownCellBuilder - Class in moa.tasks.ipynb
Implement a markdown cell
MarkDownCellBuilder() - Constructor for class moa.tasks.ipynb.MarkDownCellBuilder
 
marker - Variable in class moa.classifiers.lazy.kNNwithPAW
 
marker - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
markLastAddedBlock() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
materializeObject() - Method in class com.github.javacliparser.AbstractClassOption
Gets a materialized object of this option.
materializeObject(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractClassOption
Gets a materialized object of this option.
matrixCodes - Variable in class moa.classifiers.meta.LeveragingBag
 
matrixCodes - Variable in class moa.classifiers.meta.LimAttClassifier
 
matrixCodes - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
maturityOption - Variable in class moa.classifiers.meta.DACC
Maturity age of classifiers
max - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
MAX - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
The index of MAX value in attributes' range array.
MAX - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Index of max value in an array of attributes' range.
MAX_PANEL_HEIGHT - Static variable in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
MAX_STATUS_STRING_LENGTH - Static variable in class moa.DoTask
Maximum length of the status string that shows the progress of tasks running.
MAX_STATUS_STRING_LENGTH - Static variable in class moa.gui.experimentertab.TaskManagerTabPanel
Maximum length of the status string that shows the progress of tasks running.
max_x_value - Variable in class moa.gui.visualization.AbstractGraphAxes
 
max_x_value - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
max_x_value - Variable in class moa.gui.visualization.AbstractGraphPlot
 
max_y_value - Variable in class moa.gui.visualization.AbstractGraphAxes
 
max_y_value - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
max_y_value - Variable in class moa.gui.visualization.AbstractGraphPlot
 
maxBranches() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalBinaryTest
 
maxBranches() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Gets the number of maximum branches, -1 if unknown.
maxBranches() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
maxBranches() - Method in class moa.classifiers.trees.iadem.IademNominalAttributeMultiwayTest
 
MAXBUCKETS - Static variable in class moa.classifiers.core.driftdetection.ADWIN
 
maxBucketsize - Variable in class moa.clusterers.streamkm.BucketManager
 
maxByteSizeOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Determines the maximum size of model (evaluated after every chunk).
maxByteSizeOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines the maximum size of model (evaluated after every chunk).
maxByteSizeOption - Variable in class moa.classifiers.trees.EFDT
 
maxByteSizeOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
maxByteSizeOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
maxDepthOption - Variable in class moa.classifiers.oneclass.HSTrees
 
maxExpertsOption - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
maxFeaturesDebugOption - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
MAXGAM - Static variable in class moa.core.Statistics
 
maxHeight - Variable in class moa.clusterers.clustree.ClusTree
The maximal height of the tree.
maxHeightOption - Variable in class moa.clusterers.clustree.ClusTree
 
maxID - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
maxID - Variable in class moa.classifiers.trees.ARFFIMTDD
 
maxID - Variable in class moa.classifiers.trees.FIMTDD
 
maximumCacheSizeOption - Variable in class moa.tasks.CacheShuffledStream
 
maxIndex() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
maxIndex() - Method in class moa.core.DoubleVector
 
maxIndex(double[]) - Static method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
maxIndex(double[]) - Static method in class moa.core.MiscUtils
Returns index of maximum element in a given array of doubles.
maxIndex(double[]) - Static method in class moa.core.Utils
Returns index of maximum element in a given array of doubles.
maxIndex(int[]) - Static method in class moa.core.Utils
Returns index of maximum element in a given array of integers.
maxInstanceLimitBatch - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
maxInstanceLimitBatchOption - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
maxInstanceLimitResetBatch - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
maxInstanceLimitResetBatchOption - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
maxInstancesOption - Variable in class moa.tasks.EvaluateModel
 
maxInstancesOption - Variable in class moa.tasks.EvaluateModelMultiLabel
 
maxInstancesOption - Variable in class moa.tasks.EvaluateModelMultiTarget
 
maxInstancesOption - Variable in class moa.tasks.EvaluateModelRegression
 
maxInstancesOption - Variable in class moa.tasks.LearnModel
 
maxInstancesOption - Variable in class moa.tasks.LearnModelMultiLabel
 
maxInstancesOption - Variable in class moa.tasks.LearnModelMultiTarget
 
maxInstancesOption - Variable in class moa.tasks.LearnModelRegression
 
maxInstancesOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
maxInstancesOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
maxInstInLeafTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Tip text for this property.
MAXLOG - Static variable in class moa.core.Statistics
 
maxMemberCount - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
maxMemoryOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Allows to define the memory limit for the created model.
maxMemoryOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the memory limit for the created model.
maxMOption - Variable in class moa.classifiers.core.statisticaltests.Cramer
 
maxNestingLevelOption - Variable in class moa.classifiers.trees.iadem.Iadem3
 
maxNodeCapacity - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
maxNodes - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
maxNodes - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
maxNodes - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
maxNodesOption - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
maxNodesOption - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
maxNodesOption - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
maxNumberOfObservation(int) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaQuantileSummary
 
maxNumClusterFeatures - Variable in class moa.clusterers.kmeanspm.BICO
 
maxNumClusterFeaturesOption - Variable in class moa.clusterers.kmeanspm.BICO
 
maxNumKernelsOption - Variable in class moa.clusterers.clustream.Clustream
 
maxNumKernelsOption - Variable in class moa.clusterers.clustream.WithKmeans
 
maxOptionLevelOption - Variable in class moa.classifiers.trees.ORTO
 
maxOptionPathsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
MAXPERMANENT - Static variable in class moa.classifiers.meta.ADACC
Maximum number of snapshots (copies of classifiers kept in case of recurrence)
maxPosterior - Variable in class moa.classifiers.active.ALUncertainty
 
maxPredictionPaths - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
maxRating - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
maxSize - Variable in class moa.classifiers.trees.ASHoeffdingTree
 
maxSizeConceptOption - Variable in class moa.classifiers.core.driftdetection.RDDM
 
maxStoredCount - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
maxSubtreesPerNodeOption - Variable in class moa.classifiers.trees.iadem.Iadem3
 
maxTreeDepthOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
maxTreesOption - Variable in class moa.classifiers.trees.ORTO
 
maxVal - Variable in class com.github.javacliparser.FloatOption
 
maxVal - Variable in class com.github.javacliparser.IntOption
 
maxValueObservedPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
mc - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
mcc - Variable in class moa.clusterers.outliers.MCOD.MicroCluster
 
mcCorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
mcCorrectWeight - Variable in class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.EFDT.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
MCOD - Class in moa.clusterers.outliers.MCOD
 
MCOD() - Constructor for class moa.clusterers.outliers.MCOD.MCOD
 
MCODBase - Class in moa.clusterers.outliers.MCOD
 
MCODBase() - Constructor for class moa.clusterers.outliers.MCOD.MCODBase
 
MCODBase.EventItem - Class in moa.clusterers.outliers.MCOD
 
MCODBase.EventQueue - Class in moa.clusterers.outliers.MCOD
 
mean - Variable in class moa.core.GaussianEstimator
 
mean - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
mean(double[]) - Static method in class moa.core.Utils
Computes the mean for an array of doubles.
MeanAbsoluteDeviation - Class in moa.classifiers.rules.errormeasurers
Computes the Mean Absolute Deviation for single target regression problems
MeanAbsoluteDeviation() - Constructor for class moa.classifiers.rules.errormeasurers.MeanAbsoluteDeviation
 
MeanAbsoluteDeviationMT - Class in moa.classifiers.rules.multilabel.errormeasurers
Mean Absolute Deviation for multitarget and with fading factor
MeanAbsoluteDeviationMT() - Constructor for class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
meanOrMode(int) - Method in class com.yahoo.labs.samoa.instances.Instances
Mean or mode.
MeanPreviewCollection - Class in moa.evaluation.preview
Class that holds separate PreviewCollections for mean and standard deviation values.
MeanPreviewCollection(PreviewCollection<PreviewCollection<Preview>>) - Constructor for class moa.evaluation.preview.MeanPreviewCollection
On creation of a MeanPreviewCollection, the mean Previews and standard deviation Previews are calculated from the given PreviewCollection by averaging the measurements for all entries over the different runs that have been performed.
Measure - Class in moa.gui.experimentertab
This class determines the value of each measure for each algorithm
Measure(String, String, boolean, int) - Constructor for class moa.gui.experimentertab.Measure
Measure Constructor
measureByteSize() - Method in class moa.AbstractMOAObject
 
measureByteSize() - Method in class moa.classifiers.trees.EFDT
 
measureByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
measureByteSize() - Method in class moa.classifiers.trees.HoeffdingTree
 
measureByteSize() - Method in class moa.core.AutoExpandVector
 
measureByteSize() - Method in interface moa.MOAObject
Gets the memory size of this object.
measureByteSize(MOAObject) - Static method in class moa.AbstractMOAObject
Gets the memory size of an object.
MeasureCollection - Class in moa.evaluation
 
MeasureCollection() - Constructor for class moa.evaluation.MeasureCollection
 
measureMaxDepth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the depth of the tree.
Measurement - Class in moa.core
Class for storing an evaluation measurement.
Measurement(String, double) - Constructor for class moa.core.Measurement
 
measurementNames - Variable in class moa.evaluation.preview.LearningCurve
 
measurements - Variable in class moa.evaluation.LearningEvaluation
 
measurementValues - Variable in class moa.evaluation.preview.LearningCurve
 
measureName - Variable in class moa.gui.experimentertab.SummaryTable
 
measureNumLeaves() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the number of leaves.
measureObjectByteSize(Serializable) - Static method in class com.github.javacliparser.SerializeUtils
 
measureObjectByteSize(Serializable) - Static method in class moa.core.SerializeUtils
 
MeasureOverview - Class in moa.gui.active
MeasureOverview provides a graphical overview of the current and mean measure values during the runtime of a task.
MeasureOverview(MeasureCollection[], String, double[]) - Constructor for class moa.gui.active.MeasureOverview
Creates a new MeasureOverview.
measurePerformanceTipText() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the tip text for this property.
measures - Variable in class moa.gui.experimentertab.Algorithm
The list of measures per algorithm
measures - Variable in class moa.gui.experimentertab.ExperimeterCLI
 
measures - Variable in class moa.gui.experimentertab.SummaryTab
 
measures - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
measures - Variable in class moa.gui.visualization.AbstractGraphPlot
 
measureSelected - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
measureSelected - Variable in class moa.gui.visualization.AbstractGraphPlot
 
measureStds - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
measureStds - Variable in class moa.gui.visualization.AbstractGraphPlot
 
measureStdSize - Variable in class moa.gui.experimentertab.Algorithm
The same size that the measure list
MeasureStreamSpeed - Class in moa.tasks
Task for measuring the speed of the stream.
MeasureStreamSpeed() - Constructor for class moa.tasks.MeasureStreamSpeed
 
measureTreeDepth() - Method in class moa.classifiers.trees.EFDT
 
measureTreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
measureTreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree
 
measureTreeSize() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the size of the tree.
median - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
MedianOfWidestDimension - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a KDTree node based on the median value of a dimension in which the node's points have the widest spread.

For more information see also:

Jerome H.
MedianOfWidestDimension() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
 
medianOption - Variable in class moa.classifiers.lazy.kNN
 
MEKAClassifier - Class in moa.classifiers.multilabel
Wrapper for MEKA classifiers.
MEKAClassifier() - Constructor for class moa.classifiers.multilabel.MEKAClassifier
 
memberCountOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Number of component classifiers.
memberCountOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Number of component classifiers.
memberCountOption - Variable in class moa.classifiers.meta.DACC
Ensemble size
memberCountOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Number of component classifiers.
MembershipMatrix - Class in moa.evaluation
 
MembershipMatrix(Clustering, ArrayList<DataPoint>) - Constructor for class moa.evaluation.MembershipMatrix
 
memCheckFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Allows to define the frequency of memory checks.
memCheckFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
memCheckFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
memCheckFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the frequency of memory checks.
memCheckFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequential
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
memCheckFrequencyOption - Variable in class moa.tasks.LearnModel
 
memCheckFrequencyOption - Variable in class moa.tasks.LearnModelMultiLabel
 
memCheckFrequencyOption - Variable in class moa.tasks.LearnModelMultiTarget
 
memCheckFrequencyOption - Variable in class moa.tasks.LearnModelRegression
 
memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.EFDT
 
memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
memoryStrategyOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
MemRecommenderData - Class in moa.recommender.data
 
MemRecommenderData - Class in moa.recommender.rc.data.impl
 
MemRecommenderData() - Constructor for class moa.recommender.data.MemRecommenderData
 
MemRecommenderData() - Constructor for class moa.recommender.rc.data.impl.MemRecommenderData
 
MemRecommenderData.RatingIterator - Class in moa.recommender.rc.data.impl
 
merge(SphereCluster) - Method in class moa.cluster.SphereCluster
 
merge(ClusteringFeature) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Merges the ClusteringFeature with an other ClusteringFeature.
mergeEntries(int, int) - Method in class moa.clusterers.clustree.Node
Merge the two entries at the given position.
mergeResultsOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
mergeWith(Entry) - Method in class moa.clusterers.clustree.Entry
Merge this entry witht the given Entry.
merit - Variable in class moa.classifiers.core.AttributeSplitSuggestion
 
merit - Variable in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
MeritCheckMessage - Class in moa.classifiers.rules.featureranking.messages
 
MeritCheckMessage(DoubleVector) - Constructor for class moa.classifiers.rules.featureranking.messages.MeritCheckMessage
 
MeritCheckMessage(DoubleVector, boolean[]) - Constructor for class moa.classifiers.rules.featureranking.messages.MeritCheckMessage
 
MeritFeatureRanking - Class in moa.classifiers.rules.featureranking
Merit Feature Ranking method João Duarte, João Gama,Feature ranking in hoeffding algorithms for regression.
MeritFeatureRanking() - Constructor for class moa.classifiers.rules.featureranking.MeritFeatureRanking
 
MeritFeatureRanking.RuleInformation - Class in moa.classifiers.rules.featureranking
 
meritLowerBound - Variable in class moa.classifiers.trees.iadem.IademAttributeSplitSuggestion
 
merits - Variable in class moa.classifiers.rules.featureranking.messages.MeritCheckMessage
 
MeritThreshold - Class in moa.classifiers.rules.multilabel.inputselectors
Input selection algorithm based on Merit threshold
MeritThreshold() - Constructor for class moa.classifiers.rules.multilabel.inputselectors.MeritThreshold
 
meritThresholdOption - Variable in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking
 
MetaMainTask - Class in moa.tasks.meta
This class provides features for handling tasks in a tree-like structure of parents and subtasks.
MetaMainTask() - Constructor for class moa.tasks.meta.MetaMainTask
 
MetaMultilabelGenerator - Class in moa.streams.generators.multilabel
Stream generator for multilabel data.
MetaMultilabelGenerator() - Constructor for class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
metaRandomSeedOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
Metric - Class in moa.clusterers.kmeanspm
Provides methods to calculate different distances of points.
Metric() - Constructor for class moa.clusterers.kmeanspm.Metric
 
mFeaturesModeOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
mFeaturesModeOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
mFeaturesPerTreeSizeOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
mFeaturesPerTreeSizeOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
MicroCluster - Class in moa.clusterers.denstream
 
MicroCluster - Class in moa.clusterers.outliers.MCOD
 
MicroCluster(double[], int, long, double, Timestamp) - Constructor for class moa.clusterers.denstream.MicroCluster
 
MicroCluster(Instance, int, long, double, Timestamp) - Constructor for class moa.clusterers.denstream.MicroCluster
 
MicroCluster(ISBIndex.ISBNode) - Constructor for class moa.clusterers.outliers.MCOD.MicroCluster
 
MidPointOfWidestDimension - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a KDTree node based on the midpoint value of a dimension in which the node's points have the widest spread.

For more information see also:

Andrew Moore (1991).
MidPointOfWidestDimension() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
 
midUpdate - Variable in class com.github.javacliparser.gui.ClassOptionEditComponent
Flag that says the text field is in the middle of an update operation.
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.active.ALTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.AuxiliarTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.MultiLabelTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.MultiTargetTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.RegressionTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.TaskManagerPanel
 
min - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
min - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
MIN - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
The index of MIN value in attributes' range array.
MIN - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Index of min value in an array of attributes' range.
MIN_VARIANCE - Static variable in class moa.clusterers.clustream.ClustreamKernel
 
MIN_VARIANCE - Static variable in class moa.clusterers.clustree.ClusKernel
 
min_x_value - Variable in class moa.gui.visualization.AbstractGraphAxes
 
min_x_value - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
min_x_value - Variable in class moa.gui.visualization.AbstractGraphPlot
 
minBoxRelWidthTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Tip text for this property.
minBranchFracOption - Variable in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
MinErrorWeightedVote - Class in moa.classifiers.rules.core.voting
MinErrorWeightedVote class for weighted votes based on estimates of errors.
MinErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.MinErrorWeightedVote
 
Miniball - Class in moa.cluster
Java Porting of the Miniball.h code of Bernd Gaertner.
Miniball(int) - Constructor for class moa.cluster.Miniball
 
minimumValue - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
minIndex(double[]) - Static method in class moa.core.Utils
Returns index of minimum element in a given array of doubles.
minIndex(int[]) - Static method in class moa.core.Utils
Returns index of minimum element in a given array of integers.
minInstanceLimitBatch - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
minInstanceLimitBatchOption - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
minInstanceLimitResetBatch - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
minInstanceLimitResetBatchOption - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
MINLOG - Static variable in class moa.core.Statistics
 
minMax(Iterable<T>) - Static method in class moa.clusterers.outliers.utils.mtree.utils.Utils
Identifies the minimum and maximum elements from an iterable, according to the natural ordering of the elements.
minNodeCapacity - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
minNumberInstancesOption - Variable in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
minNumberInstancesOption - Variable in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.DDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.EWMAChartDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.RDDM
 
minorityInstances - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
minRating - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
minSizeAllowed - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
minSizeAllowedOption - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
minSizeStableConceptOption - Variable in class moa.classifiers.core.driftdetection.RDDM
 
minSTMSizeOption - Variable in class moa.classifiers.lazy.SAMkNN
 
minVal - Variable in class com.github.javacliparser.FloatOption
 
minVal - Variable in class com.github.javacliparser.IntOption
 
minValueObservedPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
minWeight() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
minWeight() - Method in class moa.core.DoubleVector
 
MiscUtils - Class in moa.core
Class implementing some utility methods.
MiscUtils() - Constructor for class moa.core.MiscUtils
 
missingValue() - Static method in class moa.core.Utils
Returns the value used to code a missing value.
missingWeightObserved - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
MixedGenerator - Class in moa.streams.generators
Abrupt concept drift, boolean noise-free examples.
MixedGenerator() - Constructor for class moa.streams.generators.MixedGenerator
 
MixedGenerator.ClassFunction - Interface in moa.streams.generators
 
moa - package moa
 
MOA - Class in weka.classifiers.meta
Wrapper for MOA classifiers.

Since MOA doesn't offer a mechanism to query a classifier for the types of attributes and classes it can handle, the capabilities of this wrapper are hard-coded: nominal and numeric attributes and only nominal class attributes are allowed.
MOA - Class in weka.datagenerators.classifiers.classification
A wrapper around MOA instance streams.
MOA() - Constructor for class weka.classifiers.meta.MOA
 
MOA() - Constructor for class weka.datagenerators.classifiers.classification.MOA
 
moa.capabilities - package moa.capabilities
 
moa.classifiers - package moa.classifiers
 
moa.classifiers.active - package moa.classifiers.active
 
moa.classifiers.active.budget - package moa.classifiers.active.budget
 
moa.classifiers.bayes - package moa.classifiers.bayes
 
moa.classifiers.core - package moa.classifiers.core
 
moa.classifiers.core.attributeclassobservers - package moa.classifiers.core.attributeclassobservers
 
moa.classifiers.core.conditionaltests - package moa.classifiers.core.conditionaltests
 
moa.classifiers.core.driftdetection - package moa.classifiers.core.driftdetection
 
moa.classifiers.core.splitcriteria - package moa.classifiers.core.splitcriteria
 
moa.classifiers.core.statisticaltests - package moa.classifiers.core.statisticaltests
 
moa.classifiers.drift - package moa.classifiers.drift
 
moa.classifiers.functions - package moa.classifiers.functions
 
moa.classifiers.lazy - package moa.classifiers.lazy
 
moa.classifiers.lazy.neighboursearch - package moa.classifiers.lazy.neighboursearch
 
moa.classifiers.lazy.neighboursearch.kdtrees - package moa.classifiers.lazy.neighboursearch.kdtrees
 
moa.classifiers.meta - package moa.classifiers.meta
 
moa.classifiers.meta.imbalanced - package moa.classifiers.meta.imbalanced
 
moa.classifiers.multilabel - package moa.classifiers.multilabel
 
moa.classifiers.multilabel.core.splitcriteria - package moa.classifiers.multilabel.core.splitcriteria
 
moa.classifiers.multilabel.meta - package moa.classifiers.multilabel.meta
 
moa.classifiers.multilabel.trees - package moa.classifiers.multilabel.trees
 
moa.classifiers.multitarget - package moa.classifiers.multitarget
 
moa.classifiers.multitarget.functions - package moa.classifiers.multitarget.functions
 
moa.classifiers.oneclass - package moa.classifiers.oneclass
 
moa.classifiers.rules - package moa.classifiers.rules
 
moa.classifiers.rules.core - package moa.classifiers.rules.core
 
moa.classifiers.rules.core.anomalydetection - package moa.classifiers.rules.core.anomalydetection
 
moa.classifiers.rules.core.anomalydetection.probabilityfunctions - package moa.classifiers.rules.core.anomalydetection.probabilityfunctions
 
moa.classifiers.rules.core.attributeclassobservers - package moa.classifiers.rules.core.attributeclassobservers
 
moa.classifiers.rules.core.changedetection - package moa.classifiers.rules.core.changedetection
 
moa.classifiers.rules.core.conditionaltests - package moa.classifiers.rules.core.conditionaltests
 
moa.classifiers.rules.core.splitcriteria - package moa.classifiers.rules.core.splitcriteria
 
moa.classifiers.rules.core.voting - package moa.classifiers.rules.core.voting
 
moa.classifiers.rules.driftdetection - package moa.classifiers.rules.driftdetection
 
moa.classifiers.rules.errormeasurers - package moa.classifiers.rules.errormeasurers
 
moa.classifiers.rules.featureranking - package moa.classifiers.rules.featureranking
 
moa.classifiers.rules.featureranking.messages - package moa.classifiers.rules.featureranking.messages
 
moa.classifiers.rules.functions - package moa.classifiers.rules.functions
 
moa.classifiers.rules.meta - package moa.classifiers.rules.meta
 
moa.classifiers.rules.multilabel - package moa.classifiers.rules.multilabel
 
moa.classifiers.rules.multilabel.attributeclassobservers - package moa.classifiers.rules.multilabel.attributeclassobservers
 
moa.classifiers.rules.multilabel.core - package moa.classifiers.rules.multilabel.core
 
moa.classifiers.rules.multilabel.core.splitcriteria - package moa.classifiers.rules.multilabel.core.splitcriteria
 
moa.classifiers.rules.multilabel.core.voting - package moa.classifiers.rules.multilabel.core.voting
 
moa.classifiers.rules.multilabel.errormeasurers - package moa.classifiers.rules.multilabel.errormeasurers
 
moa.classifiers.rules.multilabel.functions - package moa.classifiers.rules.multilabel.functions
 
moa.classifiers.rules.multilabel.inputselectors - package moa.classifiers.rules.multilabel.inputselectors
 
moa.classifiers.rules.multilabel.instancetransformers - package moa.classifiers.rules.multilabel.instancetransformers
 
moa.classifiers.rules.multilabel.meta - package moa.classifiers.rules.multilabel.meta
 
moa.classifiers.rules.multilabel.outputselectors - package moa.classifiers.rules.multilabel.outputselectors
 
moa.classifiers.trees - package moa.classifiers.trees
 
moa.classifiers.trees.iadem - package moa.classifiers.trees.iadem
 
moa.cluster - package moa.cluster
 
moa.clusterers - package moa.clusterers
 
moa.clusterers.clustream - package moa.clusterers.clustream
 
moa.clusterers.clustree - package moa.clusterers.clustree
 
moa.clusterers.clustree.util - package moa.clusterers.clustree.util
 
moa.clusterers.denstream - package moa.clusterers.denstream
 
moa.clusterers.dstream - package moa.clusterers.dstream
 
moa.clusterers.kmeanspm - package moa.clusterers.kmeanspm
 
moa.clusterers.macro - package moa.clusterers.macro
 
moa.clusterers.macro.dbscan - package moa.clusterers.macro.dbscan
 
moa.clusterers.meta - package moa.clusterers.meta
 
moa.clusterers.outliers - package moa.clusterers.outliers
 
moa.clusterers.outliers.AbstractC - package moa.clusterers.outliers.AbstractC
 
moa.clusterers.outliers.Angiulli - package moa.clusterers.outliers.Angiulli
 
moa.clusterers.outliers.AnyOut - package moa.clusterers.outliers.AnyOut
 
moa.clusterers.outliers.AnyOut.util - package moa.clusterers.outliers.AnyOut.util
 
moa.clusterers.outliers.MCOD - package moa.clusterers.outliers.MCOD
 
moa.clusterers.outliers.SimpleCOD - package moa.clusterers.outliers.SimpleCOD
 
moa.clusterers.outliers.utils.mtree - package moa.clusterers.outliers.utils.mtree
 
moa.clusterers.outliers.utils.mtree.utils - package moa.clusterers.outliers.utils.mtree.utils
 
moa.clusterers.streamkm - package moa.clusterers.streamkm
 
moa.core - package moa.core
 
moa.core.utils - package moa.core.utils
 
moa.evaluation - package moa.evaluation
 
moa.evaluation.preview - package moa.evaluation.preview
 
moa.gui - package moa.gui
 
moa.gui.active - package moa.gui.active
 
moa.gui.clustertab - package moa.gui.clustertab
 
moa.gui.colorGenerator - package moa.gui.colorGenerator
 
moa.gui.conceptdrift - package moa.gui.conceptdrift
 
moa.gui.experimentertab - package moa.gui.experimentertab
 
moa.gui.experimentertab.statisticaltests - package moa.gui.experimentertab.statisticaltests
 
moa.gui.experimentertab.tasks - package moa.gui.experimentertab.tasks
 
moa.gui.featureanalysis - package moa.gui.featureanalysis
 
moa.gui.outliertab - package moa.gui.outliertab
 
moa.gui.visualization - package moa.gui.visualization
 
moa.learners - package moa.learners
 
moa.learners.featureanalysis - package moa.learners.featureanalysis
 
moa.options - package moa.options
 
moa.recommender.data - package moa.recommender.data
 
moa.recommender.dataset - package moa.recommender.dataset
 
moa.recommender.dataset.impl - package moa.recommender.dataset.impl
 
moa.recommender.predictor - package moa.recommender.predictor
 
moa.recommender.rc.data - package moa.recommender.rc.data
 
moa.recommender.rc.data.impl - package moa.recommender.rc.data.impl
 
moa.recommender.rc.predictor - package moa.recommender.rc.predictor
 
moa.recommender.rc.predictor.impl - package moa.recommender.rc.predictor.impl
 
moa.recommender.rc.utils - package moa.recommender.rc.utils
 
moa.streams - package moa.streams
 
moa.streams.clustering - package moa.streams.clustering
 
moa.streams.filters - package moa.streams.filters
 
moa.streams.generators - package moa.streams.generators
 
moa.streams.generators.cd - package moa.streams.generators.cd
 
moa.streams.generators.multilabel - package moa.streams.generators.multilabel
 
moa.tasks - package moa.tasks
 
moa.tasks.ipynb - package moa.tasks.ipynb
 
moa.tasks.meta - package moa.tasks.meta
 
MOAClassOptionEditor - Class in weka.gui
An editor for MOA ClassOption objects.
MOAClassOptionEditor() - Constructor for class weka.gui.MOAClassOptionEditor
 
MOAObject - Interface in moa
Interface implemented by classes in MOA, so that all are serializable, can produce copies of their objects, and can measure its memory size.
MOAUtils - Class in weka.core
A helper class for MOA related classes.
MOAUtils() - Constructor for class weka.core.MOAUtils
 
modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.classifiers.AbstractClassifier
Gets the index of the attribute in the instance, given the index of the attribute in the learner.
modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.classifiers.rules.AbstractAMRules
Gets the index of the attribute in the instance, given the index of the attribute in the learner.
modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.clusterers.AbstractClusterer
 
modelAttIndexToInstanceAttIndex(int, Instances) - Static method in class moa.classifiers.AbstractClassifier
Gets the index of the attribute in a set of instances, given the index of the attribute in the learner.
modelAttIndexToInstanceAttIndex(int, Instances) - Static method in class moa.clusterers.AbstractClusterer
 
modelContext - Variable in class moa.classifiers.AbstractClassifier
Header of the instances of the data stream
modelContext - Variable in class moa.clusterers.AbstractClusterer
 
modelInUse - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
modelOption - Variable in class moa.tasks.EvaluateModel
 
modelOption - Variable in class moa.tasks.EvaluateModelMultiLabel
 
modelOption - Variable in class moa.tasks.EvaluateModelMultiTarget
 
modelOption - Variable in class moa.tasks.EvaluateModelRegression
 
modelRandomSeedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
modelRandomSeedOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
modifyDependencyMatrix(boolean[][], double, Random) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
ModifyDependencyMatrix.
modifyPriorVector(double[], double, Random, boolean) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
ModifyPriorVector.
monitorMeanDecr(double, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
monitorMeanIncr(double, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
moreImprovementsPossible(int, double) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
moreThanOneAttValueObserved() - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
mouseClicked(int, int) - Method in interface moa.gui.AWTInteractiveRenderer
 
MovielensDataset - Class in moa.recommender.dataset.impl
 
MovielensDataset() - Constructor for class moa.recommender.dataset.impl.MovielensDataset
 
mse_r - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
The mean square residual in a given moment, based on a window of latest examples.
MTRandom - Class in moa.clusterers.streamkm
 
MTRandom() - Constructor for class moa.clusterers.streamkm.MTRandom
The default constructor for an instance of MTRandom.
MTRandom(boolean) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor can be used to implement identical behaviour to the original C code version of this algorithm including exactly replicating the case where the seed value had not been set prior to calling genrand_int32.
MTRandom(byte[]) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor initialises the class with the given byte array.
MTRandom(int[]) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor initialises the class with the given integer array.
MTRandom(long) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor simply initialises the class with the given 64 bit seed value.
MTree<DATA> - Class in moa.clusterers.outliers.utils.mtree
The main class that implements the M-Tree.
MTree(int, int, DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
Constructs an M-Tree with the specified minimum and maximum node capacities and distance function.
MTree(int, DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
Constructs an M-Tree with the specified minimum node capacity and distance function.
MTree(DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
Constructs an M-Tree with the specified distance function.
MTree.Query - Class in moa.clusterers.outliers.utils.mtree
An Iterable class which can be iterated to fetch the results of a nearest-neighbors query.
MTree.ResultItem - Class in moa.clusterers.outliers.utils.mtree
The type of the results for nearest-neighbor queries.
mtreeMC - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
mtsknn(List<Instance>, List<Instance>) - Method in class moa.classifiers.core.statisticaltests.KNN
 
MultiChoiceOption - Class in com.github.javacliparser
Multi choice option.
MultiChoiceOption(String, char, String, String[], String[], int) - Constructor for class com.github.javacliparser.MultiChoiceOption
 
MultiChoiceOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a multi choice option.
MultiChoiceOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.MultiChoiceOptionEditComponent
 
MultiClassClassifier - Interface in moa.classifiers
Multiclass classifier interface for incremental classifier models.
MultiFilteredStream - Class in moa.streams
Class for representing a stream that is filtered.
MultiFilteredStream() - Constructor for class moa.streams.MultiFilteredStream
 
MultilabelArffFileStream - Class in moa.streams.generators.multilabel
Stream reader for ARFF files of multilabel data.
MultilabelArffFileStream() - Constructor for class moa.streams.generators.multilabel.MultilabelArffFileStream
 
MultilabelArffFileStream(String, int) - Constructor for class moa.streams.generators.multilabel.MultilabelArffFileStream
 
MultiLabelBSTree - Class in moa.classifiers.rules.multilabel.attributeclassobservers
Binary search tree for AMRules splitting points determination
MultiLabelBSTree() - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
MultiLabelBSTree.Node - Class in moa.classifiers.rules.multilabel.attributeclassobservers
 
MultiLabelBSTreeFloat - Class in moa.classifiers.rules.multilabel.attributeclassobservers
 
MultiLabelBSTreeFloat() - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
MultiLabelBSTreeFloat.Node - Class in moa.classifiers.rules.multilabel.attributeclassobservers
 
MultiLabelClassifier - Interface in moa.classifiers
 
MultiLabelErrorMeasurer - Interface in moa.classifiers.rules.multilabel.errormeasurers
 
MultiLabelFilteredStream - Class in moa.streams
Class for representing a stream that is filtered.
MultiLabelFilteredStream() - Constructor for class moa.streams.MultiLabelFilteredStream
 
MultilabelHoeffdingTree - Class in moa.classifiers.multilabel
Hoeffding Tree for classifying multi-label data.
MultilabelHoeffdingTree() - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
MultilabelHoeffdingTree.MultilabelInactiveLearningNode - Class in moa.classifiers.multilabel
 
MultilabelHoeffdingTree.MultilabelLearningNodeClassifier - Class in moa.classifiers.multilabel
 
MultilabelInactiveLearningNode(double[]) - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelInactiveLearningNode
 
MultilabelInformationGain - Class in moa.classifiers.rules.multilabel.core.splitcriteria
Multi-label Information Gain.
MultilabelInformationGain() - Constructor for class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
MultilabelInstance - Class in moa.core
Multilabel instance.
MultilabelInstance(double, double[]) - Constructor for class moa.core.MultilabelInstance
 
MultilabelInstance(InstanceImpl) - Constructor for class moa.core.MultilabelInstance
 
MultiLabelInstance - Interface in com.yahoo.labs.samoa.instances
The Interface MultiLabelInstance.
MultilabelInstancesHeader - Class in moa.core
Class for storing the header or context of a multilabel data stream.
MultilabelInstancesHeader(Instances, int) - Constructor for class moa.core.MultilabelInstancesHeader
 
MultiLabelLearner - Interface in moa.classifiers
 
MultilabelLearningNodeClassifier(double[], Classifier, MultilabelHoeffdingTree) - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
MultiLabelMainTask - Class in moa.tasks
 
MultiLabelMainTask() - Constructor for class moa.tasks.MultiLabelMainTask
 
MultiLabelNaiveBayes - Class in moa.classifiers.rules.multilabel.functions
Binary relevance with Naive Bayes
MultiLabelNaiveBayes() - Constructor for class moa.classifiers.rules.multilabel.functions.MultiLabelNaiveBayes
 
MultiLabelNominalAttributeObserver - Class in moa.classifiers.rules.multilabel.attributeclassobservers
Function for determination of splitting points for nominal variables
MultiLabelNominalAttributeObserver() - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
MultiLabelPerceptronClassification - Class in moa.classifiers.rules.multilabel.functions
Multi-Label perceptron classifier (by Binary Relevance).
MultiLabelPerceptronClassification() - Constructor for class moa.classifiers.rules.multilabel.functions.MultiLabelPerceptronClassification
 
MultiLabelPerformanceEvaluator - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the regression learning process.
MultiLabelPrediction - Class in com.yahoo.labs.samoa.instances
 
MultiLabelPrediction() - Constructor for class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
MultiLabelPrediction(int) - Constructor for class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
MultiLabelRandomAMRules - Class in moa.classifiers.rules.multilabel.meta
 
MultiLabelRandomAMRules() - Constructor for class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
MultiLabelRule - Class in moa.classifiers.rules.multilabel.core
 
MultiLabelRule() - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
MultiLabelRule(int) - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
MultiLabelRule(LearningLiteral) - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
MultiLabelRuleClassification - Class in moa.classifiers.rules.multilabel.core
 
MultiLabelRuleClassification() - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleClassification
 
MultiLabelRuleClassification(int) - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleClassification
 
MultiLabelRuleClassification(LearningLiteralClassification) - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleClassification
 
MultiLabelRuleRegression - Class in moa.classifiers.rules.multilabel.core
 
MultiLabelRuleRegression() - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleRegression
 
MultiLabelRuleRegression(int) - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleRegression
 
MultiLabelRuleRegression(LearningLiteralRegression) - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleRegression
 
MultiLabelRuleSet - Class in moa.classifiers.rules.multilabel.core
 
MultiLabelRuleSet() - Constructor for class moa.classifiers.rules.multilabel.core.MultiLabelRuleSet
 
MultiLabelSplitCriterion - Interface in moa.classifiers.rules.multilabel.core.splitcriteria
 
MultiLabelStreamFilter - Interface in moa.streams.filters
 
multilabelStreamTemplate - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
MultiLabelTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
MultiLabelTabPanel() - Constructor for class moa.gui.MultiLabelTabPanel
 
MultiLabelTaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
MultiLabelTaskManagerPanel() - Constructor for class moa.gui.MultiLabelTaskManagerPanel
 
MultiLabelTaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
MultiLabelTaskManagerPanel.TaskTableModel - Class in moa.gui
 
MultiLabelVote - Class in moa.classifiers.rules.multilabel.core.voting
 
MultiLabelVote(Prediction, double) - Constructor for class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
multiParamTaskOption - Variable in class moa.tasks.meta.ALPartitionEvaluationTask
 
MultiTargetArffFileStream - Class in moa.streams
Stream reader of ARFF files.
MultiTargetArffFileStream() - Constructor for class moa.streams.MultiTargetArffFileStream
 
MultiTargetArffFileStream(String, String) - Constructor for class moa.streams.MultiTargetArffFileStream
 
MultiTargetArffLoader - Class in com.yahoo.labs.samoa.instances
 
MultiTargetArffLoader(Reader) - Constructor for class com.yahoo.labs.samoa.instances.MultiTargetArffLoader
 
MultiTargetArffLoader(Reader, Range) - Constructor for class com.yahoo.labs.samoa.instances.MultiTargetArffLoader
 
MultiTargetErrorMeasurer - Interface in moa.classifiers.rules.multilabel.errormeasurers
 
MultiTargetInstanceStream - Interface in moa.streams
Interface representing a data stream of instances.
MultiTargetLearnerSemiSupervised - Interface in moa.classifiers
 
MultiTargetMainTask - Class in moa.tasks
 
MultiTargetMainTask() - Constructor for class moa.tasks.MultiTargetMainTask
 
MultiTargetMeanRegressor - Class in moa.classifiers.rules.multilabel.functions
Target mean regressor
MultiTargetMeanRegressor() - Constructor for class moa.classifiers.rules.multilabel.functions.MultiTargetMeanRegressor
 
MultiTargetNoChange - Class in moa.classifiers.multitarget.functions
MultiTargetNoChange class regressor.
MultiTargetNoChange() - Constructor for class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
MultitargetPerceptron(ISOUPTree) - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
MultitargetPerceptron(ISOUPTree, ISOUPTree.MultitargetPerceptron) - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
MultiTargetPerceptronRegressor - Class in moa.classifiers.rules.multilabel.functions
Binary relevance with a regression perceptron
MultiTargetPerceptronRegressor() - Constructor for class moa.classifiers.rules.multilabel.functions.MultiTargetPerceptronRegressor
 
MultiTargetPerformanceEvaluator - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the regression learning process.
MultiTargetRegressor - Interface in moa.classifiers
MultiTargetRegressor interface for incremental MultiTarget regression models.
MultiTargetTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
MultiTargetTabPanel() - Constructor for class moa.gui.MultiTargetTabPanel
 
MultiTargetTaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
MultiTargetTaskManagerPanel() - Constructor for class moa.gui.MultiTargetTaskManagerPanel
 
MultiTargetTaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
MultiTargetTaskManagerPanel.TaskTableModel - Class in moa.gui
 
MultiTargetVarianceRatio - Class in moa.classifiers.rules.multilabel.core.splitcriteria
 
MultiTargetVarianceRatio() - Constructor for class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
MultiTargetWindowRegressionPerformanceEvaluator - Class in moa.evaluation
Multi-target regression evaluator that updates evaluation results using a sliding window.
MultiTargetWindowRegressionPerformanceEvaluator() - Constructor for class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
MultiTargetWindowRegressionPerformanceEvaluator.Estimator - Class in moa.evaluation
 
MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator - Class in moa.evaluation
Multi-target regression evaluator that updates evaluation results using a sliding window.
MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator() - Constructor for class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator - Class in moa.evaluation
 
multivariateAnomalyProbabilityThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
muOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
mVisibleColors - Static variable in class moa.clusterers.macro.ColorArray
 
MyBaseOutlierDetector - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector
 
MyBaseOutlierDetector.Outlier - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector.OutlierNotifier - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector.PrintMsg - Interface in moa.clusterers.outliers
 
MyBaseOutlierDetector.ProgressInfo - Interface in moa.clusterers.outliers
 
MyBaseOutlierDetector.StdPrintMsg - Class in moa.clusterers.outliers
 
MyHeap(int) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
constructor.
MyHeapElement(int, double) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
constructor.
myOut - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
myProgressInfo - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 

N

n - Variable in class moa.classifiers.rules.functions.TargetMean
 
N - Variable in class moa.cluster.CFCluster
Number of points in the cluster.
n_max - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
n_min - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
NaiveBayes - Class in moa.classifiers.bayes
Naive Bayes incremental learner.
NaiveBayes() - Constructor for class moa.classifiers.bayes.NaiveBayes
 
naiveBayesError - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNBKirkby
 
naiveBayesError - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNodeWeightedVote
 
naiveBayesError - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBAdaptive
 
naiveBayesError - Variable in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNodeNBKirkby
 
naiveBayesLimit - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNodeNB
 
naiveBayesLimit - Variable in class moa.classifiers.trees.iadem.Iadem2
 
NaiveBayesMultinomial - Class in moa.classifiers.bayes
Class for building and using a multinomial Naive Bayes classifier.
NaiveBayesMultinomial() - Constructor for class moa.classifiers.bayes.NaiveBayesMultinomial
 
name - Variable in class com.github.javacliparser.AbstractOption
Name of this option.
name - Variable in class com.yahoo.labs.samoa.instances.Attribute
The name.
name - Variable in class moa.core.Measurement
 
name - Variable in class moa.gui.experimentertab.Algorithm
The name of the algorithms
name - Variable in class moa.gui.experimentertab.Stream
The name of the stream
name() - Method in class com.yahoo.labs.samoa.instances.Attribute
Name.
nameIsLegal(String) - Static method in class com.github.javacliparser.AbstractOption
Gets whether the name is valid or not.
nameSuffix - Variable in class moa.tasks.meta.MetaMainTask
 
nanoTimeToSeconds(long) - Static method in class moa.core.TimingUtils
 
nanSubstitute - Variable in class moa.tasks.FeatureImportanceConfig
 
nAttributes - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
nbCorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
nbCorrectWeight - Variable in class moa.classifiers.trees.ARFHoeffdingTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.EFDT.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
nbInstances - Variable in class moa.classifiers.meta.DACC
Number of instances from the stream
nbThresholdOption - Variable in class moa.classifiers.rules.RuleClassifierNBayes
 
nbThresholdOption - Variable in class moa.classifiers.trees.EFDT
 
nbThresholdOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
nbThresholdOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
nearestChild(double[]) - Method in class moa.clusterers.kmeanspm.ClusteringTreeHeadNode
 
nearestChild(double[]) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Searches for the nearest child node by comparing each representation.
nearestEntry(ClusKernel) - Method in class moa.clusterers.clustree.Node
Returns the neareast Entry to the given Cluster.
nearestEntry(Entry) - Method in class moa.clusterers.clustree.Node
Return the nearest entry to the given one.
nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the nearest neighbour of the supplied target instance.
nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns the nearest instance in the current neighbourhood to the supplied instance.
nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the nearest instance in the current neighbourhood to the supplied instance.
NearestNeighbourDescription - Class in moa.classifiers.oneclass
Implements David Tax's Nearest Neighbour Description method described in Section 3.4.2 of D.
NearestNeighbourDescription() - Constructor for class moa.classifiers.oneclass.NearestNeighbourDescription
 
NearestNeighbourDescription(List<Instance>) - Constructor for class moa.classifiers.oneclass.NearestNeighbourDescription
Constructor for a Nearest Neighbour Description classifier based on an argument training set of instances.
NearestNeighbourSearch - Class in moa.classifiers.lazy.neighboursearch
Abstract class for nearest neighbour search.
NearestNeighbourSearch() - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Constructor.
NearestNeighbourSearch(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Constructor.
NearestNeighbourSearch.MyHeap - Class in moa.classifiers.lazy.neighboursearch
A class for a heap to store the nearest k neighbours to an instance.
NearestNeighbourSearch.MyHeapElement - Class in moa.classifiers.lazy.neighboursearch
A class for storing data about a neighboring instance.
NearestNeighbourSearch.NeighborList - Class in moa.classifiers.lazy.neighboursearch
A class for a linked list to store the nearest k neighbours to an instance.
NearestNeighbourSearch.NeighborNode - Class in moa.classifiers.lazy.neighboursearch
A class for storing data about a neighboring instance.
nearestNeighbourSearchOption - Variable in class moa.classifiers.lazy.kNN
 
negateCondition() - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
negateCondition() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
negateCondition() - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
negateCondition() - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
negateCondition() - Method in interface moa.classifiers.rules.core.Predicate
 
negLambda - Variable in class moa.clusterers.clustree.ClusTree
Parameter for the weighting function use to weight the entries.
NeighborList(int) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Creates the neighborlist with a desired length.
NeighborNode(double, Instance) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
Create a new neighbor node that doesn't link to any other nodes.
NeighborNode(double, Instance, NearestNeighbourSearch.NeighborNode) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
Create a new neighbor node.
neighbors - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
neighborsOption - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
neighbourhoodSizeOption - Variable in class moa.classifiers.oneclass.NearestNeighbourDescription
 
nemenyiTest() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Return the p-values computed by the Nemenyi test.
nError - Variable in class moa.classifiers.rules.functions.TargetMean
 
nError - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
nEstimacion - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
nEstimators - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
nEstimators - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
nEstimators - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
nEstimators - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
nEstimators - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
nEstimators - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
newclassifier - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
newClassifierReset - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
newDefaultRule() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelClassifier
 
newDefaultRule() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
newDefaultRule() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
newDefaultRule() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressor
 
newDefaultRule() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressorSemiSuper
 
newDeletedTree() - Method in class moa.classifiers.trees.iadem.Iadem3
 
newDeletedTree() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
newDenseInstance(int) - Method in class com.yahoo.labs.samoa.instances.ArffLoader
 
newDenseInstance(int) - Method in class com.yahoo.labs.samoa.instances.MultiTargetArffLoader
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.AbstractAMRules
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.AMRulesRegressorOld
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiTargetRegressor
 
newEstimator() - Method in class moa.classifiers.trees.iadem.Iadem2
 
newEstimator() - Method in class moa.evaluation.AdwinClassificationPerformanceEvaluator
 
newEstimator() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
newEstimator() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
newEstimator() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
newEstimator() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
newHeader - Variable in class moa.streams.IrrelevantFeatureAppenderStream
The header with the new features appended.
newLeafModel() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
newLeafModel() - Method in class moa.classifiers.trees.ARFFIMTDD
 
newLeafModel() - Method in class moa.classifiers.trees.FIMTDD
 
newLeafNode() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
newLeafNode() - Method in class moa.classifiers.trees.ARFFIMTDD
 
newLeafNode() - Method in class moa.classifiers.trees.FIMTDD
 
newLeafNode(Iadem2.Node, long, long, double[], Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
newLeafNode(Iadem2.Node, long, long, double[], Instance) - Method in class moa.classifiers.trees.iadem.Iadem3
 
newLearningNode() - Method in class moa.classifiers.trees.EFDT
 
newLearningNode() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newLearningNode() - Method in class moa.classifiers.trees.HoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.ARFHoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.EFDT
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.RandomHoeffdingTree
 
newLearningNode(double[], Classifier) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
newLearningNode(double[], Classifier) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTreeClassifLeaves
 
newLearningNode(double[], Classifier) - Method in class moa.classifiers.trees.HoeffdingTreeClassifLeaves
 
newline - Static variable in class com.github.javacliparser.StringUtils
 
newline - Static variable in class moa.core.StringUtils
 
newNominalClassObserver() - Method in class moa.classifiers.bayes.NaiveBayes
 
newNominalClassObserver() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
newNominalClassObserver() - Method in class moa.classifiers.rules.RuleClassifier
 
newNominalClassObserver() - Method in class moa.classifiers.trees.DecisionStump
 
newNominalClassObserver() - Method in class moa.classifiers.trees.EFDT
 
newNominalClassObserver() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newNominalClassObserver() - Method in class moa.classifiers.trees.HoeffdingTree
 
newNumericClassObserver() - Method in class moa.classifiers.bayes.NaiveBayes
 
newNumericClassObserver() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
newNumericClassObserver() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
newNumericClassObserver() - Method in class moa.classifiers.rules.RuleClassifier
 
newNumericClassObserver() - Method in class moa.classifiers.trees.ARFFIMTDD
 
newNumericClassObserver() - Method in class moa.classifiers.trees.DecisionStump
 
newNumericClassObserver() - Method in class moa.classifiers.trees.EFDT
 
newNumericClassObserver() - Method in class moa.classifiers.trees.FIMTDD
 
newNumericClassObserver() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newNumericClassObserver() - Method in class moa.classifiers.trees.HoeffdingTree
 
newNumericClassObserver() - Method in class moa.classifiers.trees.iadem.Iadem2
 
newNumericClassObserver() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
newNumericClassObserver2() - Method in class moa.classifiers.rules.RuleClassifier
 
newOptionNode() - Method in class moa.classifiers.trees.ORTO
 
newRule(int, RuleActiveLearningNode, double[]) - Method in class moa.classifiers.rules.AbstractAMRules
Rule.Builder() to build an object with the parameters.
newRule(int, RuleActiveLearningNode, double[]) - Method in class moa.classifiers.rules.AMRulesRegressorOld
 
newRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.AbstractAMRules
 
newRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.AMRulesRegressorOld
 
newRuleActiveLearningNode(Rule.Builder) - Method in class moa.classifiers.rules.AbstractAMRules
 
newRuleActiveLearningNode(Rule.Builder) - Method in class moa.classifiers.rules.AMRulesRegressorOld
 
newSparseInstance(double) - Method in class com.yahoo.labs.samoa.instances.ArffLoader
 
newSparseInstance(double, double[]) - Method in class com.yahoo.labs.samoa.instances.ArffLoader
 
newSparseInstance(double, double[]) - Method in class com.yahoo.labs.samoa.instances.MultiTargetArffLoader
 
newSplit(int) - Method in class moa.classifiers.trees.iadem.Iadem2
 
newSplit(int) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
newSplitNode(InstanceConditionalTest) - Method in class moa.classifiers.trees.ARFFIMTDD
 
newSplitNode(InstanceConditionalTest) - Method in class moa.classifiers.trees.FIMTDD
 
newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.EFDT
 
newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.HoeffdingTree
 
newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.EFDT
 
newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.HoeffdingTree
 
newSplitNode(Predicate) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
newThreshold - Variable in class moa.classifiers.active.ALUncertainty
 
newTreeChange() - Method in class moa.classifiers.trees.iadem.Iadem3
 
newTreeChange() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
next() - Method in interface moa.recommender.dataset.Dataset
 
next() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
next() - Method in class moa.recommender.dataset.impl.JesterDataset
 
next() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
next() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
 
next() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
next() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
next(int) - Method in class moa.clusterers.streamkm.MTRandom
This method forms the basis for generating a pseudo random number sequence from this class.
nextClassShouldBeZero - Variable in class moa.streams.generators.AgrawalGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.MixedGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.SEAGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.SineGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.STAGGERGenerator
 
nextHashFunction() - Method in class moa.clusterers.kmeanspm.DietzfelbingerHash
Generates a new Dietzfelbinger hash function.
nextInstance() - Method in class moa.streams.ArffFileStream
 
nextInstance() - Method in class moa.streams.BootstrappedStream
 
nextInstance() - Method in class moa.streams.CachedInstancesStream
 
nextInstance() - Method in class moa.streams.clustering.FileStream
 
nextInstance() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
nextInstance() - Method in class moa.streams.clustering.SimpleCSVStream
 
nextInstance() - Method in class moa.streams.ConceptDriftRealStream
 
nextInstance() - Method in class moa.streams.ConceptDriftStream
 
nextInstance() - Method in interface moa.streams.ExampleStream
Gets the next example from this stream.
nextInstance() - Method in class moa.streams.FilteredStream
 
nextInstance() - Method in class moa.streams.filters.AbstractStreamFilter
 
nextInstance() - Method in class moa.streams.filters.RBFFilter
 
nextInstance() - Method in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
nextInstance() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
nextInstance() - Method in class moa.streams.filters.SelectAttributesFilter
 
nextInstance() - Method in class moa.streams.generators.AgrawalGenerator
 
nextInstance() - Method in class moa.streams.generators.AssetNegotiationGenerator
 
nextInstance() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
nextInstance() - Method in class moa.streams.generators.HyperplaneGenerator
 
nextInstance() - Method in class moa.streams.generators.LEDGenerator
 
nextInstance() - Method in class moa.streams.generators.LEDGeneratorDrift
 
nextInstance() - Method in class moa.streams.generators.MixedGenerator
 
nextInstance() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
GenerateML.
nextInstance() - Method in class moa.streams.generators.RandomRBFGenerator
 
nextInstance() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
nextInstance() - Method in class moa.streams.generators.RandomTreeGenerator
 
nextInstance() - Method in class moa.streams.generators.SEAGenerator
 
nextInstance() - Method in class moa.streams.generators.SineGenerator
 
nextInstance() - Method in class moa.streams.generators.STAGGERGenerator
 
nextInstance() - Method in class moa.streams.generators.TextGenerator
 
nextInstance() - Method in class moa.streams.generators.WaveformGenerator
 
nextInstance() - Method in class moa.streams.generators.WaveformGeneratorDrift
 
nextInstance() - Method in class moa.streams.ImbalancedStream
 
nextInstance() - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
nextInstance() - Method in class moa.streams.MultiFilteredStream
 
nextInstance() - Method in class moa.streams.MultiLabelFilteredStream
 
nextInstance() - Method in class moa.streams.MultiTargetArffFileStream
 
nextInstance() - Method in class moa.streams.PartitioningStream
 
nextInstance() - Method in class moa.streams.RecurrentConceptDriftStream
 
nextOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
nextValue() - Method in class moa.streams.generators.cd.AbruptChangeGenerator
 
nextValue() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
nextValue() - Method in class moa.streams.generators.cd.GradualChangeGenerator
 
nextValue() - Method in class moa.streams.generators.cd.NoChangeGenerator
 
nFeatures - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
nGeneratedMajorityTotal - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
nGeneratedMajorityTotal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
nGeneratedMinorityTotal - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
nGeneratedMinorityTotal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
nInlier - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
nInlier - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
nInlier - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
nInlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
nItems - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
nIterations - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
nMajorityTotal - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
nMajorityTotal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
nMinorityTotal - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
nMinorityTotal - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
nNegative - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
NO_SOURCE - Static variable in class moa.gui.featureanalysis.AttributeSummaryPanel
Message shown when no instances have been loaded and no attribute set
NO_SOURCE - Static variable in class moa.gui.featureanalysis.InstancesSummaryPanel
Message shown when no instances have been loaded
NoAnomalyDetection - Class in moa.classifiers.rules.core.anomalydetection
No anomaly detection is performed
NoAnomalyDetection() - Constructor for class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
noAnomalyDetectionOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
NOBOX_HORIZONTAL - moa.gui.experimentertab.PlotTab.LegendType
 
NOBOX_HORIZONTAL - moa.tasks.Plot.LegendType
 
NOBOX_VERTICAL - moa.gui.experimentertab.PlotTab.LegendType
 
NOBOX_VERTICAL - moa.tasks.Plot.LegendType
 
NoChange - Class in moa.classifiers.functions
NoChange class classifier.
NoChange() - Constructor for class moa.classifiers.functions.NoChange
 
NoChangeDetection - Class in moa.classifiers.rules.core.changedetection
 
NoChangeDetection() - Constructor for class moa.classifiers.rules.core.changedetection.NoChangeDetection
 
NoChangeGenerator - Class in moa.streams.generators.cd
 
NoChangeGenerator() - Constructor for class moa.streams.generators.cd.NoChangeGenerator
 
node - Variable in class moa.classifiers.trees.EFDT.FoundNode
 
node - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
node - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
 
node - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
node - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
Node - Class in moa.clusterers.clustree
 
Node() - Constructor for class moa.streams.generators.RandomTreeGenerator.Node
 
Node(double[]) - Constructor for class moa.classifiers.trees.EFDT.Node
 
Node(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.Node
 
Node(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.Node
 
Node(double, double) - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
Node(double, double, double) - Constructor for class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
Node(double, double, double) - Constructor for class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
 
Node(double, int, double) - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
Node(double, DoubleVector[]) - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree.Node
 
Node(double, DoubleVector[]) - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat.Node
 
Node(float, SingleVector[]) - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat.Node
 
Node(int, int) - Constructor for class moa.clusterers.clustree.Node
Initialze a normal node, which is not fake.
Node(int, int, int, boolean) - Constructor for class moa.clusterers.clustree.Node
Initialiazes a node which is a fake root depending on the given boolean.
Node(int, int, Entry[]) - Constructor for class moa.clusterers.clustree.Node
USED FOR EM_TOP_DOWN BULK LOADING
Node(ISOUPTree) - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
Node(ARFFIMTDD) - Constructor for class moa.classifiers.trees.ARFFIMTDD.Node
 
Node(FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.Node
 
Node(Iadem2, Iadem2.Node, double[]) - Constructor for class moa.classifiers.trees.iadem.Iadem2.Node
 
nodeCountAtLastFeatureImportanceInquiry - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
nodeList - Variable in class moa.classifiers.rules.core.Rule
 
nodes - Variable in class moa.clusterers.outliers.MCOD.MicroCluster
 
nodeSplitterTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the tip text for this property.
nodesReinsert - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
nodeStatistics - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
nodeTime - Variable in class moa.classifiers.trees.EFDT.Node
 
nodeType - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
nodo - Variable in class moa.classifiers.trees.iadem.Iadem3Subtree
 
NoFeatureRanking - Class in moa.classifiers.rules.featureranking
No feature ranking is performed
NoFeatureRanking() - Constructor for class moa.classifiers.rules.featureranking.NoFeatureRanking
 
NoInstanceTransformation - Class in moa.classifiers.rules.multilabel.instancetransformers
Performs no transformation.
NoInstanceTransformation() - Constructor for class moa.classifiers.rules.multilabel.instancetransformers.NoInstanceTransformation
 
noiseInClusterOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
noiseLabel - Variable in class moa.gui.visualization.DataPoint
 
noiseLevelOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
noisePercentage - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
noisePercentageOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
noisePercentageOption - Variable in class moa.streams.generators.LEDGenerator
 
noisePercentageOption - Variable in class moa.streams.generators.SEAGenerator
 
nominalAttClassObserver - Variable in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
NominalAttributeBinaryRulePredicate - Class in moa.classifiers.rules.core.conditionaltests
Nominal binary conditional test for instances to use to split nodes in rules.
NominalAttributeBinaryRulePredicate(int, int) - Constructor for class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
NominalAttributeBinaryTest - Class in moa.classifiers.core.conditionaltests
Nominal binary conditional test for instances to use to split nodes in Hoeffding trees.
NominalAttributeBinaryTest(int, int) - Constructor for class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
NominalAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a nominal attribute.
NominalAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
NominalAttributeMultiwayTest - Class in moa.classifiers.core.conditionaltests
Nominal multi way conditional test for instances to use to split nodes in Hoeffding trees.
NominalAttributeMultiwayTest(int) - Constructor for class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
nominalAttUsed(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
nominalEstimatorOption - Variable in class moa.classifiers.trees.EFDT
 
nominalEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
nominalEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
nominalObserverOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
nominalObserverOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
nominalReplacementStrategyOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
NominalRulePredicate - Class in moa.classifiers.rules.core
Class that contains the literal information for a nominal variable
NominalRulePredicate(int, double, boolean) - Constructor for class moa.classifiers.rules.core.NominalRulePredicate
 
nominalSelectedStrategy - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
nominalStatisticsObserver - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
NominalStatisticsObserver - Interface in moa.classifiers.rules.multilabel.attributeclassobservers
 
NominalVirtualNode(Iadem2, Iadem2.Node, int, boolean, boolean) - Constructor for class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
NON_HANDLER_CAPABILITIES - Static variable in class moa.capabilities.CapabilityRequirement
The capabilities to assume a class has if it does not implement the CapabilitiesHandler interface.
NonConvexCluster - Class in moa.clusterers.macro
 
NonConvexCluster(CFCluster, List<CFCluster>) - Constructor for class moa.clusterers.macro.NonConvexCluster
 
NONE - moa.gui.experimentertab.PlotTab.LegendType
 
NONE - moa.tasks.Plot.LegendType
 
noOfKthNearest() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the number of k nearest.
noPrePruneOption - Variable in class moa.classifiers.trees.EFDT
 
noPrePruneOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
noPrePruneOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
norm() - Method in class moa.recommender.rc.utils.Vector
 
norm(double, int) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Normalizes a given value of a numeric attribute.
NORMAL_CONSTANT - Static variable in class moa.classifiers.rules.AbstractAMRules
 
NORMAL_CONSTANT - Static variable in class moa.core.GaussianEstimator
 
normalInverse(double) - Static method in class moa.core.Statistics
Returns the value, x, for which the area under the Normal (Gaussian) probability density function (integrated from minus infinity to x) is equal to the argument y (assumes mean is zero, variance is one).
NormalizableDistance - Class in moa.classifiers.lazy.neighboursearch
Represents the abstract ancestor for normalizable distance functions, like Euclidean or Manhattan distance.
NormalizableDistance() - Constructor for class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Invalidates the distance function, Instances must be still set.
NormalizableDistance(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the distance function and automatically initializes the ranges.
normalize() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
normalize() - Method in class moa.classifiers.rules.core.voting.Vote
 
normalize() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
normalize() - Method in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
normalize() - Method in class moa.core.DoubleVector
 
normalize(double[]) - Static method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
normalize(double[]) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
normalize(double[]) - Static method in class moa.core.Utils
Normalizes the doubles in the array by their sum.
normalize(double[], double) - Static method in class moa.core.Utils
Normalizes the doubles in the array using the given value.
normalizedInputVector(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
normalizedInstance(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
 
normalizedInstance(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
normalizedInstance(Instance) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
normalizedPrediction(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
 
normalizedTargetVector(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
normalizeNodeWidthTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Tip text for this property.
normalizeOption - Variable in class moa.streams.clustering.FileStream
 
normalizeTargetValue(double) - Method in class moa.classifiers.trees.ARFFIMTDD
 
normalizeTargetValue(double) - Method in class moa.classifiers.trees.FIMTDD
 
normalizeTargetValue(double, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
normalizeTargetValue(MultiLabelInstance, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
normalizeTargetVector(double[]) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
normalizeWeights() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
normalizeWeights() - Method in class moa.classifiers.rules.functions.Perceptron
 
normalProbability(double) - Static method in class moa.core.Statistics
Returns the area under the Normal (Gaussian) probability density function, integrated from minus infinity to x (assumes mean is zero, variance is one).
normp(double) - Static method in class moa.gui.experimentertab.statisticaltests.CDF_Normal
This method calculates the normal cumulative distribution function.
NOT_STARTED - moa.gui.experimentertab.ExpTaskThread.Status
 
NOT_STARTED - moa.tasks.TaskThread.Status
 
notBinaryStreamOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
NotebookBuilder - Class in moa.tasks.ipynb
Manage the list of all cells Add new cells Create a Jupyter NotebookBuilder as IPYNB file
NotebookBuilder() - Constructor for class moa.tasks.ipynb.NotebookBuilder
 
NotebookCellBuilder - Class in moa.tasks.ipynb
Abstract class of a cell
notebookOutputFile - Variable in class moa.tasks.WriteConfigurationToJupyterNotebook
 
notify(ObserverMOAObject, FeatureRankingMessage) - Method in class moa.classifiers.rules.multilabel.core.ObservableMOAObject
 
notifyAll(FeatureRankingMessage) - Method in class moa.classifiers.rules.multilabel.core.ObservableMOAObject
 
notifyChangeListeners() - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
Notifies all registered change listeners that the options have changed.
notifyChangeListeners() - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
Notifies all registered change listeners that the options have changed.
nOutlier - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
nOutlier - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
nOutlier - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
nOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
nPositive - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
nr_points() - Method in class moa.cluster.Miniball
Return the actual number of points in the list
nr_support_points() - Method in class moa.cluster.Miniball
Return the number of support points (used to calculate the miniball).
It's and internal info
nRangeQueriesExecuted - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
nRatings - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
nTimePerObj - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
nTotalRunTime - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
NullAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a null attribute.
NullAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
NullMonitor - Class in moa.tasks
Class that represents a null monitor.
NullMonitor() - Constructor for class moa.tasks.NullMonitor
 
nullString - Variable in class com.github.javacliparser.AbstractClassOption
The null text.
nullString - Variable in class moa.options.AbstractClassOption
The null text.
NUM_BASE_ATTRIBUTES - Static variable in class moa.streams.generators.WaveformGenerator
 
NUM_CLASSES - Static variable in class moa.streams.generators.WaveformGenerator
 
NUM_IRRELEVANT_ATTRIBUTES - Static variable in class moa.streams.generators.LEDGenerator
 
NUM_IRRELEVANT_ATTRIBUTES - Static variable in class moa.streams.generators.SineGenerator
 
numAttributes - Variable in class moa.classifiers.meta.RandomRules
 
numAttributes - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
numAttributes - Variable in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
numAttributes - Variable in class moa.classifiers.trees.ARFHoeffdingTree.RandomLearningNode
 
numAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
numAttributes - Variable in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
numAttributes - Variable in class moa.streams.clustering.SimpleCSVStream
 
numAttributes - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numAttributes() - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Num attributes.
numAttributes() - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the number of attributes.
numAttributes() - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Num attributes.
numAttributes() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Num attributes.
numAttributes() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
numAttributes() - Method in class com.yahoo.labs.samoa.instances.Instances
Num attributes.
numAttributes() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Gets the number of attributes.
numAttributesOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
numAttributesPercentageOption - Variable in class moa.classifiers.meta.RandomRules
 
numAttributesPercentageOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
numAttributesPercentageOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
numAttributesSelected - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
numAttsOption - Variable in class moa.streams.clustering.ClusteringStream
 
numAttsOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
numAttsOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
numAttsOption - Variable in class moa.streams.generators.TextGenerator
 
numberAttribute - Variable in class moa.streams.generators.LEDGeneratorDrift
 
numberAttribute - Variable in class moa.streams.generators.WaveformGeneratorDrift
 
numberAttributes - Variable in class com.yahoo.labs.samoa.instances.AttributesInformation
The number of attributes.
numberAttributes - Variable in class com.yahoo.labs.samoa.instances.SparseInstanceData
The number of attributes.
numberAttributes - Variable in class moa.classifiers.functions.Perceptron
 
numberAttributes - Variable in class moa.classifiers.meta.LimAttClassifier
 
numberAttributesDriftOption - Variable in class moa.streams.generators.LEDGeneratorDrift
 
numberAttributesDriftOption - Variable in class moa.streams.generators.WaveformGeneratorDrift
 
numberChanges - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numberClasses - Variable in class moa.classifiers.functions.Perceptron
 
numberDetections - Variable in class moa.classifiers.functions.Perceptron
 
numberDetections - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numberDetectionsOccurred - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numberInstance - Variable in class moa.streams.generators.HyperplaneGenerator
 
numberInstances - Variable in class moa.classifiers.meta.WEKAClassifier
 
numberInstances - Variable in class moa.clusterers.streamkm.StreamKM
 
numberInstanceStream - Variable in class moa.streams.ConceptDriftRealStream
 
numberInstanceStream - Variable in class moa.streams.ConceptDriftStream
 
numberLeaves() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
numberLeaves() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
numberLeaves() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
numberOfBuckets - Variable in class moa.clusterers.streamkm.BucketManager
 
numberOfCentres - Variable in class moa.clusterers.streamkm.StreamKM
 
numberOfChangesDetected - Variable in class moa.classifiers.meta.LeveragingBag
 
numberOfChangesDetected - Variable in class moa.classifiers.meta.LimAttClassifier
 
numberOfChangesDetected - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
numberOfClusters() - Method in class moa.clusterers.CobWeb
Returns the number of clusters.
numberOfDriftsDetected - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
numberOfDriftsDetected - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
numberOfDriftsDetected - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
numberOfDriftsInduced - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
numberOfErrors - Variable in class moa.classifiers.meta.PairedLearners
 
numberOfInstancesProcessed - Variable in class moa.classifiers.trees.iadem.Iadem2
 
numberOfJobsOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
numberOfLeaves - Variable in class moa.classifiers.trees.iadem.Iadem2
 
numberOfNodes - Variable in class moa.classifiers.trees.iadem.Iadem2
 
numberOfSamples - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numberOfWarningsDetected - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
numberOfWarningsDetected - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
numberOfWarningsDetected - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
numberOfWarningsInduced - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
numberOutputs - Variable in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
numberOutputs - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
numberOutputs - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
numberOutputs - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
numberOutputTargets() - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the number of output attributes.
numberOutputTargets() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
numberTotalExamples - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
numberWarnings - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numBinsOption - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
numBinsOption - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
numBytesWritten - Variable in class com.github.javacliparser.SerializeUtils.ByteCountingOutputStream
 
numBytesWritten - Variable in class moa.core.SerializeUtils.ByteCountingOutputStream
 
numCategoricalFeaturesOption - Variable in class moa.streams.IrrelevantFeatureAppenderStream
 
numCentroidsOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
numChildren() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
numChildren() - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
numChildren() - Method in class moa.classifiers.trees.EFDT.SplitNode
 
numChildren() - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
numChildren() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
numChildren() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
numClasses - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
numClasses - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
numClasses - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
numClasses - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
numClasses - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
numClasses - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
numClasses - Variable in class moa.streams.ImbalancedStream
 
numClasses() - Method in interface com.yahoo.labs.samoa.instances.Instance
Num classes.
numClasses() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Num classes.
numClasses() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
numClasses() - Method in class com.yahoo.labs.samoa.instances.Instances
Num classes.
numClasses(int) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
numClasses(int) - Method in interface com.yahoo.labs.samoa.instances.Prediction
Different output attributes may have different number of classes.
numClassesOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
numClassesOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
numClassesOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numClusterOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
numClusterRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
numClusters - Variable in class moa.clusterers.kmeanspm.BICO
 
numClustersOption - Variable in class moa.clusterers.kmeanspm.BICO
 
numClustersOption - Variable in class moa.clusterers.streamkm.StreamKM
 
numDeletedTrees() - Method in class moa.classifiers.trees.iadem.Iadem3
 
numDimensions - Variable in class moa.clusterers.kmeanspm.BICO
 
numDimensionsOption - Variable in class moa.clusterers.kmeanspm.BICO
 
numDriftAttsOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
numDriftCentroidsOption - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
 
numEnsemblePruningOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
numEntries() - Method in class moa.evaluation.preview.LearningCurve
 
numEntries() - Method in class moa.evaluation.preview.Preview
 
numEntries() - Method in class moa.evaluation.preview.PreviewCollection
 
numEntries() - Method in class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
numEntries() - Method in class moa.streams.filters.Selection
 
numericalConstantValueOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
NumericalParameter - Class in moa.clusterers.meta
 
NumericalParameter(NumericalParameter) - Constructor for class moa.clusterers.meta.NumericalParameter
 
NumericalParameter(ParameterConfiguration) - Constructor for class moa.clusterers.meta.NumericalParameter
 
numericalSelectedStrategy - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numericAttClassObserver - Variable in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
NumericAttributeBinaryRulePredicate - Class in moa.classifiers.rules.core.conditionaltests
Numeric binary conditional test for instances to use to split nodes in AMRules.
NumericAttributeBinaryRulePredicate(int, double, int) - Constructor for class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
NumericAttributeBinaryTest - Class in moa.classifiers.core.conditionaltests
Numeric binary conditional test for instances to use to split nodes in Hoeffding trees.
NumericAttributeBinaryTest(int, double, boolean) - Constructor for class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
NumericAttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
Interface for observing the class data distribution for a numeric attribute.
numericAttributes - Variable in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
numericAttributesIndex - Variable in class moa.classifiers.rules.functions.Perceptron
 
numericEstimatorOption - Variable in class moa.classifiers.trees.EFDT
 
numericEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
numericEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
numericEstimatorOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
numericObserverOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
numericObserverOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
numericObserverOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
numericReplacementStrategyOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
NumericRulePredicate - Class in moa.classifiers.rules.core
Class that contains the literal information for a numerical variable
NumericRulePredicate(int, double, boolean) - Constructor for class moa.classifiers.rules.core.NumericRulePredicate
 
numericStatisticsObserver - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
NumericStatisticsObserver - Interface in moa.classifiers.rules.multilabel.attributeclassobservers
 
NumericVirtualNode(Iadem2, Iadem2.Node, int, IademNumericAttributeObserver) - Constructor for class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
numFolds - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
numFoldsOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Number of folds in candidate classifier cross-validation.
numFoldsOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
numFoldsOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
numFreeEntries() - Method in class moa.clusterers.clustree.Node
Return the number of free Entrys in this node.
numInitPoints - Variable in class moa.clusterers.denstream.WithDBSCAN
 
numInputAttributes() - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the number of input attributes.
numInputAttributes() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
numInputAttributes() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
numInputAttributes() - Method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
numInstances - Variable in class moa.classifiers.meta.LimAttClassifier
 
numInstances - Variable in class moa.classifiers.trees.EFDT
 
numInstances - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
numInstances() - Method in class com.yahoo.labs.samoa.instances.Instances
Num instances.
numInstances() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Returns the number of Instances in the rectangular region defined by this node.
numInstancesConcept - Variable in class moa.streams.generators.SEAGenerator
 
numInstancesConceptOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
numInstancesInitOption - Variable in class moa.classifiers.active.ALUncertainty
 
numInstancesRead - Variable in class moa.streams.ArffFileStream
 
numInstancesRead - Variable in class moa.streams.clustering.FileStream
 
numInstancesRead - Variable in class moa.streams.clustering.SimpleCSVStream
 
numInstancesRead - Variable in class moa.streams.MultiTargetArffFileStream
 
numLabelsOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
numLabelsOption - Variable in class moa.streams.generators.multilabel.MultilabelArffFileStream
 
numLatentOption - Variable in class moa.streams.filters.RBFFilter
 
numLatentOption - Variable in class moa.streams.filters.ReLUFilter
 
numLearnedOutputs - Variable in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
numLearnedOutputs - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
numLearnedOutputs - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
numLearnedOutputs - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
numNeg - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
numNeg - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
numNodes - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
numNodes - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
numNodes - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
numNominalsOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numNonZeroEntries() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
numNonZeroEntries() - Method in class moa.core.DoubleVector
 
numNumericFeaturesOption - Variable in class moa.streams.IrrelevantFeatureAppenderStream
 
numNumericsOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numObservations - Variable in class moa.core.GreenwaldKhannaQuantileSummary
 
numOldLabelsOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
numOptions() - Method in class com.github.javacliparser.Options
 
numOutputAttributes() - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the number of output attributes.
numOutputAttributes() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
numOutputAttributes() - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
numOutputAttributes() - Method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
numOutputAttributes() - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
numOutputAttributes() - Method in interface com.yahoo.labs.samoa.instances.Prediction
Number of output attributes.
numPartitions - Variable in class moa.streams.PartitioningStream
 
numPartitionsOption - Variable in class moa.streams.PartitioningStream
 
numPartitionsOption - Variable in class moa.tasks.meta.ALPartitionEvaluationTask
 
numPassesOption - Variable in class moa.tasks.LearnModel
 
numPassesOption - Variable in class moa.tasks.LearnModelMultiLabel
 
numPassesOption - Variable in class moa.tasks.LearnModelMultiTarget
 
numPassesOption - Variable in class moa.tasks.LearnModelRegression
 
numPos - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
numPos - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
numProcessedPerUnit - Variable in class moa.clusterers.denstream.WithDBSCAN
 
numProjections - Variable in class moa.clusterers.kmeanspm.BICO
 
numProjectionsOption - Variable in class moa.clusterers.kmeanspm.BICO
 
numRepOption - Variable in class moa.streams.RecurrentConceptDriftStream
 
numSourceInstancesOutputs - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
numSourceInstancesOutputs - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
numSplits() - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
numSplitsByBreakingTies - Variable in class moa.classifiers.trees.iadem.Iadem3
 
numStreamsOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
numStreamsOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
numSubsetsGreaterThanFrac(double[][], double) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
numSubtrees() - Method in class moa.classifiers.trees.iadem.Iadem3
 
numTokens - Variable in class moa.streams.clustering.SimpleCSVStream
 
numTrees - Variable in class moa.classifiers.trees.iadem.Iadem3
 
numTrees() - Method in class moa.classifiers.trees.iadem.Iadem3
 
numTreesOption - Variable in class moa.classifiers.oneclass.HSTrees
 
numTuples - Variable in class moa.core.GreenwaldKhannaQuantileSummary
 
numTuplesOption - Variable in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
numValsPerNominalOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numValues() - Method in class com.yahoo.labs.samoa.instances.Attribute
Num values.
numValues() - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Num values.
numValues() - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the number of values, mainly for sparse instances.
numValues() - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Num values.
numValues() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Num values.
numValues() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Num values.
numValues() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
numValues() - Method in class moa.core.DoubleVector
 
numValues() - Method in class moa.streams.filters.Selection
 
numValuesCategoricalFeatureOption - Variable in class moa.streams.IrrelevantFeatureAppenderStream
 
nUsers - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 

O

oberversDistribProb(Instance, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
obj - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
obj - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
obj - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
obj - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
obj - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
ObjectRepository - Interface in moa.core
Interface for object repositories.
objectToCLIString(Object, Class<?>) - Static method in class com.github.javacliparser.ClassOption
 
objectToCLIString(Object, Class<?>) - Static method in class moa.options.ClassOption
 
objectToCLIString(Object, Class<?>) - Static method in class moa.options.ClassOptionWithNames
 
objectToCLIString(Object, Class<?>) - Static method in class moa.options.WEKAClassOption
 
objId - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
objId - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
objId - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
objId - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
obserClassDistrib - Variable in class moa.classifiers.rules.RuleClassification
 
ObservableMOAObject - Class in moa.classifiers.rules.multilabel.core
 
ObservableMOAObject() - Constructor for class moa.classifiers.rules.multilabel.core.ObservableMOAObject
 
observeAttribute(double, DoubleVector[]) - Method in interface moa.classifiers.rules.multilabel.attributeclassobservers.AttributeStatisticsObserver
Updates statistics of this observer given an attribute value, the index of the statistic and the weight of the instance observed
observeAttribute(double, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree.Node
Updates tree with new observation
observeAttribute(double, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
observeAttribute(double, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat.Node
Updates tree with new observation
observeAttribute(double, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
observeAttribute(double, DoubleVector[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
observeAttribute(float, SingleVector[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat.Node
 
observeAttributeClass(double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
observeAttributeClass(double, double, double) - Method in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
observeAttributeClass(double, int, double) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
Updates statistics of this observer given an attribute value, a class and the weight of the instance observed
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
observedClassDistribution - Variable in class moa.classifiers.bayes.NaiveBayes
 
observedClassDistribution - Variable in class moa.classifiers.functions.MajorityClass
 
observedClassDistribution - Variable in class moa.classifiers.rules.RuleClassifier
 
observedClassDistribution - Variable in class moa.classifiers.trees.DecisionStump
 
observedClassDistribution - Variable in class moa.classifiers.trees.EFDT.Node
 
observedClassDistribution - Variable in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
observedClassDistribution - Variable in class moa.classifiers.trees.HoeffdingTree.Node
 
observedClassDistributionIsPure() - Method in class moa.classifiers.trees.EFDT.Node
 
observedClassDistributionIsPure() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
observedClassDistributionIsPure() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
observer - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
observer - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
ObserverMOAObject - Interface in moa.classifiers.rules.multilabel.core
 
observers - Variable in class moa.classifiers.rules.RuleClassification
 
observersGauss - Variable in class moa.classifiers.rules.RuleClassification
 
OCBoost - Class in moa.classifiers.meta
Online Coordinate boosting for two classes evolving data streams.
OCBoost() - Constructor for class moa.classifiers.meta.OCBoost
 
oddsOffsetOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
OddsRatioScore - Class in moa.classifiers.rules.core.anomalydetection
Score for anomaly detection: OddsRatio thresholdOption - The threshold value for detecting anomalies minNumberInstancesOption - The minimum number of instances required to perform anomaly detection probabilityFunctionOption - Probability function selection
OddsRatioScore() - Constructor for class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
offlineOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
oldLabels - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
OneClassClassifier - Interface in moa.classifiers
An interface for incremental classifier models.
OneMinusErrorWeightedVote - Class in moa.classifiers.rules.core.voting
 
OneMinusErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.OneMinusErrorWeightedVote
 
oneSidedTest - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
oneSidedTestOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
oneSidedTestOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
OnInlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
 
OnlineAccuracyUpdatedEnsemble - Class in moa.classifiers.meta
The online version of the Accuracy Updated Ensemble as proposed by Brzezinski and Stefanowski in "Combining block-based and online methods in learning ensembles from concept drifting data streams", Information Sciences, 2014.
OnlineAccuracyUpdatedEnsemble() - Constructor for class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory - Class in moa.classifiers.meta
 
OnlineAdaBoost - Class in moa.classifiers.meta.imbalanced
Online AdaBoost is the online version of the boosting ensemble method AdaBoost
OnlineAdaBoost() - Constructor for class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
OnlineAdaC2 - Class in moa.classifiers.meta.imbalanced
OnlineAdaC2 is the adaptation of the ensemble learner to data streams
OnlineAdaC2() - Constructor for class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
OnlineCSB2 - Class in moa.classifiers.meta.imbalanced
Online CSB2 is the online version of the ensemble learner CSB2.
OnlineCSB2() - Constructor for class moa.classifiers.meta.imbalanced.OnlineCSB2
 
onlineHistory - Variable in class moa.classifiers.meta.HeterogeneousEnsembleBlast
 
OnlineRUSBoost - Class in moa.classifiers.meta.imbalanced
Online RUSBoost is the adaptation of the ensemble learner to data streams.
OnlineRUSBoost() - Constructor for class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
OnlineSmoothBoost - Class in moa.classifiers.meta
Incremental on-line boosting with Theoretical Justifications of Shang-Tse Chen, Hsuan-Tien Lin and Chi-Jen Lu.
OnlineSmoothBoost() - Constructor for class moa.classifiers.meta.OnlineSmoothBoost
 
onlineSMOTE() - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
OnlineSMOTEBagging - Class in moa.classifiers.meta.imbalanced
Online SMOTEBagging is the online version of the ensemble method SMOTEBagging.
OnlineSMOTEBagging() - Constructor for class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
OnlineUnderOverBagging - Class in moa.classifiers.meta.imbalanced
Online UnderOverBagging is the online version of the ensemble method.
OnlineUnderOverBagging() - Constructor for class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
onlyBinaryTest - Variable in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
onlyMultiwayTest - Variable in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
OnOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
 
openConfig(String) - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Opens a previously saved configuration
operator - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
operatorObserver - Variable in class moa.classifiers.rules.core.RuleSplitNode
 
Option - Interface in com.github.javacliparser
Interface representing an option or parameter.
optionArrayToCLIString(Option[], char) - Static method in class com.github.javacliparser.ListOption
 
optionCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
optionDecayFactorOption - Variable in class moa.classifiers.trees.ORTO
 
optionDescriptions - Variable in class com.github.javacliparser.MultiChoiceOption
 
OptionEditComponent - Interface in com.github.javacliparser.gui
Interface representing a component to edit an option.
optionFadingFactorOption - Variable in class moa.classifiers.trees.ORTO
 
optionFFSeen - Variable in class moa.classifiers.trees.ORTO.OptionNode
 
optionFFSSL - Variable in class moa.classifiers.trees.ORTO.OptionNode
 
OptionHandler - Interface in moa.options
Interface representing an object that handles options or parameters.
optionLabels - Variable in class com.github.javacliparser.MultiChoiceOption
 
optionList - Variable in class com.github.javacliparser.Options
 
OptionNode(FIMTDD) - Constructor for class moa.classifiers.trees.ORTO.OptionNode
 
optionNodeAggregationOption - Variable in class moa.classifiers.trees.ORTO
 
options - Variable in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
options - Variable in class com.github.javacliparser.JavaCLIParser
Options to handle
Options - Class in com.github.javacliparser
File option.
Options() - Constructor for class com.github.javacliparser.Options
 
OptionsConfigurationPanel - Class in com.github.javacliparser.gui
This panel displays an options configuration.
OptionsConfigurationPanel(String, Options) - Constructor for class com.github.javacliparser.gui.OptionsConfigurationPanel
 
OptionsHandler - Class in moa.options
 
OptionsHandler(Object, String) - Constructor for class moa.options.OptionsHandler
 
OptionsString - Class in moa.tasks.ipynb
This class get input string of learner, stream and evaluator then process them the output will be name of learner, stream, or evaluator besides their options
OptionsString(String) - Constructor for class moa.tasks.ipynb.OptionsString
 
or(CapabilityRequirement) - Method in class moa.capabilities.CapabilityRequirement
Creates a requirement which is the logical OR of this and the given requirement.
orderedRulesOption - Variable in class moa.classifiers.rules.RuleClassifier
 
orderPosition - Variable in class moa.classifiers.meta.ADOB
 
orderPosition - Variable in class moa.classifiers.meta.BOLE
 
OrdinalParameter - Class in moa.clusterers.meta
 
OrdinalParameter(OrdinalParameter) - Constructor for class moa.clusterers.meta.OrdinalParameter
 
OrdinalParameter(ParameterConfiguration) - Constructor for class moa.clusterers.meta.OrdinalParameter
 
originalInstances - Static variable in class moa.streams.generators.LEDGenerator
 
originalNode - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
originalNode - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
originalNode - Variable in class moa.classifiers.trees.FIMTDD.Node
 
originalStream - Variable in class moa.streams.BootstrappedStream
 
originalStream - Variable in class moa.streams.ImbalancedStream
 
originalStream - Variable in class moa.streams.IrrelevantFeatureAppenderStream
The original stream.
ORTO - Class in moa.classifiers.trees
 
ORTO() - Constructor for class moa.classifiers.trees.ORTO
 
ORTO.OptionNode - Class in moa.classifiers.trees
 
oScoreKOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
otherBranchLearningLiteral - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
otherBranchRule - Variable in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
otherOutputsLearningLiteral - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
otherOutputsRule - Variable in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
outcontrolLevelOption - Variable in class moa.classifiers.core.driftdetection.DDM
 
Outlier(Instance, long, Object) - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
OUTLIER - moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
 
OutlierAlgoPanel - Class in moa.gui.outliertab
 
OutlierAlgoPanel() - Constructor for class moa.gui.outliertab.OutlierAlgoPanel
 
OutlierEvalPanel - Class in moa.gui.outliertab
 
OutlierEvalPanel() - Constructor for class moa.gui.outliertab.OutlierEvalPanel
Creates new form ClusteringEvalPanel
outlierNotifier - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
OutlierNotifier() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
 
OutlierPanel - Class in moa.gui.visualization
 
OutlierPanel(MyBaseOutlierDetector, MyBaseOutlierDetector.Outlier, SphereCluster, Color, StreamOutlierPanel) - Constructor for class moa.gui.visualization.OutlierPanel
Creates new form ObjectPanel
OutlierPerformance - Class in moa.evaluation
 
OutlierPerformance() - Constructor for class moa.evaluation.OutlierPerformance
 
OutlierSetupTab - Class in moa.gui.outliertab
 
OutlierSetupTab() - Constructor for class moa.gui.outliertab.OutlierSetupTab
Creates new form outlierSetupTab
OutlierTabPanel - Class in moa.gui.outliertab
 
OutlierTabPanel() - Constructor for class moa.gui.outliertab.OutlierTabPanel
Creates new form ClusterTab
OutlierVisualEvalPanel - Class in moa.gui.outliertab
 
OutlierVisualEvalPanel() - Constructor for class moa.gui.outliertab.OutlierVisualEvalPanel
Creates new form OutlierEvalPanel
OutlierVisualTab - Class in moa.gui.outliertab
 
OutlierVisualTab() - Constructor for class moa.gui.outliertab.OutlierVisualTab
Creates new form OutlierVisualTab
outputAttribute(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets an output attribute given its index.
outputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
outputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
outputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstancesHeader
 
outputAttributeIndex(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
outputAttributesCount - Variable in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
outputAttributesOption - Variable in class moa.streams.MultiTargetArffFileStream
 
OutputAttributesSelector - Interface in moa.classifiers.rules.multilabel.outputselectors
 
outputCodesOption - Variable in class moa.classifiers.meta.LeveragingBag
 
outputCodesOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
outputFileOption - Variable in class moa.tasks.MainTask
File option to save the final result of the task to.
outputPredictionFileOption - Variable in class moa.tasks.EvaluateModel
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluateModelMultiLabel
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluateModelMultiTarget
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluateModelRegression
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequential
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
outputSelector - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
outputSelectorOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
outputSelectorOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
outputsSelected - Variable in class moa.streams.filters.SelectAttributesFilter
 
outputsToLearn - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
outputStringOption - Variable in class moa.streams.filters.SelectAttributesFilter
 
outputTypeOption - Variable in class moa.tasks.Plot
Gnuplot terminal - postscript, png, pdf etc.
overlapRadiusDegree(SphereCluster) - Method in class moa.cluster.SphereCluster
Checks whether two SphereCluster overlap based on radius NOTE: overlapRadiusDegree only calculates the overlap based on the centers and the radi, so not the real overlap TODO: should we do this by MC to get the real overlap???
overlapSave(SphereCluster) - Method in class moa.cluster.SphereCluster
When a clusters looses points the new minimal bounding sphere can be partly outside of the originating cluster.
overwriteOldCluster(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
Overwrites the LS, SS and weightedN in this cluster to the values of the given cluster but adds N and classCount of the given cluster to this one.
overwriteOldEntry(Entry) - Method in class moa.clusterers.clustree.Entry
Overwrites the LS, SS and weightedN in the data cluster of this Entry to the values of the data cluster in the given Entry, but adds N and classCount of the cluster in the given Entry to the data cluster in this one.
owner - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
owner(Rule) - Method in class moa.classifiers.rules.core.Rule.Builder
 
OzaBag - Class in moa.classifiers.meta
Incremental on-line bagging of Oza and Russell.
OzaBag() - Constructor for class moa.classifiers.meta.OzaBag
 
OzaBagAdwin - Class in moa.classifiers.meta
Bagging for evolving data streams using ADWIN.
OzaBagAdwin() - Constructor for class moa.classifiers.meta.OzaBagAdwin
 
OzaBagAdwinML - Class in moa.classifiers.multilabel.meta
OzaBagAdwinML: Changes the way to compute accuracy as an input for Adwin
OzaBagAdwinML() - Constructor for class moa.classifiers.multilabel.meta.OzaBagAdwinML
 
OzaBagASHT - Class in moa.classifiers.meta
Bagging using trees of different size.
OzaBagASHT() - Constructor for class moa.classifiers.meta.OzaBagASHT
 
OzaBagML - Class in moa.classifiers.multilabel.meta
OzaBag for Multi-label data.
OzaBagML() - Constructor for class moa.classifiers.multilabel.meta.OzaBagML
 
OzaBoost - Class in moa.classifiers.meta
Incremental on-line boosting of Oza and Russell.
OzaBoost() - Constructor for class moa.classifiers.meta.OzaBoost
 
OzaBoostAdwin - Class in moa.classifiers.meta
Boosting for evolving data streams using ADWIN.
OzaBoostAdwin() - Constructor for class moa.classifiers.meta.OzaBoostAdwin
 

P

p - Variable in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
p - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
Reference to original point
P0 - Static variable in class moa.core.Statistics
COEFFICIENTS FOR METHOD normalInverse() *
P1 - Static variable in class moa.core.Statistics
 
p1evl(double, double[], int) - Static method in class moa.core.Statistics
Evaluates the given polynomial of degree N at x.
P2 - Static variable in class moa.core.Statistics
 
pack(byte[]) - Static method in class moa.clusterers.streamkm.MTRandom
This simply utility method can be used in cases where a byte array of seed data is to be used to repeatedly re-seed the random number sequence.
padLeft(String, int) - Static method in class moa.core.Utils
Pads a string to a specified length, inserting spaces on the left as required.
padRight(String, int) - Static method in class moa.core.Utils
Pads a string to a specified length, inserting spaces on the right as required.
pageHinckleyAlphaOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
PageHinckleyAlphaOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
PageHinckleyAlphaOption - Variable in class moa.classifiers.trees.FIMTDD
 
pageHinckleyTest - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
PageHinckleyTest(double, double) - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
Check to see if the tree needs updating
PageHinckleyTest(double, double) - Method in class moa.classifiers.trees.FIMTDD.InnerNode
Check to see if the tree needs updating
PageHinckleyTest(double, double, int) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
Check to see if the tree needs updating
pageHinckleyThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
PageHinckleyThresholdOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
PageHinckleyThresholdOption - Variable in class moa.classifiers.trees.FIMTDD
 
PageHinkleyDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in Page Hinkley Test.
PageHinkleyDM() - Constructor for class moa.classifiers.core.driftdetection.PageHinkleyDM
 
PageHinkleyFading - Class in moa.classifiers.rules.driftdetection
 
PageHinkleyFading(double, double) - Constructor for class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
PageHinkleyTest - Class in moa.classifiers.rules.driftdetection
 
PageHinkleyTest(double, double) - Constructor for class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
paint(Graphics) - Method in class moa.gui.LineGraphViewPanel.PlotPanel
 
paintAmplifiedPlot() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
This method is used to paint line graph or scatter diagram in popup window from VisualizeFeature Tab.
paintChildren(Graphics) - Method in class moa.gui.visualization.AbstractGraphCanvas
 
paintComponent(Graphics) - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
 
paintComponent(Graphics) - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Paints this component
paintComponent(Graphics) - Method in class moa.gui.featureanalysis.FeatureImportanceGraph
 
paintComponent(Graphics) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
This override method is used to paint embedded line graph or scatter diagram in VisualizeFeature Tab.
paintComponent(Graphics) - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
 
paintComponent(Graphics) - Method in class moa.gui.visualization.AbstractGraphAxes
 
paintComponent(Graphics) - Method in class moa.gui.visualization.ClusterPanel
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphAxes
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphCanvas
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphCurve
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphMultiCurve
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphScatter
 
paintComponent(Graphics) - Method in class moa.gui.visualization.OutlierPanel
 
paintComponent(Graphics) - Method in class moa.gui.visualization.PointPanel
 
paintStandardDeviation(Graphics, int, int, int) - Method in class moa.gui.visualization.AbstractGraphPlot
 
paintValue(Graphics, Rectangle) - Method in class weka.gui.MOAClassOptionEditor
Paints a representation of the current Object.
Pair<T> - Class in moa.clusterers.outliers.utils.mtree.utils
A pair of objects of the same type.
Pair<T extends java.lang.Comparable<T>,U extends java.lang.Comparable<U>> - Class in moa.recommender.rc.utils
 
Pair() - Constructor for class moa.clusterers.outliers.utils.mtree.utils.Pair
Creates a pair of null objects.
Pair(double, int) - Constructor for class moa.classifiers.meta.DACC.Pair
 
Pair(T, T) - Constructor for class moa.clusterers.outliers.utils.mtree.utils.Pair
Creates a pair with the objects specified in the arguments.
Pair(T, U) - Constructor for class moa.recommender.rc.utils.Pair
 
PairedLearners - Class in moa.classifiers.meta
Creates two classifiers: a stable and a reactive.
PairedLearners() - Constructor for class moa.classifiers.meta.PairedLearners
 
panel_size - Variable in class moa.gui.visualization.ClusterPanel
 
panel_size - Variable in class moa.gui.visualization.OutlierPanel
 
panel_size - Variable in class moa.gui.visualization.PointPanel
 
parameterOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
parameters - Variable in class moa.clusterers.meta.Algorithm
 
ParamGraphAxes - Class in moa.gui.visualization
ParamGraphAxes is an implementation of AbstractGraphAxes, drawing x labels based on a parameter.
ParamGraphAxes() - Constructor for class moa.gui.visualization.ParamGraphAxes
 
ParamGraphCanvas - Class in moa.gui.visualization
ParamGraphCanvas is an implementation of AbstractGraphCanvas showing the relation between a parameter and the measures.
ParamGraphCanvas() - Constructor for class moa.gui.visualization.ParamGraphCanvas
Initialises a ProcessGraphCanvas by calling the super constructor with a ParamGraphAxes as instance of AbstractGraphAxes and GraphScatter as instance of AbstractGraphPlot.
Pareja - Class in moa.gui.experimentertab.statisticaltests
T�tulo:
Pareja() - Constructor for class moa.gui.experimentertab.statisticaltests.Pareja
 
Pareja(double, double) - Constructor for class moa.gui.experimentertab.statisticaltests.Pareja
 
parent - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
parent - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
parent - Variable in class moa.classifiers.trees.EFDT.FoundNode
 
parent - Variable in class moa.classifiers.trees.FIMTDD.Node
 
parent - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
parent - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
parent - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
 
parent - Variable in class moa.classifiers.trees.iadem.Iadem2.Node
 
parentBranch - Variable in class moa.classifiers.trees.EFDT.FoundNode
 
parentBranch - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
parentBranch - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
 
partition(double[], double[], int, int) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Partitions the instances around a pivot.
partition(int, int[], int, int) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Partitions the instances around a pivot.
partition(Instances, int[], int, int, int) - Static method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Partitions the instances around a pivot.
PartitionFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
An object with partitions a set of data into two sub-sets.
PartitionFunctions - Class in moa.clusterers.outliers.utils.mtree
Some pre-defined implementations of partition functions.
PartitionFunctions.BalancedPartition<DATA> - Class in moa.clusterers.outliers.utils.mtree
A partition function that tries to distribute the data objects equally between the promoted data objects, associating to each promoted data objects the nearest data objects.
partitionIndex - Variable in class moa.streams.PartitioningStream
 
partitionIndexOption - Variable in class moa.streams.PartitioningStream
 
PartitioningStream - Class in moa.streams
This stream partitions the base stream into n distinct streams and outputs one of them
PartitioningStream() - Constructor for class moa.streams.PartitioningStream
 
partitionOptions(String[]) - Static method in class moa.core.Utils
Returns the secondary set of options (if any) contained in the supplied options array.
partitions - Variable in class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
A pair of partitions corresponding to the promoted data objects.
path - Variable in class moa.gui.experimentertab.Algorithm
 
path - Variable in class moa.gui.experimentertab.Summary
The path of the results
pause() - Static method in class moa.gui.visualization.RunOutlierVisualizer
 
pause() - Static method in class moa.gui.visualization.RunVisualizer
 
PAUSED - moa.gui.experimentertab.ExpTaskThread.Status
 
PAUSED - moa.tasks.TaskThread.Status
 
pauseFlag - Variable in class moa.tasks.StandardTaskMonitor
 
pauseSelectedTasks() - Method in class moa.gui.active.ALTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Pause tasks
pauseSelectedTasks() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
pauseTask() - Method in class moa.gui.experimentertab.ExpTaskThread
 
pauseTask() - Method in class moa.tasks.meta.ALTaskThread
 
pauseTask() - Method in class moa.tasks.TaskThread
 
pauseTaskButton - Variable in class moa.gui.active.ALTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.TaskManagerPanel
 
paymentValues - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
PDFCAIRO - moa.gui.experimentertab.PlotTab.Terminal
 
PDFCAIRO - moa.tasks.Plot.Terminal
 
peek() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
peeks at the first element.
penaltyFactorOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
percentageAnomalousAttributesOption - Variable in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
percentageThresholdOption - Variable in class moa.classifiers.rules.multilabel.inputselectors.MeritThreshold
 
percentInCommon - Variable in class moa.classifiers.trees.iadem.Iadem2
 
perceptron - Variable in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
Perceptron - Class in moa.classifiers.functions
Single perceptron classifier.
Perceptron - Class in moa.classifiers.rules.functions
 
Perceptron() - Constructor for class moa.classifiers.functions.Perceptron
 
Perceptron() - Constructor for class moa.classifiers.rules.functions.Perceptron
 
Perceptron(Perceptron) - Constructor for class moa.classifiers.rules.functions.Perceptron
 
perceptronattributeStatistics - Variable in class moa.classifiers.rules.functions.Perceptron
 
perceptronInstancesSeen - Variable in class moa.classifiers.rules.functions.Perceptron
 
perceptronsumY - Variable in class moa.classifiers.rules.functions.Perceptron
 
perceptronYSeen - Variable in class moa.classifiers.rules.functions.Perceptron
 
performanceMeasure - Variable in class moa.clusterers.meta.Algorithm
 
period - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
periodOption - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
periodOption - Variable in class moa.classifiers.meta.LearnNSE
 
perturbValue(double, double, double) - Method in class moa.streams.generators.AgrawalGenerator
 
perturbValue(double, double, double, double) - Method in class moa.streams.generators.AgrawalGenerator
 
peturbFractionOption - Variable in class moa.streams.generators.AgrawalGenerator
 
phinstancesSeen - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
PHmin - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
PHmin - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
PHmins - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
PHmT - Variable in class moa.classifiers.rules.RuleClassification
 
PHMT - Variable in class moa.classifiers.rules.RuleClassification
 
PHsum - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
PHsum - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
PHsums - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
pID - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
point ID
pineg - Variable in class moa.classifiers.meta.OCBoost
 
pipos - Variable in class moa.classifiers.meta.OCBoost
 
plot - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
plot - Variable in class moa.gui.featureanalysis.FeatureImportanceGraph
THe drawing tool provided by jmathplot.jar
plot - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
THe drawing tool provided by jmathplot.jar
plot - Variable in class moa.gui.featureanalysis.LineAndScatterPanel
THe drawing tool provided by jmathplot.jar
Plot - Class in moa.tasks
A task allowing to create and plot gnuplot scripts.
Plot() - Constructor for class moa.tasks.Plot
 
Plot.LegendLocation - Enum in moa.tasks
Location of the legend on the plot.
Plot.LegendType - Enum in moa.tasks
Type of legend.
Plot.PlotStyle - Enum in moa.tasks
 
Plot.Terminal - Enum in moa.tasks
Plot output terminal.
PlotLine() - Constructor for class moa.gui.LineGraphViewPanel.PlotLine
 
plotLines - Variable in class moa.gui.LineGraphViewPanel
 
plotOutputOption - Variable in class moa.tasks.Plot
FileOption for selecting the plot output file.
plotPanel - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
PlotPanel() - Constructor for class moa.gui.LineGraphViewPanel.PlotPanel
 
plotStyleOption - Variable in class moa.tasks.Plot
Type of plot - dots, points, lines ets.
PlotTab - Class in moa.gui.experimentertab
Generate figures plotting the performance measurements of various learning algorithms over time.
PlotTab() - Constructor for class moa.gui.experimentertab.PlotTab
 
PlotTab.LegendType - Enum in moa.gui.experimentertab
Lgend type
PlotTab.PlotStyle - Enum in moa.gui.experimentertab
Plot style
PlotTab.Terminal - Enum in moa.gui.experimentertab
Terminal
PlotTableModel() - Constructor for class moa.gui.LineGraphViewPanel.PlotTableModel
 
PminOption - Variable in class moa.classifiers.rules.RuleClassifier
 
PNG - moa.gui.experimentertab.PlotTab.Terminal
 
PNG - moa.tasks.Plot.Terminal
 
Point - Class in moa.clusterers.streamkm
 
Point(int) - Constructor for class moa.clusterers.streamkm.Point
 
Point(Instance, int) - Constructor for class moa.clusterers.streamkm.Point
 
pointIntervalOption - Variable in class moa.tasks.Plot
Interval between plotted data points.
PointPanel - Class in moa.gui.visualization
 
PointPanel(DataPoint, StreamPanel, double, double) - Constructor for class moa.gui.visualization.PointPanel
Type 1: Possibly be decayed, colored by class label.
PointPanel(DataPoint, StreamPanel, Color) - Constructor for class moa.gui.visualization.PointPanel
Type 2: Never be decayed, single color.
POINTS - moa.gui.experimentertab.PlotTab.PlotStyle
 
POINTS - moa.tasks.Plot.PlotStyle
 
poisson(double, Random) - Static method in class moa.core.MiscUtils
 
polevl(double, double[], int) - Static method in class moa.core.Statistics
Evaluates the given polynomial of degree N at x.
pOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
popupCopyRangeMenu(int, int) - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
 
popupCopyRangeMenu(int, int) - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
 
position - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
position - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator.Score
Age of example - position in the stream where the example was added
positionOffsetOption - Variable in class moa.clusterers.ClusterGenerator
 
positionOption - Variable in class moa.streams.ConceptDriftRealStream
 
positionOption - Variable in class moa.streams.ConceptDriftStream
 
posSamples - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
postProcessDistances(double[]) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Does post processing of the distances (if necessary) returned by distance(distance(Instance first, Instance second, double cutOffValue).
postProcessDistances(double[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Does post processing of the distances (if necessary) returned by distance(distance(Instance first, Instance second, double cutOffValue).
postProcessDistances(double[]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Does nothing, derived classes may override it though.
POSTSCRIPT - moa.gui.experimentertab.PlotTab.Terminal
 
POSTSCRIPT - moa.tasks.Plot.Terminal
 
POSTSCRIPT_COLOR - moa.gui.experimentertab.PlotTab.Terminal
 
POSTSCRIPT_COLOR - moa.tasks.Plot.Terminal
 
posWindow - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
posWindow - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
posWindow - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
posWindow - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator.Score
Age of example - position in the window where the example was added
posWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
posWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
powerSeries(double, double, double) - Static method in class moa.core.Statistics
Power series for incomplete beta integral.
preciseThreadTimesAvailable - Static variable in class moa.core.TimingUtils
 
precision - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
precisionPerClassOption - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
precisionRecallOutputOption - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
predicate - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.SplitNode
 
predicate - Variable in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
predicate - Variable in class moa.classifiers.rules.multilabel.core.Literal
 
Predicate - Interface in moa.classifiers.rules.core
 
Predicates - Class in moa.classifiers.rules
 
Predicates(double, double, double) - Constructor for class moa.classifiers.rules.Predicates
 
predicateSet - Variable in class moa.classifiers.rules.RuleClassification
 
prediction - Variable in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
prediction - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
prediction - Variable in class moa.clusterers.meta.Algorithm
 
prediction(double[]) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
Output the prediction made by this perceptron on the given instance
prediction(double[]) - Method in class moa.classifiers.rules.functions.Perceptron
 
prediction(double[][], int) - Method in class moa.classifiers.meta.LimAttClassifier
 
prediction(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
prediction(Instance) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
prediction(Instance, int) - Method in class moa.classifiers.functions.Perceptron
 
prediction(DoubleVector) - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
Output the prediction made by this perceptron on the given instance
prediction(DoubleVector) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
Output the prediction made by this perceptron on the given instance
Prediction - Interface in com.yahoo.labs.samoa.instances
 
predictionFunction - Variable in class moa.classifiers.rules.core.Rule.Builder
 
predictionFunction - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
predictionFunction(int) - Method in class moa.classifiers.rules.core.Rule.Builder
 
predictionFunctionOption - Variable in class moa.classifiers.rules.AMRulesRegressorOld
 
predictionFunctionOption - Variable in class moa.classifiers.rules.RuleClassifier
 
predictionOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
predictionPruning(double[][], int[], int) - Method in class moa.classifiers.meta.LimAttClassifier
 
predictions - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
predictPerformance(Algorithm) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
predictRating(float[], float[]) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
predictRating(int, int) - Method in class moa.recommender.predictor.BaselinePredictor
 
predictRating(int, int) - Method in class moa.recommender.predictor.BRISMFPredictor
 
predictRating(int, int) - Method in interface moa.recommender.predictor.RatingPredictor
 
predictRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
predictRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
predictRating(int, int) - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
predictRating(Integer, Integer) - Method in class moa.recommender.predictor.BaselinePredictor
 
predictRating(Integer, Integer) - Method in class moa.recommender.predictor.BRISMFPredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.predictor.BaselinePredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.predictor.BRISMFPredictor
 
predictRatings(int, List<Integer>) - Method in interface moa.recommender.predictor.RatingPredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
predictRatings(int, List<Integer>) - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
preds - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
prepareClassOptions() - Method in class com.github.javacliparser.JavaCLIParser
Prepares the options of this class.
prepareClassOptions(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
Prepares the options of this class.
prepareClassOptions(TaskMonitor, ObjectRepository) - Method in class moa.options.OptionsHandler
Prepares the options of this class.
prepareForUse() - Method in class moa.options.AbstractOptionHandler
 
prepareForUse() - Method in interface moa.options.OptionHandler
This method prepares this object for use.
prepareForUse() - Method in class moa.options.OptionsHandler
Dictionary with option texts and objects
prepareForUse(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
 
prepareForUse(TaskMonitor, ObjectRepository) - Method in interface moa.options.OptionHandler
This method prepares this object for use.
prepareForUse(TaskMonitor, ObjectRepository) - Method in class moa.options.OptionsHandler
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.AbstractClassifier
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.active.budget.FixedBM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.CusumDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.DDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EDDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.RDDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.STEPD
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.statisticaltests.KNN
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.multilabel.core.splitcriteria.ICVarianceReduction
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.CantellisInequality
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.ChebyshevInequality
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.anomalydetection.probabilityfunctions.GaussInequality
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.changedetection.NoChangeDetection
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.core.splitcriteria.VarianceRatioSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.featureranking.AbstractFeatureRanking
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultilabelInformationGain
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.core.splitcriteria.MultiTargetVarianceRatio
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.errormeasurers.AbstractMultiLabelErrorMeasurer
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.inputselectors.MeritThreshold
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.inputselectors.SelectAllInputs
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.outputselectors.EntropyThreshold
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.outputselectors.SelectAllOutputs
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.outputselectors.StdDevThreshold
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.rules.multilabel.outputselectors.VarianceThreshold
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.clusterers.AbstractClusterer
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
This method describes the implementation of how to prepare this object for use.
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.data.MemRecommenderData
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.JesterDataset
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.MovielensDataset
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.predictor.BaselinePredictor
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.predictor.BRISMFPredictor
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ArffFileStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.BootstrappedStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.FileStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.SimpleCSVStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ConceptDriftRealStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ConceptDriftStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.FilteredStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.filters.AbstractStreamFilter
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.AgrawalGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.AssetNegotiationGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.HyperplaneGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.LEDGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.LEDGeneratorDrift
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.MixedGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.RandomRBFGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.RandomTreeGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.SEAGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.SineGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.STAGGERGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.TextGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.WaveformGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.WaveformGeneratorDrift
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ImbalancedStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.MultiFilteredStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.MultiLabelFilteredStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.MultiTargetArffFileStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.PartitioningStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.RecurrentConceptDriftStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.meta.ALMultiParamTask
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.meta.ALPartitionEvaluationTask
 
prepareRandomSubspaceInstance(Instance, double) - Method in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
PreprocessDefaults() - Constructor for class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
prequentialEvaluationTaskOption - Variable in class moa.tasks.meta.ALMultiParamTask
 
preventRemoval - Variable in class moa.clusterers.meta.Algorithm
 
Preview - Class in moa.evaluation.preview
Abstract class which is used to define the methods needed from a preview
Preview() - Constructor for class moa.evaluation.preview.Preview
 
PreviewCollection<CollectionElementType extends Preview> - Class in moa.evaluation.preview
Class that stores and keeps the history of multiple previews
PreviewCollection(String, String, Class<?>) - Constructor for class moa.evaluation.preview.PreviewCollection
 
PreviewCollection(String, String, Class<?>, String, double[]) - Constructor for class moa.evaluation.preview.PreviewCollection
 
PreviewCollectionLearningCurveWrapper - Class in moa.evaluation.preview
Class used to wrap LearningCurve so that it can be used in conjunction with a PreviewCollection
PreviewCollectionLearningCurveWrapper(LearningCurve, Class<?>) - Constructor for class moa.evaluation.preview.PreviewCollectionLearningCurveWrapper
 
previewedThread - Variable in class moa.gui.active.ALPreviewPanel
 
previewedThread - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
previewedThread - Variable in class moa.gui.PreviewPanel
 
PreviewExperiments - Class in moa.gui.experimentertab
 
PreviewExperiments(ExpPreviewPanel) - Constructor for class moa.gui.experimentertab.PreviewExperiments
 
previewLabel - Variable in class moa.gui.active.ALPreviewPanel
 
previewLabel - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
previewLabel - Variable in class moa.gui.PreviewPanel
 
previewPanel - Variable in class moa.gui.active.ALTaskManagerPanel
 
previewPanel - Variable in class moa.gui.ALTabPanel
 
previewPanel - Variable in class moa.gui.AuxiliarTabPanel
 
previewPanel - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
previewPanel - Variable in class moa.gui.ClassificationTabPanel
 
previewPanel - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
previewPanel - Variable in class moa.gui.ConceptDriftTabPanel
 
previewPanel - Variable in class moa.gui.experimentertab.ExperimenterTabPanel
 
previewPanel - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
previewPanel - Variable in class moa.gui.MultiLabelTabPanel
 
previewPanel - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
previewPanel - Variable in class moa.gui.MultiTargetTabPanel
 
previewPanel - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
previewPanel - Variable in class moa.gui.RegressionTabPanel
 
previewPanel - Variable in class moa.gui.RegressionTaskManagerPanel
 
previewPanel - Variable in class moa.gui.TaskLauncher
 
previewPanel - Variable in class moa.gui.TaskManagerPanel
 
PreviewPanel - Class in moa.gui
This panel displays the running task preview text and buttons.
PreviewPanel() - Constructor for class moa.gui.PreviewPanel
 
PreviewPanel(PreviewPanel.TypePanel) - Constructor for class moa.gui.PreviewPanel
 
PreviewPanel(PreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.PreviewPanel
 
PreviewPanel.TypePanel - Enum in moa.gui
 
PreviewTableModel - Class in moa.gui
Class to display the latest preview in a table
PreviewTableModel() - Constructor for class moa.gui.PreviewTableModel
 
previousState - Variable in class moa.classifiers.meta.RCD
 
previousWeight - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
previousWeight - Variable in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
previousWeight - Variable in class moa.classifiers.trees.FIMTDD.InnerNode
 
priceValues - Static variable in class moa.streams.generators.AssetNegotiationGenerator
 
print(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
 
print(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
Print(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
Print_lt_cnt(ArrayList<Integer>) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
printAnomaliesSupervised(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
printAnomaliesUnsupervised(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
printAnomaly(Instance, double) - Method in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
printClusterCenter(Writer) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Writes the cluster center to a given stream.
printClusteringCenters(Writer) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Writes all clustering centers of the ClusterFeatures of the tree with this node as the root to a given stream.
printDStreamState() - Method in class moa.clusterers.dstream.Dstream
Prints out the values of the parameters associated with this instance of the D-Stream algorithm: gap; decay factor (lambda); C_m and C_l; D_m and D_l; and beta.
PrintEventQueue() - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintEventQueue() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
printf(String, Object...) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
 
printf(String, Object...) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
Printf(String, Object...) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
printGridClusters() - Method in class moa.clusterers.dstream.Dstream
Iterates through cluster_list and prints out each grid cluster therein as a string.
printGridList() - Method in class moa.clusterers.dstream.Dstream
Iterates through grid_list and prints out each density grid therein as a string.
printInst(Instance) - Method in class moa.clusterers.dstream.Dstream
 
PrintInstance(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
PrintISB() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
printList() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Prints out the contents of the neighborlist.
println(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
 
println(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
Println(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
PrintMCSet(Set<MicroCluster>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
printMicroClusteringResult(Writer) - Method in class moa.clusterers.kmeanspm.BICO
Writes all micro cluster to a given stream.
printNode() - Method in class moa.classifiers.oneclass.HSTreeNode
Prints this node to string and, if it is an internal node, prints its children nodes as well.
PrintNodeList(List<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeList(List<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
PrintNodeSet(Set<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeSet(Set<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
PrintNodeVector(Vector<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeVector(Vector<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
PrintOutliers() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
PrintPD() - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintPrecNeighs() - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
printRule() - Method in class moa.classifiers.rules.core.Rule
 
PrintRuleSet() - Method in class moa.classifiers.rules.AbstractAMRules
 
PrintRuleSet() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
PrintRuleSet() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
printWeightsOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
priors - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
priors_norm - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
prob - Variable in class moa.classifiers.lazy.kNNwithPAW
 
prob - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
probabilityDensity(double) - Method in class moa.core.GaussianEstimator
 
ProbabilityFunction - Interface in moa.classifiers.rules.core.anomalydetection.probabilityfunctions
 
probabilityFunctionOption - Variable in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
probabilityFunctionOption - Variable in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
probabilityOfAttributeValueGivenClass(double, int) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
Gets the probability for an attribute value given a class
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
probabilityThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
probNegative - Variable in class moa.streams.generators.TextGenerator
 
probPerClass - Variable in class moa.streams.ImbalancedStream
 
probPositive - Variable in class moa.streams.generators.TextGenerator
 
probRound(double, Random) - Static method in class moa.core.Utils
Rounds a double to the next nearest integer value in a probabilistic fashion (e.g.
probToLogOdds(double) - Static method in class moa.core.Utils
Returns the log-odds for a given probabilitiy.
proccesCMD() - Method in class moa.gui.experimentertab.ExperimeterCLI
 
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.ComposedSplitFunction
 
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.PromotionFunction
Chooses (promotes) a pair of objects according to some criteria that is suitable for the application using the M-Tree.
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.PromotionFunctions.RandomPromotion
 
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.SplitFunction
Processes the splitting of a node.
process(Pair<DATA>, Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.PartitionFunction
Executes the partitioning.
process(Pair<DATA>, Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.PartitionFunctions.BalancedPartition
Processes the balanced partition.
processChunk() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Processes a chunk of instances.
processChunk() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Processes a chunk.
processedInstances - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Number of processed examples.
processedInstances - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
processedInstances - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Number of processed examples.
processFiles() - Method in class moa.gui.experimentertab.ReadFile
Processes the results files of the algorithms in each directory.
ProcessGraphAxes - Class in moa.gui.visualization
ProcessGraphAxes is an implementation of AbstractGraphAxes, drawing x labels based on the process frequency.
ProcessGraphAxes() - Constructor for class moa.gui.visualization.ProcessGraphAxes
 
ProcessGraphCanvas - Class in moa.gui.visualization
ProcessGraphCanvas is an implementation of AbstractGraphCanvas, showing one or multiple curves over a process.
ProcessGraphCanvas() - Constructor for class moa.gui.visualization.ProcessGraphCanvas
Initialises a ProcessGraphCanvas by calling the super constructor with a ProcessGraphAxes as instance of AbstractGraphAxes and GraphMultiCurve as instance of AbstractGraphPlot.
processingSpeed - Variable in class moa.clusterers.denstream.WithDBSCAN
 
processInstance(Instance, ARFFIMTDD.Node, double, double, boolean, boolean) - Method in class moa.classifiers.trees.ARFFIMTDD
 
processInstance(Instance, FIMTDD.Node, double, double, boolean, boolean) - Method in class moa.classifiers.trees.FIMTDD
 
processInstance(Instance, FIMTDD.Node, double, double, boolean, boolean) - Method in class moa.classifiers.trees.ORTO
 
processInstance(MultiLabelInstance, ISOUPTree.Node, double[], double[], boolean, boolean) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
processInstanceOptionNode(Instance, ORTO.OptionNode, double, double, boolean, boolean) - Method in class moa.classifiers.trees.ORTO
 
processNewInstanceImpl(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.AbstractC.AbstractC
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.MCOD.MCOD
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
progressAnimSequence - Static variable in class moa.DoTask
Array of characters to use to animate the progress of tasks running.
progressAnimSequence - Static variable in class moa.gui.experimentertab.TaskManagerTabPanel
Array of characters to use to animate the progress of tasks running.
progressBar - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
Use progress bar to show the progress of computing scores of feature importance.
progressBar - Variable in class moa.tasks.FeatureImportanceConfig
Use progress bar to show the progress of computing scores of feature importance.
ProgressCellRenderer() - Constructor for class moa.gui.active.ALTaskManagerPanel.ProgressCellRenderer
 
ProgressCellRenderer() - Constructor for class moa.gui.AuxiliarTaskManagerPanel.ProgressCellRenderer
 
ProgressCellRenderer() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
ProgressCellRenderer() - Constructor for class moa.gui.experimentertab.TaskManagerTabPanel.ProgressCellRenderer
ProgressCellRenderer Constructor
ProgressCellRenderer() - Constructor for class moa.gui.MultiLabelTaskManagerPanel.ProgressCellRenderer
 
ProgressCellRenderer() - Constructor for class moa.gui.MultiTargetTaskManagerPanel.ProgressCellRenderer
 
ProgressCellRenderer() - Constructor for class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
ProgressCellRenderer() - Constructor for class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
progressLabel - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
 
promoteCandidatesIntoEnsemble() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
promoted - Variable in class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
A pair of promoted data objects.
PromotionFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
An object that chooses a pair from a set of data objects.
PromotionFunctions - Class in moa.clusterers.outliers.utils.mtree
Some pre-defined implementations of promotion functions.
PromotionFunctions.RandomPromotion<DATA> - Class in moa.clusterers.outliers.utils.mtree
A promotion function object that randomly chooses ("promotes") two data objects.
PROPERTIES - Static variable in class moa.gui.GUIDefaults
Properties associated with the GUI options.
PropertiesReader - Class in moa.core
Class implementing some properties reader utility methods.
PropertiesReader() - Constructor for class moa.core.PropertiesReader
 
PROPERTY_FILE - Static variable in class moa.gui.GUIDefaults
The name of the properties file.
prunedAlternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
pruneOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
pruneOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
pruneToK(int) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Prunes the list to contain the k nearest neighbors.
pruning - Variable in class moa.classifiers.meta.LearnNSE
 
pruningStrategyOption - Variable in class moa.classifiers.meta.LearnNSE
 
PSLATEX - moa.gui.experimentertab.PlotTab.Terminal
 
PSLATEX - moa.tasks.Plot.Terminal
 
PSTEX - moa.gui.experimentertab.PlotTab.Terminal
 
PSTEX - moa.tasks.Plot.Terminal
 
PSTRICKS - moa.gui.experimentertab.PlotTab.Terminal
 
PSTRICKS - moa.tasks.Plot.Terminal
 
pureBoostOption - Variable in class moa.classifiers.meta.ADOB
 
pureBoostOption - Variable in class moa.classifiers.meta.BOLE
 
pureBoostOption - Variable in class moa.classifiers.meta.OzaBoost
 
pureBoostOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
purpose - Variable in class com.github.javacliparser.AbstractOption
Text of the purpose of this option.
put(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
adds the value to the heap.
put(long, T) - Method in class moa.clusterers.kmeanspm.CuckooHashing
Adds an element to the hash table.
putBySubstitute(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
Puts an element by substituting it in place of the top most element.
putKthNearest(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
Stores kth nearest elements (if there are more than one).
PValue - Variable in class moa.gui.experimentertab.statisticaltests.PValuePerTwoAlgorithm
 
PValuePerTwoAlgorithm - Class in moa.gui.experimentertab.statisticaltests
 
PValuePerTwoAlgorithm(String, String, double) - Constructor for class moa.gui.experimentertab.statisticaltests.PValuePerTwoAlgorithm
Costructor.

Q

Q0 - Static variable in class moa.core.Statistics
 
Q1 - Static variable in class moa.core.Statistics
 
Q2 - Static variable in class moa.core.Statistics
 
qtyNaNs - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
quantityClassifiersTestOption - Variable in class moa.classifiers.meta.RCD
 
queryFreqOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
queryFreqOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
queuedInstance - Variable in class moa.streams.BootstrappedStream
 
quickSort(double[], double[], int, int) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
performs quicksort.
quickSort(Instances, int[], int, int, int) - Static method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Sorts the instances according to the given attribute/dimension.
quote(String) - Static method in class moa.core.Utils
Quotes a string if it contains special characters.

R

r - Variable in class moa.streams.filters.RBFFilter
 
R_MAX - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Index in ranges for MAX.
R_MIN - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Index in ranges for MIN.
R_WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Index in ranges for WIDTH.
radius() - Method in class moa.cluster.Miniball
Return the Radius of the miniball
radiusDecreaseOption - Variable in class moa.clusterers.ClusterGenerator
 
radiusFactor - Variable in class moa.cluster.CFCluster
 
radiusIncreaseOption - Variable in class moa.clusterers.ClusterGenerator
 
radiusOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
 
radiusOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
radiusOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
radiusOption - Variable in class moa.clusterers.outliers.MCOD.MCOD
 
radiusOption - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
random - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
random - Variable in class moa.streams.ConceptDriftRealStream
 
random - Variable in class moa.streams.ConceptDriftStream
 
random - Variable in class moa.streams.filters.AddNoiseFilter
 
random - Variable in class moa.streams.filters.RBFFilter
 
random - Variable in class moa.streams.filters.ReLUFilter
 
random - Variable in class moa.streams.ImbalancedStream
 
random - Variable in class moa.streams.IrrelevantFeatureAppenderStream
A pseudo-random number generator.
random - Variable in class moa.streams.PartitioningStream
 
RandomAMRules - Class in moa.classifiers.rules.meta
Random AMRules algoritgm that performs analogous procedure as the Random Forest Trees but with Rules
RandomAMRules() - Constructor for class moa.classifiers.rules.meta.RandomAMRules
 
RandomAMRulesOld - Class in moa.classifiers.rules.meta
 
RandomAMRulesOld() - Constructor for class moa.classifiers.rules.meta.RandomAMRulesOld
 
randomFlagOne - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
randomFlagTwo - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
randomGenerator - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
randomGenerator - Variable in class moa.streams.BootstrappedStream
 
RandomHoeffdingTree - Class in moa.classifiers.trees
Random decision trees for data streams.
RandomHoeffdingTree() - Constructor for class moa.classifiers.trees.RandomHoeffdingTree
 
RandomHoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
RandomHoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
RandomHoeffdingTree.RandomLearningNode - Class in moa.classifiers.trees
 
randomize(Random) - Method in class com.yahoo.labs.samoa.instances.Instances
Randomize.
RandomLearningNode(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
RandomLearningNode(double[], int) - Constructor for class moa.classifiers.trees.ARFHoeffdingTree.RandomLearningNode
 
randomOneOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
RandomPromotion() - Constructor for class moa.clusterers.outliers.utils.mtree.PromotionFunctions.RandomPromotion
 
RandomRBFGenerator - Class in moa.streams.generators
Stream generator for a random radial basis function stream.
RandomRBFGenerator() - Constructor for class moa.streams.generators.RandomRBFGenerator
 
RandomRBFGenerator.Centroid - Class in moa.streams.generators
 
RandomRBFGeneratorDrift - Class in moa.streams.generators
Stream generator for a random radial basis function stream with drift.
RandomRBFGeneratorDrift() - Constructor for class moa.streams.generators.RandomRBFGeneratorDrift
 
RandomRBFGeneratorEvents - Class in moa.streams.clustering
 
RandomRBFGeneratorEvents() - Constructor for class moa.streams.clustering.RandomRBFGeneratorEvents
 
RandomRules - Class in moa.classifiers.meta
 
RandomRules() - Constructor for class moa.classifiers.meta.RandomRules
 
randomSample(Collection<T>, int) - Static method in class moa.clusterers.outliers.utils.mtree.utils.Utils
Randomly chooses elements from the collection.
randomSeed - Variable in class moa.classifiers.AbstractClassifier
Random seed used in randomizable learners
randomSeed - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
randomSeed - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
randomSeed - Variable in class moa.clusterers.AbstractClusterer
 
randomSeedOption - Variable in class moa.classifiers.AbstractClassifier
Option for randomizable learners to change the random seed
randomSeedOption - Variable in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
randomSeedOption - Variable in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
randomSeedOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
randomSeedOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
randomSeedOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
randomSeedOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
randomSeedOption - Variable in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
randomSeedOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
randomSeedOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
randomSeedOption - Variable in class moa.clusterers.AbstractClusterer
 
randomSeedOption - Variable in class moa.clusterers.CobWeb
 
randomSeedOption - Variable in class moa.clusterers.streamkm.StreamKM
 
randomSeedOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
randomSeedOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
randomSeedOption - Variable in class moa.streams.BootstrappedStream
 
randomSeedOption - Variable in class moa.streams.ConceptDriftRealStream
 
randomSeedOption - Variable in class moa.streams.ConceptDriftStream
 
randomSeedOption - Variable in class moa.streams.filters.AddNoiseFilter
 
randomSeedOption - Variable in class moa.streams.filters.RBFFilter
 
randomSeedOption - Variable in class moa.streams.filters.ReLUFilter
 
randomSeedOption - Variable in class moa.streams.PartitioningStream
 
randomSeedOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
randomSeedOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
randomSeedOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
randomSeedOption - Variable in class moa.tasks.meta.ALPartitionEvaluationTask
 
RandomTreeGenerator - Class in moa.streams.generators
Stream generator for a stream based on a randomly generated tree..
RandomTreeGenerator() - Constructor for class moa.streams.generators.RandomTreeGenerator
 
RandomTreeGenerator.Node - Class in moa.streams.generators
 
randomTwoOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
range - Variable in class com.yahoo.labs.samoa.instances.ArffLoader
 
range - Variable in class com.yahoo.labs.samoa.instances.InstanceInformation
Range for multi-label instances.
Range - Class in com.yahoo.labs.samoa.instances
 
Range(String) - Constructor for class com.yahoo.labs.samoa.instances.Range
 
RangeOption - Class in com.github.javacliparser
Range option.
RangeOption(String, char, String, String) - Constructor for class com.github.javacliparser.RangeOption
 
RangeOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a range option.
RangeOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.RangeOptionEditComponent
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
rangeSingle(String) - Method in class com.yahoo.labs.samoa.instances.Range
Translates a single string selection into it's internal 0-based equivalent.
rangesSet() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Check if ranges are set.
rank - Variable in class moa.gui.experimentertab.statisticaltests.RankPerAlgorithm
 
RankingGraph - Class in moa.gui.experimentertab
Shows the comparison of several online learning algorithms on multiple datasets by performing appropriate statistical tests.
RankingGraph(ArrayList<RankPerAlgorithm>, ArrayList<PValuePerTwoAlgorithm>, String, double) - Constructor for class moa.gui.experimentertab.RankingGraph
Class constructor.
RankingGraph.SliderPanel - Class in moa.gui.experimentertab
Allows you to increase or decrease the scale of the graph.
RankPerAlgorithm - Class in moa.gui.experimentertab.statisticaltests
This class contains each algorithm with its ranking.
RankPerAlgorithm(String, double) - Constructor for class moa.gui.experimentertab.statisticaltests.RankPerAlgorithm
Constructor.
rating - Variable in class moa.recommender.rc.utils.Rating
 
Rating - Class in moa.recommender.rc.utils
 
Rating(int, int, double) - Constructor for class moa.recommender.rc.utils.Rating
 
ratingIterator() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
ratingIterator() - Method in interface moa.recommender.rc.data.RecommenderData
 
RatingPredictor - Interface in moa.recommender.predictor
Rating predicting algorithm.
RatingPredictor - Interface in moa.recommender.rc.predictor
 
ratingPredictorOption - Variable in class moa.tasks.EvaluateOnlineRecommender
 
ratingsItem - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
ratingsUser - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
RawCellBuilder - Class in moa.tasks.ipynb
Implement a raw cell
RawCellBuilder() - Constructor for class moa.tasks.ipynb.RawCellBuilder
 
RBFFilter - Class in moa.streams.filters
 
RBFFilter() - Constructor for class moa.streams.filters.RBFFilter
 
RCD - Class in moa.classifiers.meta
Creates a set of classifiers, each one representing a different context.
RCD() - Constructor for class moa.classifiers.meta.RCD
 
RDDM - Class in moa.classifiers.core.driftdetection
 
RDDM() - Constructor for class moa.classifiers.core.driftdetection.RDDM
 
reactiveLearner - Variable in class moa.classifiers.meta.PairedLearners
 
reactiveLearnerOption - Variable in class moa.classifiers.meta.PairedLearners
 
read() - Method in class moa.core.InputStreamProgressMonitor
 
read(byte[]) - Method in class moa.core.InputStreamProgressMonitor
 
read(byte[], int, int) - Method in class moa.core.InputStreamProgressMonitor
 
readBuffer(List<String>, List<String>, List<Measure>) - Method in class moa.gui.experimentertab.Stream
Read each algorithm file.
readCollection(PreviewCollection<Preview>) - Method in class moa.gui.active.ALTaskTextViewerPanel
Parses a PreviewCollection and return the resulting ParsedPreview object.
readCSV(String) - Static method in class moa.gui.experimentertab.ReadFile
Allow to read a csv file.
readCSV(String) - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Read a csv file from an path.
readData() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Read data from experiments sumaries.
readData(String) - Method in class moa.gui.experimentertab.AnalyzeTab
Allows you to read the results file and update the corresponding fields.
readData(String) - Method in class moa.gui.experimentertab.PlotTab
Allows to read the results file and update the corresponding fields.
readData(String) - Method in class moa.gui.experimentertab.SummaryTab
Allows to read the results file and update the corresponding fields.
ReadFile - Class in moa.gui.experimentertab
This class processes the results files of the algorithms in each directory.
ReadFile(String) - Constructor for class moa.gui.experimentertab.ReadFile
File Constructor
readFromFile(File) - Static method in class com.github.javacliparser.SerializeUtils
 
readFromFile(File) - Static method in class moa.core.SerializeUtils
 
readInstance() - Method in class com.yahoo.labs.samoa.instances.ArffLoader
Reads instance.
readInstance(Reader) - Method in class com.yahoo.labs.samoa.instances.Instances
Read instance.
readInstanceDense() - Method in class com.yahoo.labs.samoa.instances.ArffLoader
Reads a dense instance from the file.
readMinMaxDiffValues(HashSet<Integer>) - Method in class moa.streams.clustering.FileStream
 
readNextInstanceFromFile() - Method in class moa.streams.ArffFileStream
 
readNextInstanceFromFile() - Method in class moa.streams.clustering.FileStream
 
readNextInstanceFromFile() - Method in class moa.streams.MultiTargetArffFileStream
 
readProperties(String) - Static method in class moa.core.PropertiesReader
Reads properties that inherit from three locations.
rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Re-arranges the indices array so that in the portion of the array belonging to the node to be split, the points <= to the splitVal are on the left of the portion and those > the splitVal are on the right.
rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
Re-arranges the indices array such that the points <= to the splitVal are on the left of the array and those > the splitVal are on the right.
rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
Re-arranges the indices array such that the points <= to the splitVal are on the left of the array and those > the splitVal are on the right.
RebalanceStream - Class in moa.classifiers.meta.imbalanced
RebalanceStream
RebalanceStream() - Constructor for class moa.classifiers.meta.imbalanced.RebalanceStream
 
rebuild() - Method in class moa.clusterers.kmeanspm.BICO
If the number of ClusteringTreeNodes exceeds the maximum bound, the global threshold T will be doubled and the tree will be rebuild with the new threshold.
recalculateData() - Method in class moa.clusterers.clustree.Entry
This functions reads every entry in the child node and calculates the corresponding data Kernel.
recalculateSTMErrorOption - Variable in class moa.classifiers.lazy.SAMkNN
 
recall - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
recallPerClassOption - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
recentChunk - Variable in class moa.classifiers.meta.ADACC
Last chunk of data of size (tau_size) to compute the stability index
RecommenderData - Interface in moa.recommender.data
 
RecommenderData - Interface in moa.recommender.rc.data
 
RecurrentConceptDriftStream - Class in moa.streams
Stream generator that adds recurrent concept drifts to examples in a stream.
RecurrentConceptDriftStream() - Constructor for class moa.streams.RecurrentConceptDriftStream
 
RedirectToDisplay() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
RedirectToFile() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
RedirectToFile(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
redraw() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
redraw() - Method in class moa.gui.visualization.RunVisualizer
 
redrawOnResize() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
RedrawPointLayer() - Method in class moa.gui.visualization.StreamOutlierPanel
 
reEvalPeriodOption - Variable in class moa.classifiers.trees.EFDT
 
reEvaluateBestSplit(EFDT.EFDTSplitNode, EFDT.EFDTSplitNode, int) - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
refineOwners(KDTreeNode, Instances, int[]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Refines the ownerlist.
refresh() - Method in class moa.gui.EditableMultiChoiceOptionEditComponent
Refresh the shown contents.
refresh() - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
refresh() - Method in class moa.gui.PreviewPanel
 
refreshButton - Variable in class moa.gui.active.ALPreviewPanel
 
refreshButton - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
refreshButton - Variable in class moa.gui.PreviewPanel
 
refreshVariedParamNameOption() - Method in class moa.options.DependentOptionsUpdater
Refresh the provided choices of an EditableMultiChoiceOption every time a ClassOption (the prequential evaluation task) is changed.
registerEditComponent(EditableMultiChoiceOptionEditComponent) - Method in class moa.options.EditableMultiChoiceOption
Register the corresponding UI component, so that it can be refreshed when options have changed.
REGRESSION - moa.gui.experimentertab.ExpPreviewPanel.TypePanel
 
REGRESSION - moa.gui.PreviewPanel.TypePanel
 
RegressionAccuracy - Class in moa.evaluation
 
RegressionAccuracy() - Constructor for class moa.evaluation.RegressionAccuracy
 
RegressionMainTask - Class in moa.tasks
Abstract Regression Main Task.
RegressionMainTask() - Constructor for class moa.tasks.RegressionMainTask
 
RegressionPerformanceEvaluator - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the regression learning process.
RegressionTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
RegressionTabPanel() - Constructor for class moa.gui.RegressionTabPanel
 
RegressionTaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
RegressionTaskManagerPanel() - Constructor for class moa.gui.RegressionTaskManagerPanel
 
RegressionTaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
RegressionTaskManagerPanel.TaskTableModel - Class in moa.gui
 
regressionTreeOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
regressionTreeOption - Variable in class moa.classifiers.trees.FIMTDD
 
Regressor - Interface in moa.classifiers
Regressor interface for incremental regression models.
Relation - Class in moa.gui.experimentertab.statisticaltests
T�tulo:
Relation() - Constructor for class moa.gui.experimentertab.statisticaltests.Relation
 
Relation(int, int) - Constructor for class moa.gui.experimentertab.statisticaltests.Relation
 
relationName - Variable in class com.yahoo.labs.samoa.instances.InstanceInformation
The dataset's name.
relativeLTMSizeOption - Variable in class moa.classifiers.lazy.SAMkNN
 
RelativeMeanAbsoluteDeviationMT - Class in moa.classifiers.rules.multilabel.errormeasurers
Relative Mean Absolute Deviation for multitarget and with fading factor
RelativeMeanAbsoluteDeviationMT() - Constructor for class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
RelativeRootMeanSquaredErrorMT - Class in moa.classifiers.rules.multilabel.errormeasurers
Relative Root Mean Squared Error for multitarget and with fading factor
RelativeRootMeanSquaredErrorMT() - Constructor for class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
ReLUFilter - Class in moa.streams.filters
 
ReLUFilter() - Constructor for class moa.streams.filters.ReLUFilter
 
remove() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
 
remove() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
remove() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
remove(int) - Method in class moa.cluster.Clustering
remove a cluster from the clustering
remove(int) - Method in class moa.core.AutoExpandVector
 
remove(int) - Method in class moa.recommender.rc.utils.DenseVector
 
remove(int) - Method in class moa.recommender.rc.utils.SparseVector
 
remove(int) - Method in class moa.recommender.rc.utils.Vector
 
remove(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Removes a data object from the M-Tree.
remove(Object) - Method in class moa.core.AutoExpandVector
 
remove(CFCluster) - Method in class moa.clusterers.macro.NonConvexCluster
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
removeAll() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
removeAllOptions() - Method in class com.github.javacliparser.Options
 
removeAttributesOption - Variable in class moa.streams.clustering.FileStream
 
removeBadSplits(SplitCriterion, double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
A method to remove all nodes in the E-BST in which it and all it's children represent 'bad' split points
removeBlock(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
removeChangeListener(ChangeListener) - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
Removes the listener from the internal set of listeners.
removeChangeListener(ChangeListener) - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
Removes the listener from the internal set of listeners.
removeChild(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
removeClusterChangeListener(ClusterEventListener) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
Remove a listener
RemoveDiscreteAttributeFilter - Class in moa.streams.filters
Filter for removing discrete attributes in instances of a stream.
RemoveDiscreteAttributeFilter() - Constructor for class moa.streams.filters.RemoveDiscreteAttributeFilter
 
removeElementAt(int) - Method in class moa.core.FastVector
Deletes an element from this vector.
removeExcessTrees() - Method in class moa.classifiers.trees.ORTO
 
removeExperts() - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
RemoveExpiredOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
removeFirstBlock() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
removeGrid(DensityGrid) - Method in class moa.clusterers.dstream.GridCluster
 
removeItem(int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
removeItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
removeItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
RemoveNode(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
removeObject(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
removeOption(Option) - Method in class com.github.javacliparser.Options
 
removeOption(String) - Method in class com.github.javacliparser.Options
 
RemoveOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
removePoorAttsOption - Variable in class moa.classifiers.trees.EFDT
 
removePoorAttsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
removePoorAttsOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
removePoorestModelBytes() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Removes the poorest classifier from the model, thus decreasing the models size.
removePoorestModelBytes() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
RemovePrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
RemovePrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
removePropertyChangeListener(PropertyChangeListener) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Removes a PropertyChangeListener.
removeRange(int, int) - Method in class moa.core.AutoExpandVector
 
removeRating(int, int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
removeRating(int, int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
removeRating(int, int) - Method in interface moa.recommender.rc.data.RecommenderData
 
removeSubstring(String, String) - Static method in class moa.core.Utils
Removes all occurrences of a string from another string.
removeSubtree(Iadem3Subtree) - Method in class moa.classifiers.trees.iadem.Iadem3
 
removeSubtree(Iadem3Subtree) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
removeTaskCompletionListener(TaskCompletionListener) - Method in class moa.gui.experimentertab.ExpTaskThread
 
removeTaskCompletionListener(TaskCompletionListener) - Method in class moa.tasks.TaskThread
 
removeUser(int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
removeUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
removeUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
removeWeakestExpert(int) - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
renderAlgoPanel() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
renderAlgoPanel() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
renderAWTBox(Graphics, int, int, int, int) - Method in interface moa.gui.AWTRenderer
 
repaint() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
repaint() - Method in class moa.gui.outliertab.OutlierVisualTab
 
repaintOutliers() - Method in class moa.gui.visualization.StreamOutlierPanel
 
replaceSubstring(String, String, String) - Static method in class moa.core.Utils
Replaces with a new string, all occurrences of a string from another string.
ReplacingMissingValuesFilter - Class in moa.streams.filters
Replaces the missing values with another value according to the selected strategy.
ReplacingMissingValuesFilter() - Constructor for class moa.streams.filters.ReplacingMissingValuesFilter
 
ReplacingMissingValuesFilter.MapUtil - Class in moa.streams.filters
 
replicatesOption - Variable in class moa.classifiers.core.statisticaltests.Cramer
 
repository - Variable in class moa.gui.experimentertab.ExpTaskThread
 
repository - Variable in class moa.tasks.TaskThread
 
Repository(int) - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Repository
 
requestCancel() - Method in class moa.tasks.NullMonitor
 
requestCancel() - Method in class moa.tasks.StandardTaskMonitor
 
requestCancel() - Method in interface moa.tasks.TaskMonitor
Requests the task monitored to cancel.
requestPause() - Method in class moa.tasks.NullMonitor
 
requestPause() - Method in class moa.tasks.StandardTaskMonitor
 
requestPause() - Method in interface moa.tasks.TaskMonitor
Requests the task monitored to pause.
requestResultPreview() - Method in class moa.tasks.NullMonitor
 
requestResultPreview() - Method in class moa.tasks.StandardTaskMonitor
 
requestResultPreview() - Method in interface moa.tasks.TaskMonitor
Requests to preview the task result.
requestResultPreview(ResultPreviewListener) - Method in class moa.tasks.NullMonitor
 
requestResultPreview(ResultPreviewListener) - Method in class moa.tasks.StandardTaskMonitor
 
requestResultPreview(ResultPreviewListener) - Method in interface moa.tasks.TaskMonitor
Requests to preview the task result.
requestResume() - Method in class moa.tasks.NullMonitor
 
requestResume() - Method in class moa.tasks.StandardTaskMonitor
 
requestResume() - Method in interface moa.tasks.TaskMonitor
Requests the task monitored to resume.
RequiredOptionNotSpecifiedException - Exception in moa.options
 
RequiredOptionNotSpecifiedException() - Constructor for exception moa.options.RequiredOptionNotSpecifiedException
 
requiredType - Variable in class com.github.javacliparser.AbstractClassOption
The class type
requiredType - Variable in class moa.options.AbstractClassOption
The class type
Reservoir(int, int) - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
reset - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
 
reset - Variable in class moa.classifiers.functions.Perceptron
 
reset - Variable in class moa.classifiers.meta.LimAttClassifier
 
reset - Variable in class moa.classifiers.rules.RuleClassification
 
reset - Variable in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
reset - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
reset() - Method in class moa.classifiers.functions.SGD
Reset the classifier.
reset() - Method in class moa.classifiers.functions.SGDMultiClass
Reset the classifier.
reset() - Method in class moa.classifiers.functions.SPegasos
Reset the classifier.
reset() - Method in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
reset() - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
reset() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
reset() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
reset() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
reset() - Method in class moa.classifiers.rules.functions.Perceptron
 
reset() - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
reset() - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
reset() - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
reset() - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
reset() - Method in class moa.core.InputStreamProgressMonitor
 
reset() - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicMultiLabelPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
reset() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
reset() - Method in interface moa.evaluation.LearningPerformanceEvaluator
Resets this evaluator.
reset() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
reset() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
reset() - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
reset() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
reset() - Method in interface moa.recommender.dataset.Dataset
 
reset() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
reset() - Method in class moa.recommender.dataset.impl.JesterDataset
 
reset() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
reset(double, double) - Method in class moa.classifiers.rules.functions.TargetMean
 
reset(int) - Method in class moa.evaluation.ALWindowClassificationPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
reset(int) - Method in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
reset(Instance, long, Random) - Method in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
resetBatch - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
resetBatchMajority - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
resetBatchMinority - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
resetButton - Variable in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
resetChange() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
resetError() - Method in class moa.classifiers.rules.functions.Perceptron
 
resetError() - Method in class moa.classifiers.rules.functions.TargetMean
 
resetFF() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
resetLearning() - Method in class moa.classifiers.AbstractClassifier
 
resetLearning() - Method in interface moa.classifiers.active.budget.BudgetManager
Resets the budget manager.
resetLearning() - Method in class moa.classifiers.active.budget.FixedBM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Resets this change detector.
resetLearning() - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
resetLearning() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Resets this change detector.
resetLearning() - Method in class moa.classifiers.core.driftdetection.CusumDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.DDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.EDDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.RDDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.STEPD
 
resetLearning() - Method in class moa.classifiers.rules.core.changedetection.NoChangeDetection
 
resetLearning() - Method in class moa.clusterers.AbstractClusterer
 
resetLearning() - Method in interface moa.clusterers.Clusterer
 
resetLearning() - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
resetLearning() - Method in interface moa.learners.Learner
Resets this learner.
resetLearningImpl() - Method in class moa.classifiers.AbstractClassifier
Resets this classifier.
resetLearningImpl() - Method in class moa.classifiers.active.ALRandom
 
resetLearningImpl() - Method in class moa.classifiers.active.ALUncertainty
 
resetLearningImpl() - Method in class moa.classifiers.bayes.NaiveBayes
 
resetLearningImpl() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
resetLearningImpl() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
resetLearningImpl() - Method in class moa.classifiers.functions.AdaGrad
 
resetLearningImpl() - Method in class moa.classifiers.functions.MajorityClass
 
resetLearningImpl() - Method in class moa.classifiers.functions.NoChange
 
resetLearningImpl() - Method in class moa.classifiers.functions.Perceptron
 
resetLearningImpl() - Method in class moa.classifiers.functions.SGD
 
resetLearningImpl() - Method in class moa.classifiers.functions.SGDMultiClass
 
resetLearningImpl() - Method in class moa.classifiers.functions.SPegasos
 
resetLearningImpl() - Method in class moa.classifiers.lazy.kNN
 
resetLearningImpl() - Method in class moa.classifiers.lazy.kNNwithPAW
 
resetLearningImpl() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
resetLearningImpl() - Method in class moa.classifiers.lazy.SAMkNN
 
resetLearningImpl() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
resetLearningImpl() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
resetLearningImpl() - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
resetLearningImpl() - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
resetLearningImpl() - Method in class moa.classifiers.meta.ADOB
 
resetLearningImpl() - Method in class moa.classifiers.meta.BOLE
 
resetLearningImpl() - Method in class moa.classifiers.meta.DACC
 
resetLearningImpl() - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
resetLearningImpl() - Method in class moa.classifiers.meta.HeterogeneousEnsembleBlast
 
resetLearningImpl() - Method in class moa.classifiers.meta.HeterogeneousEnsembleBlastFadingFactors
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
resetLearningImpl() - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
resetLearningImpl() - Method in class moa.classifiers.meta.LearnNSE
 
resetLearningImpl() - Method in class moa.classifiers.meta.LeveragingBag
 
resetLearningImpl() - Method in class moa.classifiers.meta.LimAttClassifier
 
resetLearningImpl() - Method in class moa.classifiers.meta.OCBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
resetLearningImpl() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBag
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBagAdwin
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBagASHT
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
resetLearningImpl() - Method in class moa.classifiers.meta.PairedLearners
 
resetLearningImpl() - Method in class moa.classifiers.meta.RandomRules
 
resetLearningImpl() - Method in class moa.classifiers.meta.RCD
 
resetLearningImpl() - Method in class moa.classifiers.meta.StreamingRandomPatches
 
resetLearningImpl() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
resetLearningImpl() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
resetLearningImpl() - Method in class moa.classifiers.meta.WEKAClassifier
 
resetLearningImpl() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
resetLearningImpl() - Method in class moa.classifiers.multilabel.MEKAClassifier
 
resetLearningImpl() - Method in class moa.classifiers.multilabel.trees.ISOUPTree
 
resetLearningImpl() - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
resetLearningImpl() - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
resetLearningImpl() - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
resetLearningImpl() - Method in class moa.classifiers.oneclass.Autoencoder
Marks the autoencoder as needing to be reinitialized.
resetLearningImpl() - Method in class moa.classifiers.oneclass.HSTrees
Reset the classifier's parameters and data structures.
resetLearningImpl() - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
Resets the implementation's parameters and data structures.
resetLearningImpl() - Method in class moa.classifiers.rules.AbstractAMRules
 
resetLearningImpl() - Method in class moa.classifiers.rules.AMRulesRegressorOld
This method initializes and resets the algorithm.
resetLearningImpl() - Method in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
resetLearningImpl() - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
resetLearningImpl() - Method in class moa.classifiers.rules.functions.FadingTargetMean
 
resetLearningImpl() - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
resetLearningImpl() - Method in class moa.classifiers.rules.functions.Perceptron
A method to reset the model
resetLearningImpl() - Method in class moa.classifiers.rules.functions.TargetMean
 
resetLearningImpl() - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
resetLearningImpl() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
resetLearningImpl() - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
resetLearningImpl() - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
resetLearningImpl() - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
resetLearningImpl() - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
resetLearningImpl() - Method in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
resetLearningImpl() - Method in class moa.classifiers.rules.RuleClassifier
 
resetLearningImpl() - Method in class moa.classifiers.trees.ARFFIMTDD
 
resetLearningImpl() - Method in class moa.classifiers.trees.ASHoeffdingTree
 
resetLearningImpl() - Method in class moa.classifiers.trees.DecisionStump
 
resetLearningImpl() - Method in class moa.classifiers.trees.EFDT
 
resetLearningImpl() - Method in class moa.classifiers.trees.FIMTDD
 
resetLearningImpl() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
resetLearningImpl() - Method in class moa.classifiers.trees.HoeffdingTree
 
resetLearningImpl() - Method in class moa.classifiers.trees.iadem.Iadem2
 
resetLearningImpl() - Method in class moa.classifiers.trees.ORTO
 
resetLearningImpl() - Method in class moa.clusterers.AbstractClusterer
 
resetLearningImpl() - Method in class moa.clusterers.ClusterGenerator
 
resetLearningImpl() - Method in class moa.clusterers.clustream.Clustream
 
resetLearningImpl() - Method in class moa.clusterers.clustream.WithKmeans
 
resetLearningImpl() - Method in class moa.clusterers.clustree.ClusTree
 
resetLearningImpl() - Method in class moa.clusterers.CobWeb
 
resetLearningImpl() - Method in class moa.clusterers.denstream.WithDBSCAN
 
resetLearningImpl() - Method in class moa.clusterers.dstream.Dstream
 
resetLearningImpl() - Method in class moa.clusterers.kmeanspm.BICO
 
resetLearningImpl() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
resetLearningImpl() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
resetLearningImpl() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
resetLearningImpl() - Method in class moa.clusterers.streamkm.StreamKM
 
resetLearningImpl() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
resetLearningImpl() - Method in class moa.learners.ChangeDetectorLearner
 
resetLearningImpl() - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
resetLearningImpl() - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
resetLearningImpl() - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
resetToDefault() - Method in class com.github.javacliparser.AbstractOption
 
resetToDefault() - Method in interface com.github.javacliparser.Option
Resets this option to the default value
resetToDefaults() - Method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
resetToDefaults() - Method in class com.github.javacliparser.Options
 
resetTree - Variable in class moa.classifiers.trees.ASHoeffdingTree
 
resetTreesOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
resetVariablesAtDrift() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNominalVirtualNode
 
resetVariablesAtDrift() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveNumericVirtualNode
 
resetVariablesAtDrift() - Method in interface moa.classifiers.trees.iadem.Iadem3.restartsVariablesAtDrift
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.AbstractAMRulesFunctionBasicMlLearner
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
resetWithMemory() - Method in interface moa.classifiers.rules.multilabel.functions.AMRulesFunction
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.MultiLabelNaiveBayes
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.MultiLabelPerceptronClassification
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.MultiTargetMeanRegressor
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.MultiTargetPerceptronRegressor
 
resetWithMemory() - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
resizeTree(HoeffdingTree.Node, int) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
restart() - Method in class moa.streams.ArffFileStream
 
restart() - Method in class moa.streams.BootstrappedStream
 
restart() - Method in class moa.streams.CachedInstancesStream
 
restart() - Method in class moa.streams.clustering.FileStream
 
restart() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
restart() - Method in class moa.streams.clustering.SimpleCSVStream
 
restart() - Method in class moa.streams.ConceptDriftRealStream
 
restart() - Method in class moa.streams.ConceptDriftStream
 
restart() - Method in interface moa.streams.ExampleStream
Restarts this stream.
restart() - Method in class moa.streams.FilteredStream
 
restart() - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
 
restart() - Method in class moa.streams.filters.AbstractStreamFilter
 
restart() - Method in class moa.streams.generators.AgrawalGenerator
 
restart() - Method in class moa.streams.generators.AssetNegotiationGenerator
 
restart() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
restart() - Method in class moa.streams.generators.HyperplaneGenerator
 
restart() - Method in class moa.streams.generators.LEDGenerator
 
restart() - Method in class moa.streams.generators.MixedGenerator
 
restart() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
restart() - Method in class moa.streams.generators.RandomRBFGenerator
 
restart() - Method in class moa.streams.generators.RandomTreeGenerator
 
restart() - Method in class moa.streams.generators.SEAGenerator
 
restart() - Method in class moa.streams.generators.SineGenerator
 
restart() - Method in class moa.streams.generators.STAGGERGenerator
 
restart() - Method in class moa.streams.generators.TextGenerator
 
restart() - Method in class moa.streams.generators.WaveformGenerator
 
restart() - Method in class moa.streams.ImbalancedStream
 
restart() - Method in class moa.streams.IrrelevantFeatureAppenderStream
 
restart() - Method in class moa.streams.MultiFilteredStream
 
restart() - Method in class moa.streams.MultiLabelFilteredStream
 
restart() - Method in class moa.streams.MultiTargetArffFileStream
 
restart() - Method in class moa.streams.PartitioningStream
 
restartAtDrift - Variable in class moa.classifiers.trees.iadem.Iadem3
 
restartChangeDetection() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
restartChangeDetection() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
restartChangeDetection() - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
restartChangeDetection() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
restartChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
restartChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.Node
 
restartImpl() - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
Restarts this filter.
restartImpl() - Method in class moa.streams.filters.AbstractStreamFilter
Restarts this filter.
restartImpl() - Method in class moa.streams.filters.AddNoiseFilter
 
restartImpl() - Method in class moa.streams.filters.RBFFilter
 
restartImpl() - Method in class moa.streams.filters.ReLUFilter
 
restartImpl() - Method in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
restartImpl() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
restartImpl() - Method in class moa.streams.filters.SelectAttributesFilter
 
restartVariablesAtDrift() - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveLeafNode
 
resultingClassDistributionFromSplit(int) - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
resultingClassDistributions - Variable in class moa.classifiers.core.AttributeSplitSuggestion
 
resultingNodeStatistics - Variable in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
resultKnownForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Gets whether the number of the branch for an instance is known.
resultPreviewer - Variable in class moa.tasks.StandardTaskMonitor
 
ResultPreviewListener - Interface in moa.tasks
Interface implemented by classes that preview results on the Graphical User Interface
resultPreviewRequested - Variable in class moa.tasks.StandardTaskMonitor
 
resultPreviewRequested() - Method in class moa.tasks.NullMonitor
 
resultPreviewRequested() - Method in class moa.tasks.StandardTaskMonitor
 
resultPreviewRequested() - Method in interface moa.tasks.TaskMonitor
Gets whether there is a request for preview the task result.
resultsPath - Variable in class moa.gui.experimentertab.SummaryViewer
 
resultsPath - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
resume() - Static method in class moa.gui.visualization.RunOutlierVisualizer
 
resume() - Static method in class moa.gui.visualization.RunVisualizer
 
resumeSelectedTasks() - Method in class moa.gui.active.ALTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Reseme task
resumeSelectedTasks() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
resumeTask() - Method in class moa.gui.experimentertab.ExpTaskThread
 
resumeTask() - Method in class moa.tasks.meta.ALTaskThread
 
resumeTask() - Method in class moa.tasks.TaskThread
 
resumeTaskButton - Variable in class moa.gui.active.ALTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.TaskManagerPanel
 
revalidate() - Method in class moa.gui.active.ALTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.AuxiliarTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.experimentertab.TaskManagerTabPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.MultiLabelTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.MultiTargetTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
revertNewLines(String) - Static method in class moa.core.Utils
Reverts \r and \n in a string into carriage returns and new lines.
rFactor - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
rFactorOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
right - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
right - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
right - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
RIGHT_INSIDE - moa.tasks.Plot.LegendLocation
 
RIGHT_OUTSIDE - moa.tasks.Plot.LegendLocation
 
rightStatistics - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
rightStatistics - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
rightStatistics - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
Rmc - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
rnd - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
root - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
root - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
root - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
 
root - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
root - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
root - Variable in class moa.clusterers.clustree.ClusTree
The root node of the tree.
root - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
root1 - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
RootMeanSquaredError - Class in moa.classifiers.rules.errormeasurers
Computes the Root Mean Squared Error for single target regression problems
RootMeanSquaredError() - Constructor for class moa.classifiers.rules.errormeasurers.RootMeanSquaredError
 
RootMeanSquaredErrorMT - Class in moa.classifiers.rules.multilabel.errormeasurers
Root Mean Squared Error for multitarget and with fading factor
RootMeanSquaredErrorMT() - Constructor for class moa.classifiers.rules.multilabel.errormeasurers.RootMeanSquaredErrorMT
 
round(double) - Method in class moa.classifiers.rules.RuleClassifier
 
round(double) - Static method in class moa.core.Utils
Rounds a double to the next nearest integer value.
round(double) - Method in class moa.gui.experimentertab.TaskTextViewerPanel
 
round(double) - Method in class moa.gui.TaskTextViewerPanel
 
roundDouble(double, int) - Static method in class moa.core.Utils
Rounds a double to the given number of decimal places.
rowKappa - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
rowKappa - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
rowKappa - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
rp - Variable in class moa.recommender.predictor.BaselinePredictor
 
rp - Variable in class moa.recommender.predictor.BRISMFPredictor
 
Rule - Class in moa.classifiers.rules.core
 
Rule(Rule.Builder) - Constructor for class moa.classifiers.rules.core.Rule
 
Rule.Builder - Class in moa.classifiers.rules.core
 
RuleActiveLearningNode - Class in moa.classifiers.rules.core
A modified ActiveLearningNode that uses a Perceptron as the leaf node model, and ensures that the class values sent to the attribute observers are not truncated to ints if regression is being performed
RuleActiveLearningNode() - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
 
RuleActiveLearningNode(double[]) - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
Create a new RuleActiveLearningNode
RuleActiveLearningNode(Rule.Builder) - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
 
RuleActiveRegressionNode - Class in moa.classifiers.rules.core
A modified ActiveLearningNode that uses a Perceptron as the leaf node model, and ensures that the class values sent to the attribute observers are not truncated to ints if regression is being performed
RuleActiveRegressionNode() - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
 
RuleActiveRegressionNode(double[]) - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
 
RuleActiveRegressionNode(Rule.Builder) - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
 
ruleAnomaliesIndex - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleAnomaliesIndexSupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleAttribAnomalyStatistics - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleAttribAnomalyStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
RuleClassification - Class in moa.classifiers.rules
 
RuleClassification() - Constructor for class moa.classifiers.rules.RuleClassification
 
RuleClassification(RuleClassification) - Constructor for class moa.classifiers.rules.RuleClassification
 
RuleClassifier - Class in moa.classifiers.rules
This classifier learn ordered and unordered rule set from data stream.
RuleClassifier() - Constructor for class moa.classifiers.rules.RuleClassifier
 
RuleClassifierNBayes - Class in moa.classifiers.rules
This classifier learn ordered and unordered rule set from data stream with naive Bayes learners.
RuleClassifierNBayes() - Constructor for class moa.classifiers.rules.RuleClassifierNBayes
 
ruleClassIndex - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleEvaluate(Instance) - Method in class moa.classifiers.rules.RuleClassification
 
RuleExpandedMessage - Class in moa.classifiers.rules.featureranking.messages
 
RuleExpandedMessage(int) - Constructor for class moa.classifiers.rules.featureranking.messages.RuleExpandedMessage
 
RuleExpandedMessage(int, boolean) - Constructor for class moa.classifiers.rules.featureranking.messages.RuleExpandedMessage
 
ruleInformation - Variable in class moa.classifiers.rules.featureranking.BasicFeatureRanking
 
ruleInformation - Variable in class moa.classifiers.rules.featureranking.MeritFeatureRanking
 
ruleInformation - Variable in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking
 
RuleInformation() - Constructor for class moa.classifiers.rules.featureranking.BasicFeatureRanking.RuleInformation
 
RuleInformation() - Constructor for class moa.classifiers.rules.featureranking.MeritFeatureRanking.RuleInformation
 
RuleInformation(int) - Constructor for class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking.RuleInformation
 
ruleNumberID - Variable in class moa.classifiers.rules.AbstractAMRules
 
ruleNumberID - Variable in class moa.classifiers.rules.core.Rule
 
ruleNumberID - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
ruleNumberID - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
ruleNumberID - Variable in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
ruleSet - Variable in class moa.classifiers.rules.AbstractAMRules
 
ruleSet - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
ruleSet - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
ruleSet - Variable in class moa.classifiers.rules.RuleClassifier
 
RuleSet - Class in moa.classifiers.rules.core
 
RuleSet() - Constructor for class moa.classifiers.rules.core.RuleSet
 
ruleSetAnomalies - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleSetAnomaliesSupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
RuleSplitNode - Class in moa.classifiers.rules.core
A modified SplitNode method implementing the extra information
RuleSplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.rules.core.RuleSplitNode
Create a new RuleSplitNode
run() - Method in class moa.classifiers.meta.AdaptiveRandomForest.TrainingRunnable
 
run() - Method in class moa.clusterers.meta.EnsembleClustererAbstract.EnsembleRunnable
 
run() - Method in class moa.gui.BatchCmd
 
run() - Method in class moa.gui.experimentertab.ExpTaskThread
 
run() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
run() - Method in class moa.gui.visualization.RunVisualizer
 
run() - Method in class moa.tasks.meta.ALTaskThread
 
run() - Method in class moa.tasks.TaskThread
 
runBatch(ClusteringStream, AbstractClusterer, boolean[], int, String) - Static method in class moa.gui.BatchCmd
 
runConfig - Variable in class moa.tasks.WriteConfigurationToJupyterNotebook
 
RUNNING - moa.gui.experimentertab.ExpTaskThread.Status
 
RUNNING - moa.tasks.TaskThread.Status
 
runningTask - Variable in class moa.gui.experimentertab.ExpTaskThread
 
runningTask - Variable in class moa.tasks.TaskThread
 
RunOutlierVisualizer - Class in moa.gui.visualization
 
RunOutlierVisualizer(OutlierVisualTab, OutlierSetupTab) - Constructor for class moa.gui.visualization.RunOutlierVisualizer
 
runSeed - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
RunStreamTasks - Class in moa.tasks
Task for running several experiments modifying values of parameters.
RunStreamTasks() - Constructor for class moa.tasks.RunStreamTasks
 
runTask() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
Executes the Task
runTask(ALMainTask) - Method in class moa.gui.active.ALTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.AuxiliarTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.featureanalysis.FeatureImportancePanel
 
runTask(Task) - Method in class moa.gui.MultiLabelTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.MultiTargetTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.RegressionTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.TaskManagerPanel
 
runTaskButton - Variable in class moa.gui.active.ALTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
 
runTaskButton - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.TaskManagerPanel
 
runTaskCLI(String[]) - Method in class moa.gui.experimentertab.TaskManagerTabPanel
 
RunTasks - Class in moa.tasks
Task for running several experiments modifying values of parameters.
RunTasks() - Constructor for class moa.tasks.RunTasks
 
runVisual() - Method in class moa.gui.visualization.RunVisualizer
 
RunVisualizer - Class in moa.gui.visualization
 
RunVisualizer(ClusteringVisualTab, ClusteringSetupTab) - Constructor for class moa.gui.visualization.RunVisualizer
 

S

SAMkNN - Class in moa.classifiers.lazy
Self Adjusting Memory (SAM) coupled with the k Nearest Neighbor classifier (kNN) .
SAMkNN() - Constructor for class moa.classifiers.lazy.SAMkNN
 
sammeOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
samoaAttribute(int, Attribute) - Method in class com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter
Get Samoa attribute from a weka attribute.
samoaInstance(Instance) - Method in class com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter
Samoa instance from weka instance.
samoaInstanceInformation - Variable in class com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter
 
samoaInstances(Instances) - Method in class com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter
Samoa instances from weka instances.
samoaInstancesInformation(Instances) - Method in class com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter
Samoa instances information.
samoaToWeka - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
samoaToWeka - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
SamoaToWekaInstanceConverter - Class in com.yahoo.labs.samoa.instances
The Class SamoaToWekaInstanceConverter.
SamoaToWekaInstanceConverter() - Constructor for class com.yahoo.labs.samoa.instances.SamoaToWekaInstanceConverter
 
sample() - Method in class moa.clusterers.meta.TruncatedNormal
 
sample(Random) - Method in class moa.cluster.Cluster
Samples this cluster by returning a point from inside it.
sample(Random) - Method in class moa.cluster.SphereCluster
Samples this cluster by returning a point from inside it.
sampleFrequencyOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
sampleFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
sampleFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Defines how often classifier parameters will be calculated.
sampleFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
sampleFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
sampleFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
sampleFrequencyOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateConceptDrift
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Defines how often classifier parameters will be calculated.
sampleFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateModel
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateOnlineRecommender
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequential
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
sampleFrequencyOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
SampleInfo() - Constructor for class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
 
sampleNewConfig(double, double, int) - Method in class moa.clusterers.meta.BooleanParameter
 
sampleNewConfig(double, double, int) - Method in class moa.clusterers.meta.CategoricalParameter
 
sampleNewConfig(double, double, int) - Method in class moa.clusterers.meta.IntegerParameter
 
sampleNewConfig(double, double, int) - Method in interface moa.clusterers.meta.IParameter
 
sampleNewConfig(double, double, int) - Method in class moa.clusterers.meta.NumericalParameter
 
sampleNewConfig(double, double, int) - Method in class moa.clusterers.meta.OrdinalParameter
 
sampleNewConfiguration(ArrayList<Double>, int) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
sampleParent(ArrayList<Double>) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
samplingRate - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
samplingRate - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
samplingRate - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
samplingRateOption - Variable in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
samplingRateOption - Variable in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
samplingRateOption - Variable in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
saveBestEntropy - Variable in class moa.classifiers.rules.RuleClassifier
 
saveBestEntropyNominalAttrib - Variable in class moa.classifiers.rules.RuleClassifier
 
saveBestGlobalEntropy - Variable in class moa.classifiers.rules.RuleClassifier
 
saveBestValGlobalEntropy - Variable in class moa.classifiers.rules.RuleClassifier
 
saveInstancesToFile(AbstractFileSaver, Instances) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
saves the data with the specified saver
saveLogSelectedTasks() - Method in class moa.gui.active.ALTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
saveTheBest - Variable in class moa.classifiers.rules.RuleClassifier
 
saveWorkingInstancesToFileQ() - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Queries the user for a file to save instances as, then saves the instances in a background process.
scalarProduct(DoubleVector, DoubleVector) - Static method in class moa.classifiers.multilabel.trees.ISOUPTree
 
scalarProduct(DoubleVector, DoubleVector) - Method in class moa.classifiers.trees.ARFFIMTDD
 
scalarProduct(DoubleVector, DoubleVector) - Method in class moa.classifiers.trees.FIMTDD
 
scaleValues(double) - Method in class moa.core.DoubleVector
 
scaleValues(float) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
scaleWeights(double) - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
scaleXResolution(boolean) - Method in class moa.gui.visualization.GraphCanvas
 
scaleXResolution(double) - Method in class moa.gui.visualization.AbstractGraphCanvas
Scales the resolution on the x-axis by the given factor and updates the canvas.
scaleYResolution(boolean) - Method in class moa.gui.visualization.GraphCanvas
 
scaleYResolution(double) - Method in class moa.gui.visualization.AbstractGraphCanvas
Scales the resolution on the y-axis by the given factor and updates the canvas.
scms - Variable in class moa.classifiers.meta.ADOB
 
scms - Variable in class moa.classifiers.meta.BOLE
 
scms - Variable in class moa.classifiers.meta.OzaBoost
 
scms - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
score(Instance, int) - Method in class moa.classifiers.oneclass.HSTreeNode
If this node is a leaf node or it has a mass profile of less than sizeLimit, this returns the anomaly score for the argument instance.
Score(double, int, boolean) - Constructor for class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator.Score
Constructor.
Score(double, int, boolean) - Constructor for class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator.Score
Constructor.
scores - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
Feature importance scores produced by feature importance algorithm.
scores - Variable in class moa.tasks.FeatureImportanceConfig
Scores produced by feature importance algorithm.
scoreThreshold - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
screenshot(String, boolean, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
screenshot(String, boolean, boolean) - Method in class moa.gui.visualization.StreamPanel
 
ScriptingTabPanel - Class in moa.gui
Tab for performing scripting via jshell.
ScriptingTabPanel() - Constructor for class moa.gui.ScriptingTabPanel
Initializes the tab.
scroll - Variable in class moa.gui.experimentertab.SummaryViewer
 
scrollPane - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
scrollPane - Variable in class moa.gui.TextViewerPanel
 
SDRSplitCriterion - Class in moa.classifiers.core.splitcriteria
 
SDRSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.SDRSplitCriterion
 
SDRSplitCriterionAMRules - Class in moa.classifiers.rules.core.splitcriteria
 
SDRSplitCriterionAMRules() - Constructor for class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
SDRSplitCriterionAMRulesNode - Class in moa.classifiers.rules.core.splitcriteria
 
SDRSplitCriterionAMRulesNode() - Constructor for class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRulesNode
 
SEAGenerator - Class in moa.streams.generators
Stream generator for SEA concepts functions.
SEAGenerator() - Constructor for class moa.streams.generators.SEAGenerator
 
SEAGenerator.ClassFunction - Interface in moa.streams.generators
 
searchForBestSplitOption(BinaryTreeNumericAttributeClassObserver.Node, AttributeSplitSuggestion, double[], double[], double[], boolean, SplitCriterion, double[], int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
searchForBestSplitOption(BinaryTreeNumericAttributeClassObserverRegression.Node, AttributeSplitSuggestion, double[], double[], double[], boolean, SplitCriterion, double[], int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
searchForBestSplitOption(FIMTDDNumericAttributeClassObserver.Node, AttributeSplitSuggestion, SplitCriterion, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
Implementation of the FindBestSplit algorithm from E.Ikonomovska et al.
searchForBestSplitOption(MultiLabelBSTree.Node, AttributeExpansionSuggestion, MultiLabelSplitCriterion, DoubleVector[], int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTree
 
searchForBestSplitOption(MultiLabelBSTreeFloat.Node, AttributeExpansionSuggestion, MultiLabelSplitCriterion, DoubleVector[], int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelBSTreeFloat
 
second - Variable in class moa.clusterers.outliers.utils.mtree.utils.Pair
The second object.
secondarySplitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
secondLine - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
secondLine - Variable in class moa.gui.TaskTextViewerPanel
 
secondsToDHMSString(double) - Static method in class moa.core.StringUtils
 
seed - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
SEED(double, int, double, double, int) - Constructor for class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEED
Constructor for all required parameters.
SEEDBlock(int) - Constructor for class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
SEEDBlock(SEEDChangeDetector.SEEDBlock) - Constructor for class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
SEEDChangeDetector - Class in moa.classifiers.core.driftdetection
Drift detection method as published in:
SEEDChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SEEDChangeDetector
 
SEEDChangeDetector.SEED - Class in moa.classifiers.core.driftdetection
 
SEEDChangeDetector.SEEDBlock - Class in moa.classifiers.core.driftdetection
 
SEEDChangeDetector.SEEDWindow - Class in moa.classifiers.core.driftdetection
 
SEEDWindow(int) - Constructor for class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
SEEDWindow(int, int, int, double, double, int) - Constructor for class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
select(int, int[], int, int, int) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Implements computation of the kth-smallest element according to Manber's "Introduction to Algorithms".
SelectAllInputs - Class in moa.classifiers.rules.multilabel.inputselectors
Does not selects inputs
SelectAllInputs() - Constructor for class moa.classifiers.rules.multilabel.inputselectors.SelectAllInputs
 
SelectAllOutputs - Class in moa.classifiers.rules.multilabel.outputselectors
 
SelectAllOutputs() - Constructor for class moa.classifiers.rules.multilabel.outputselectors.SelectAllOutputs
 
SelectAttributesFilter - Class in moa.streams.filters
 
SelectAttributesFilter() - Constructor for class moa.streams.filters.SelectAttributesFilter
 
Selection - Class in moa.streams.filters
 
Selection() - Constructor for class moa.streams.filters.Selection
 
selectOutputsToLearn(int[]) - Method in class moa.classifiers.rules.multilabel.functions.AbstractAMRulesFunctionBasicMlLearner
 
selectOutputsToLearn(int[]) - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
selectOutputsToLearn(int[]) - Method in interface moa.classifiers.rules.multilabel.functions.AMRulesFunction
 
selectOutputsToLearn(int[]) - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
selectOutputsToLearn(int[]) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
SemiSupervisedLearner - Interface in moa.classifiers
Learner interface for incremental semi supervised models.
Separation - Class in moa.evaluation
 
Separation() - Constructor for class moa.evaluation.Separation
 
separationOption - Variable in class moa.tasks.EvaluateClustering
 
separationOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
separatorChar - Variable in class com.github.javacliparser.ListOption
 
seqdrift - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
seqDrift1 - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
SeqDrift1(double, int, double) - Constructor for class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
SeqDrift1ChangeDetector - Class in moa.classifiers.core.driftdetection
SeqDrift1ChangeDetector.java.
SeqDrift1ChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
SeqDrift1ChangeDetector.SeqDrift1 - Class in moa.classifiers.core.driftdetection
SeqDrift1 uses sliding window to build a sequential change detection model that uses statistically sound guarantees defined using Bernstein Bound on false positive and false negative rates.
SeqDrift2(double, int) - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
SeqDrift change detector requires two parameters: significance level and block size.
SeqDrift2ChangeDetector - Class in moa.classifiers.core.driftdetection
SeqDriftChangeDetector.java.
SeqDrift2ChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
SeqDrift2ChangeDetector.Block - Class in moa.classifiers.core.driftdetection
 
SeqDrift2ChangeDetector.Repository - Class in moa.classifiers.core.driftdetection
 
SeqDrift2ChangeDetector.Reservoir - Class in moa.classifiers.core.driftdetection
 
SeqDrift2ChangeDetector.SeqDrift2 - Class in moa.classifiers.core.driftdetection
SeqDrift2 uses reservoir sampling to build a sequential change detection model that uses statistically sound guarantees defined using Bernstein Bound on false positive and false negative rates.
SerializeUtils - Class in com.github.javacliparser
Class implementing some serialize utility methods.
SerializeUtils - Class in moa.core
Class implementing some serialize utility methods.
SerializeUtils() - Constructor for class com.github.javacliparser.SerializeUtils
 
SerializeUtils() - Constructor for class moa.core.SerializeUtils
 
SerializeUtils.ByteCountingOutputStream - Class in com.github.javacliparser
 
SerializeUtils.ByteCountingOutputStream - Class in moa.core
 
serialVersionUID - Static variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
serialVersionUID - Static variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
serialVersionUID - Static variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
serialVersionUID - Static variable in class moa.classifiers.trees.iadem.Iadem3Subtree
 
set() - Method in class com.github.javacliparser.FlagOption
 
set(int, double) - Method in class moa.recommender.rc.utils.DenseVector
 
set(int, double) - Method in class moa.recommender.rc.utils.SparseVector
 
set(int, double) - Method in class moa.recommender.rc.utils.Vector
 
set(int, Instance) - Method in class com.yahoo.labs.samoa.instances.Instances
 
set(int, T) - Method in class moa.core.AutoExpandVector
 
set(List<Instance>, List<Instance>) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
set(List<Instance>, List<Instance>) - Method in class moa.classifiers.core.statisticaltests.KNN
 
set(List<Instance>, List<Instance>) - Method in interface moa.classifiers.core.statisticaltests.StatisticalTest
This method sets the instances for later use in concurrent scenarios.
setActionListener(ActionListener) - Method in class moa.gui.active.MeasureOverview
Sets the ActionListener for the radio buttons.
setActiveXDim(int) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setActiveXDim(int) - Method in class moa.gui.visualization.StreamPanel
 
setActiveYDim(int) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setActiveYDim(int) - Method in class moa.gui.visualization.StreamPanel
 
setAcuity(double) - Method in class moa.clusterers.CobWeb
set the acuity.
setAlgorithm0ValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setAlgorithm0ValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setAlgorithm1ValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setAlgorithm1ValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setAlgorithms(String[]) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setAlgorithmsID(String[]) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setAlpha(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setAnomalyDetector(AnomalyDetector) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setAnomalyDetector(AnomalyDetector) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setArgs(String[]) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setArrayLength(int) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
setArrayLength(int) - Method in class moa.core.DoubleVector
 
setAttribute(int) - Method in class moa.gui.featureanalysis.AttributeSummaryPanel
Sets the attribute that statistics will be displayed for.
setAttribute(int) - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Tells the panel which attribute to visualize.
setAttributeIndex(int) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
setAttributeIndices(String) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Sets the range of attributes to use in the calculation of the distance.
setAttributeIndices(String) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets the range of attributes to use in the calculation of the distance.
setAttributeName(String) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
setAttributeNames(String[]) - Method in class moa.gui.featureanalysis.FeatureImportanceGraph
 
setAttributes(Attribute[]) - Method in class com.yahoo.labs.samoa.instances.AttributesInformation
Sets the attribute information.
setAttributes(Attribute[]) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
setAttributes(Attribute[]) - Method in class com.yahoo.labs.samoa.instances.Instances
 
setAttributes(Attribute[], int[]) - Method in class com.yahoo.labs.samoa.instances.AttributesInformation
 
setAttributes(Attribute[], int[]) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
setAttributes(Attribute[], int[]) - Method in class com.yahoo.labs.samoa.instances.Instances
 
setAttributes(List<Attribute>, List<Integer>) - Method in class com.yahoo.labs.samoa.instances.Instances
 
setAttributesPercentage(double) - Method in class moa.classifiers.rules.AbstractAMRules
 
setAttributesPercentage(double) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
setAttributesPercentage(double) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
setAttributesPercentage(double) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setAttributesPercentage(double) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setAttributeValue(double) - Method in class moa.classifiers.rules.Predicates
 
setAttributeValue(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
setAttributeValues(double[]) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Sets the attribute values.
setBestSuggestion(AttributeSplitSuggestion) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setBlockCount(int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setBlockSize(int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
setBlockSize(int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setBuilder(Rule.Builder) - Method in class moa.classifiers.rules.core.Rule
 
setCenter(double[]) - Method in class moa.cluster.SphereCluster
 
setCenter(double[]) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Sets the representation of the ClusteringFeature
setChangeDetector(ChangeDetector) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setChangeDetector(ChangeDetector) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setChangeListener(ChangeListener) - Method in class moa.options.ClassOptionWithListenerOption
 
setChart(JFreeChart) - Method in class moa.gui.experimentertab.ImageChart
Set chart.
setChild(int, ISOUPTree.Node) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
setChild(int, ISOUPTree.Node) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
setChild(int, ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.InnerNode
 
setChild(int, ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
setChild(int, ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
setChild(int, EFDT.Node) - Method in class moa.classifiers.trees.EFDT.SplitNode
 
setChild(int, FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.InnerNode
 
setChild(int, FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
setChild(int, FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.Node
 
setChild(int, HoeffdingOptionTree.Node) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
setChild(int, HoeffdingTree.Node) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
setChild(Iadem2.Node, int) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
setChild(Node) - Method in class moa.clusterers.clustree.Entry
Setter for the child in this entry.
setChild(AutoExpandVector<Iadem2.Node>) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
setChildren(Iadem2.Node[]) - Method in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
setChosenIndex(int) - Method in class com.github.javacliparser.MultiChoiceOption
 
setChosenLabel(String) - Method in class com.github.javacliparser.MultiChoiceOption
 
setClassifier(ClassOption) - Method in class weka.classifiers.meta.MOA
Sets the MOA classifier to use.
setClassIndex(int) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
setClassIndex(int) - Method in class com.yahoo.labs.samoa.instances.Instances
Sets the class index.
setClassValue(double) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets the class value.
setClassValue(double) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Sets the class value.
setClassValue(int, double) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets the value of an output attribute.
setClassValue(int, double) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
setClassValueDist(DoubleVector) - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
setClock(int) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setClustered() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
setClusterEventsList(ArrayList<ClusterEvent>) - Method in class moa.gui.visualization.GraphCanvas
 
setClusterIDs(Clustering) - Method in class moa.clusterers.macro.AbstractMacroClusterer
 
setClusteringSetupTab(ClusteringSetupTab) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setClusterLabel(int) - Method in class moa.clusterers.dstream.GridCluster
 
setColorCoding(Color) - Method in class moa.tasks.meta.MetaMainTask
Set the color coding for this task (the color which is used for multi-curve plots).
setColoringIndex(int) - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Set the coloring (class) index for the plot
setCompressionTerm(int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setConfidence(double) - Static method in class moa.classifiers.trees.iadem.IademCommonProcedures
 
setCoresetCentres(Point[]) - Method in class moa.clusterers.streamkm.CoresetCostTriple
 
setCoresetCost(double) - Method in class moa.clusterers.streamkm.CoresetCostTriple
 
setCurrentActivity(String, double) - Method in class moa.tasks.NullMonitor
 
setCurrentActivity(String, double) - Method in class moa.tasks.StandardTaskMonitor
 
setCurrentActivity(String, double) - Method in interface moa.tasks.TaskMonitor
Sets the description and the percentage done of the current activity.
setCurrentActivityDescription(String) - Method in class moa.tasks.NullMonitor
 
setCurrentActivityDescription(String) - Method in class moa.tasks.StandardTaskMonitor
 
setCurrentActivityDescription(String) - Method in interface moa.tasks.TaskMonitor
Sets the description of the current activity.
setCurrentActivityFractionComplete(double) - Method in class moa.tasks.NullMonitor
 
setCurrentActivityFractionComplete(double) - Method in class moa.tasks.StandardTaskMonitor
 
setCurrentActivityFractionComplete(double) - Method in interface moa.tasks.TaskMonitor
Sets the percentage done of the current activity
setCurrentObject(Object) - Method in class com.github.javacliparser.AbstractClassOption
Sets current object.
setCurrentObject(Object) - Method in class moa.options.AbstractClassOption
Sets current object.
setCutoff(double) - Method in class moa.clusterers.CobWeb
set the cutoff
setData(List<String>, List<double[]>) - Method in class moa.evaluation.preview.LearningCurve
 
setDataset(Instances) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets the dataset.
setDataset(Instances) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Sets the dataset.
setDensityTimeStamp(int) - Method in class moa.clusterers.dstream.CharacteristicVector
 
setDerived(int) - Method in class moa.gui.featureanalysis.AttributeSummaryPanel
Sets the gui elements for fields that are stored in the AttributeStats structure.
setDimensionComobBoxes(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setDimensionComobBoxes(int) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setDirection(double[]) - Method in class moa.gui.visualization.ClusterPanel
 
setDirection(double[]) - Method in class moa.gui.visualization.OutlierPanel
 
setDistanceFunction(DistanceFunction) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
sets the distance function to use for nearest neighbour search.
setDistanceFunction(DistanceFunction) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
sets the distance function to use for nearest neighbour search.
setDoNotNormalizeFeatureScore(boolean) - Method in class moa.tasks.FeatureImportanceConfig
 
setDontNormalize(boolean) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets whether if the attribute values are to be normalized in distance calculation.
setEditState(String) - Method in class com.github.javacliparser.gui.ClassOptionEditComponent
 
setEditState(String) - Method in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
setEditState(String) - Method in class com.github.javacliparser.gui.FileOptionEditComponent
 
setEditState(String) - Method in class com.github.javacliparser.gui.FlagOptionEditComponent
 
setEditState(String) - Method in class com.github.javacliparser.gui.FloatOptionEditComponent
 
setEditState(String) - Method in class com.github.javacliparser.gui.IntOptionEditComponent
 
setEditState(String) - Method in class com.github.javacliparser.gui.MultiChoiceOptionEditComponent
 
setEditState(String) - Method in interface com.github.javacliparser.gui.OptionEditComponent
Sets the state of the component
setEditState(String) - Method in class com.github.javacliparser.gui.StringOptionEditComponent
 
setEditState(String) - Method in class moa.gui.WEKAClassOptionEditComponent
 
setEnabled(int, boolean) - Method in class moa.evaluation.MeasureCollection
 
setEpsilon(double) - Method in class moa.classifiers.functions.AdaGrad
Set the epsilon value.
setEpsilonPrime(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setError(double) - Method in class moa.classifiers.rules.core.voting.Vote
 
setError(double) - Method in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
setErrorMeasurer(MultiLabelErrorMeasurer) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setErrorMeasurer(MultiLabelErrorMeasurer) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setErrorText(FailedTaskReport) - Method in class moa.gui.active.ALTaskTextViewerPanel
Displays the error message.
setEstimador(AbstractChangeDetector) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
setEuclideanDistanceFunction(EuclideanDistance) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets the EuclideanDistance object to use for splitting nodes.
setEvents - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
setEvents - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.gui.experimentertab.tasks.ConceptDriftMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.AuxiliarMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.ClassificationMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.ConceptDriftMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.MultiLabelMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.MultiTargetMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.RegressionMainTask
 
setFeatureImportance(double[][]) - Method in class moa.gui.featureanalysis.FeatureImportanceGraph
 
setFeatureImportanceScores(double[][]) - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
set table data model include: instances + feature importance scores
setFeatureRange(String) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
Parse String to number.
setFeatureRangeEndIndex(int) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
setFeatureRangeStartIndex(int) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
setFileName(String) - Method in class moa.gui.experimentertab.Measure
 
setFirst(T) - Method in class moa.recommender.rc.utils.Pair
 
setGenerator(ClassOption) - Method in class weka.datagenerators.classifiers.classification.MOA
Sets the MOA stream generator to use.
setGraph(String) - Method in class moa.gui.experimentertab.TaskTextViewerPanel
 
setGraph(String) - Method in class moa.gui.TaskTextViewerPanel
 
setGraph(MeasureCollection[], MeasureCollection[], double[], Color[]) - Method in class moa.gui.visualization.GraphScatter
Draws a scatter graph based on the varied parameter and the measures.
setGraph(MeasureCollection[], MeasureCollection[], double[], Color[]) - Method in class moa.gui.visualization.ParamGraphCanvas
Sets the scatter graph.
setGraph(MeasureCollection[], MeasureCollection[], int[], int, Color[]) - Method in class moa.gui.visualization.ProcessGraphCanvas
Sets the graph containing multiple curves.
setGraph(MeasureCollection[], MeasureCollection[], int[], Color[]) - Method in class moa.gui.visualization.GraphMultiCurve
Updates the measure collection information and repaints the curves.
setGraph(MeasureCollection[], MeasureCollection[], Color[]) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the graph by updating the measures and currently measure index.
setGraph(MeasureCollection, MeasureCollection, int) - Method in class moa.gui.visualization.GraphCurve
 
setGraph(MeasureCollection, MeasureCollection, int, int) - Method in class moa.gui.visualization.GraphCanvas
 
setGraph(Preview, Color[]) - Method in class moa.gui.active.ALTaskTextViewerPanel
Updates the graph based on the information given by the preview.
setGridDensity(double, int) - Method in class moa.clusterers.dstream.CharacteristicVector
 
setGroundTruth(double) - Method in class moa.cluster.Cluster
 
setGroundTruthLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setGroundTruthVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setHead(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setHeader(int) - Method in class moa.gui.featureanalysis.AttributeSummaryPanel
Sets the labels for fields we can determine just from the instance header.
setHeight(int) - Method in class moa.gui.experimentertab.ImageChart
Set chart height.
setHighlightedClusterPanel(ClusterPanel) - Method in class moa.gui.visualization.StreamPanel
 
setHighlightedOutlierPanel(OutlierPanel) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setId(double) - Method in class moa.cluster.Cluster
 
setId(int) - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
 
setIndex(int) - Method in class moa.gui.experimentertab.Measure
Sets the index of measure
setIndexValues(int[]) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Sets the index values.
setIndicesRelevants(int[]) - Method in class com.yahoo.labs.samoa.instances.Instances
Sets the indices of relevant features.
setInfogainSum(HashMap<Integer, Double>) - Method in class moa.classifiers.trees.EFDT.Node
 
setInput(double) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setInput(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEED
Main method for passing in input values and performing drift detection
setInput(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
setInput(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
This method can be used to directly interface with SeqDrift change detector.
setInput(double, double) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setInputAttributesSelector(InputAttributesSelector) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setInputAttributesSelector(InputAttributesSelector) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setInputStream(ExampleStream) - Method in class moa.streams.filters.AbstractStreamFilter
 
setInputStream(ExampleStream) - Method in interface moa.streams.filters.StreamFilter
Sets the input stream to the filter
setInputStream(ExampleStream<Example<Instance>>) - Method in class moa.streams.filters.AbstractMultiLabelStreamFilter
 
setInputStream(ExampleStream<Example<Instance>>) - Method in interface moa.streams.filters.MultiLabelStreamFilter
Sets the input stream to the filter
setInstanceInformation(InstanceInformation) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setInstanceList(int[]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets the master index array containing indices of the training instances.
setInstances(Instances) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Sets the instances.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Builds the KDTree on the given set of instances.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets the training instances on which the tree is (or is to be) built.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Sets the instances comprising the current neighbourhood.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Sets the instances.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets the instances.
setInstances(Instances) - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
Sets the instances who's attribute names will be displayed.
setInstances(Instances) - Method in class moa.gui.featureanalysis.AttributeSummaryPanel
Tells the panel to use a new set of instances.
setInstances(Instances) - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Sets the instances who's attribute names will be displayed.
setInstances(Instances) - Method in class moa.gui.featureanalysis.FeatureImportancePanel
Tells the panel to use a new base set of instances.
setInstances(Instances) - Method in class moa.gui.featureanalysis.InstancesSummaryPanel
Tells the panel to use a new set of instances.
setInstances(Instances) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
Set dataset which is the data source of line graph or scatter diagram.
setInstances(Instances) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Tells the panel to use a new base set of instances.
setInstances(Instances) - Method in class moa.tasks.FeatureImportanceConfig
 
setInstances(Instances) - Method in class moa.gui.featureanalysis.AttributeVisualizationPanel
Sets the instances for use
setInstancesFromFile2(String) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
 
setInstancesFromFileQ() - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Queries the user for a file to load instances from, then loads the instances in a background process.
setInstancesSeen(int) - Method in class moa.classifiers.rules.functions.Perceptron
 
setInstanceTransformer(InstanceTransformer) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setInstanceTransformer(InstanceTransformer) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setInstSeenSinceLastSplitAttempt(double) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
setIntEndIndex(int) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
setIntStartIndex(int) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
setInvertSelection(boolean) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Sets whether the matching sense of attribute indices is inverted or not.
setInvertSelection(boolean) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets whether the matching sense of attribute indices is inverted or not.
setIsLastSubtaskOnLevel(boolean[], boolean) - Method in class moa.tasks.meta.MetaMainTask
Set the list of booleans indicating if the current branch in the subtask tree is the last one on its respective level.
setItemCount(int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
setLabel(int) - Method in class moa.clusterers.dstream.CharacteristicVector
 
setLambda(double) - Method in class moa.classifiers.functions.SGD
Set the value of lambda to use
setLambda(double) - Method in class moa.classifiers.functions.SGDMultiClass
Set the value of lambda to use
setLambda(double) - Method in class moa.classifiers.functions.SPegasos
Set the value of lambda to use
setLatestPreview(Object) - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
setLatestResultPreview(Object) - Method in class moa.tasks.NullMonitor
 
setLatestResultPreview(Object) - Method in class moa.tasks.StandardTaskMonitor
 
setLatestResultPreview(Object) - Method in interface moa.tasks.TaskMonitor
Sets the current result to preview
setLearner(MultiLabelLearner) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setLearner(MultiLabelLearner) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setLearningNode(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.Rule
 
setLearningRate(double) - Method in class moa.classifiers.functions.SGD
Set the learning rate.
setLearningRate(double) - Method in class moa.classifiers.functions.SGDMultiClass
Set the learning rate.
setLearningRatio(double) - Method in class moa.classifiers.rules.functions.Perceptron
 
setList(Option[]) - Method in class com.github.javacliparser.ListOption
 
setlistAttributes(int[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
setlistAttributes(int[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
setLog(Logger) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
Sets the Logger to receive informational messages
setLossFunction(int) - Method in class moa.classifiers.functions.SGD
Set the loss function to use.
setLossFunction(int) - Method in class moa.classifiers.functions.SGDMultiClass
Set the loss function to use.
setLossFunction(int) - Method in class moa.classifiers.functions.SPegasos
Set the loss function to use.
setLowerXValue(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the lower value for the x-axis.
setLowerXValue(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the lower value for the x-axis.
setLRate(double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
setMacroLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setMacroVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setMaxBins(int) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
setMaxBins(int) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
setMaxBins(int) - Method in interface moa.classifiers.trees.iadem.IademNumericAttributeObserver
 
setMaxBins(int) - Method in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver
 
setMaxInstInLeaf(int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the maximum number of instances in a leaf.
setMaxSize(int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Reservoir
 
setMaxSize(int) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
setMaxXValue(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the maximum x value
setMaxXValue(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets maximum x value.
setMaxXValue(int) - Method in class moa.gui.visualization.GraphAxes
 
setMaxYValue(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the maximum y value
setMaxYValue(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets maximum y value.
setMC - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
setMeasurePerformance(boolean) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets whether to calculate the performance statistics or not.
setMeasures(boolean[]) - Method in class moa.tasks.EvaluateClustering
 
setMeasures(MeasureCollection[], ActionListener) - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
 
setMeasures(MeasureCollection[], MeasureCollection[], ActionListener) - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
 
setMeasureSelected(int) - Method in class moa.gui.visualization.AbstractGraphCanvas
Sets the currently selected measure index.
setMeasureSelected(int) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the currently selected measure index.
setMeasureValue(String, double) - Method in class moa.cluster.Cluster
 
setMeasureValue(String, double) - Method in class moa.gui.visualization.DataPoint
 
setMeasureValue(String, String) - Method in class moa.cluster.Cluster
 
setMeasureValue(String, String) - Method in class moa.gui.visualization.DataPoint
 
SetMessagePrinter(MyBaseOutlierDetector.PrintMsg) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setMicroLayerVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setMicroLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setMinBoxRelWidth(double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the minimum relative box width.
setMinXValue(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the minimum x value
setMinXValue(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets minimum x value.
setMissing(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets an attribute as missing
setMissing(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
setMissing(Attribute) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets an attribute as missing
setMissing(Attribute) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.AbstractClassifier
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.active.ALRandom
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.active.ALUncertainty
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.lazy.kNN
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.lazy.SAMkNN
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
setModelContext(InstancesHeader) - Method in class moa.clusterers.AbstractClusterer
 
setModelContext(InstancesHeader) - Method in interface moa.clusterers.Clusterer
 
setModelContext(InstancesHeader) - Method in interface moa.learners.Learner
Sets the reference to the header of the data stream.
setN(double) - Method in class moa.cluster.CFCluster
 
setName(String) - Method in class moa.gui.experimentertab.ImageChart
Set the image name.
setName(String) - Method in class moa.gui.experimentertab.Measure
Sets the name of measure
setName(String) - Method in class moa.gui.experimentertab.Stream
Sets the name of stream
setNameSuffix(String) - Method in class moa.tasks.meta.MetaMainTask
Set a suffix for the tasks display name.
setNaNSubstitute(double) - Method in class moa.tasks.FeatureImportanceConfig
 
setNewTree() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
setNext(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
setNIterations(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
setNode(Node) - Method in class moa.clusterers.clustree.Entry
 
setNodeList(List<RuleSplitNode>) - Method in class moa.classifiers.rules.core.Rule
 
setNodeSplitter(KDTreeNodeSplitter) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the splitting method to use to split the nodes of the KDTree.
setNodeWidthNormalization(boolean) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets whether if a nodes region is normalized or not.
setNominalObserverOption(NominalStatisticsObserver) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setNominalObserverOption(NominalStatisticsObserver) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setNormalizeNodeWidth(boolean) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the flag for normalizing the widths of a KDTree Node by the width of the dimension in the universe.
setNumberAttributes(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Sets the number of attributes.
setNumberOfLeaves(int) - Method in class moa.classifiers.trees.iadem.Iadem2
 
setNumberOfNodes(int) - Method in class moa.classifiers.trees.iadem.Iadem2
 
setNumericObserverOption(NumericStatisticsObserver) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setNumericObserverOption(NumericStatisticsObserver) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setNumLabels(int) - Method in class moa.core.MultilabelInstance
 
setNumPoints(int) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Sets the number of points of the ClusteringFeature.
setObserver(ObserverMOAObject) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
setObserver(ObserverMOAObject) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
setOptions(String[]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.meta.MOA
Parses a given list of options.
setOptions(String[]) - Method in class weka.datagenerators.classifiers.classification.MOA
Parses a list of options for this object.
setOptions(String[], String[], int) - Method in class moa.options.EditableMultiChoiceOption
Set new options for this MultiChoiceOption and refresh the edit component.
setOutiler(boolean) - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
 
setOutlierDetector(MyBaseOutlierDetector) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setOutlierSetupTab(OutlierSetupTab) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setOutliersVisibility(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setOutliersVisibility(boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setOutputAttributesSelector(OutputAttributesSelector) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setOutputAttributesSelector(OutputAttributesSelector) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setOutputsToLearn(int[]) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setOwner(Rule) - Method in class moa.classifiers.rules.core.Rule.Builder
 
setPanelTitle(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setPanelTitle(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setParameters(String) - Method in class moa.gui.featureanalysis.FeatureImportancePanel
Parse parameter windowSize from user's configuration or preference。 The parameter windowSize is used to check whether the total instance number is bigger than windowSize after user click the Run button and before the feature importance task being executed.
setParent(ISOUPTree.SplitNode) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
Set the parent node
setParent(ARFFIMTDD.Node) - Method in class moa.classifiers.trees.ARFFIMTDD.Node
Set the parent node
setParent(EFDT.EFDTSplitNode) - Method in class moa.classifiers.trees.EFDT.EFDTLearningNode
 
setParent(EFDT.EFDTSplitNode) - Method in interface moa.classifiers.trees.EFDT.EFDTNode
 
setParent(EFDT.EFDTSplitNode) - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
setParent(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.Node
Set the parent node
setParent(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
setParentEntry(Entry) - Method in class moa.clusterers.clustree.Entry
 
setPartitionIdx(int) - Method in class moa.tasks.meta.ALMultiParamTask
 
setPath(String) - Method in class moa.gui.experimentertab.ReadFile
Sets the directory of the results file.
setPauseInterval(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setPauseInterval(int) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setPerceptron(Perceptron) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
setPointLayerVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setPointsVisibility(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setPointsVisibility(boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setPointVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setPredicate(Predicate) - Method in class moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion
 
setPreferredScrollableViewportSize(Dimension) - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
 
setPreferredScrollableViewportSize(Dimension) - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
 
setPreferredSize() - Method in class moa.gui.visualization.AbstractGraphCanvas
Sets the preferred canvas size.
setPreferredSize() - Method in class moa.gui.visualization.ParamGraphCanvas
 
setPreferredSize() - Method in class moa.gui.visualization.ProcessGraphCanvas
 
setPreview(int, CollectionElementType) - Method in class moa.evaluation.preview.PreviewCollection
 
setPreview(Preview) - Method in class moa.gui.PreviewTableModel
 
setPreviewPanel(ALPreviewPanel) - Method in class moa.gui.active.ALTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.AuxiliarTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.MultiLabelTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.MultiTargetTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.RegressionTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.TaskManagerPanel
 
setPrevious(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
setProcessedPointsCounter(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setProcessedPointsCounter(int) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setProcessFrequency(int) - Method in class moa.gui.visualization.GraphAxes
 
setProcessFrequency(int) - Method in class moa.gui.visualization.GraphMultiCurve
Sets the minimum process frequency, which may be used to stretch or compress curves.
setProcessFrequency(int) - Method in class moa.gui.visualization.ProcessGraphAxes
Sets the process frequency
SetProgressInterval(int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setRadii(double[]) - Method in class moa.clusterers.streamkm.CoresetCostTriple
 
setRadius(double) - Method in class moa.cluster.SphereCluster
 
setRandomGenerator(Random) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setRandomGenerator(Random) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setRandomSeed(int) - Method in class moa.classifiers.AbstractClassifier
 
setRandomSeed(int) - Method in class moa.classifiers.rules.AbstractAMRules
 
setRandomSeed(int) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
setRandomSeed(int) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
setRandomSeed(int) - Method in class moa.clusterers.AbstractClusterer
 
setRandomSeed(int) - Method in interface moa.clusterers.Clusterer
 
setRandomSeed(int) - Method in interface moa.learners.Learner
Sets the seed for random number generation.
setRange(int[]) - Method in class com.github.javacliparser.RangeOption
 
setRange(String) - Method in class com.yahoo.labs.samoa.instances.Range
Sets the range from a string representation.
setRangeOutputIndices(Range) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
setRangeOutputIndices(Range) - Method in class com.yahoo.labs.samoa.instances.Instances
 
setRating(int, int, double) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
setRating(int, int, double) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
setRating(int, int, double) - Method in interface moa.recommender.rc.data.RecommenderData
 
setRelationName(String) - Method in class com.yahoo.labs.samoa.instances.InstanceInformation
 
setRelationName(String) - Method in class com.yahoo.labs.samoa.instances.Instances
Sets the relation name.
setRemoveTime(int) - Method in class moa.clusterers.dstream.CharacteristicVector
 
setRequiredCapabilities(CapabilityRequirement) - Static method in class moa.gui.ClassOptionSelectionPanel
Sets the capability requirement of listed classes.
setResetTree() - Method in class moa.classifiers.trees.ASHoeffdingTree
 
setResultsFolder(String) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setRFactor(double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
setRoot(boolean) - Method in class moa.classifiers.trees.EFDT.EFDTLearningNode
 
setRoot(boolean) - Method in interface moa.classifiers.trees.EFDT.EFDTNode
 
setRoot(boolean) - Method in class moa.classifiers.trees.EFDT.EFDTSplitNode
 
setRuleNumberID(int) - Method in class moa.classifiers.rules.core.Rule
 
setRuleNumberID(int) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setRuleOptions(MultiLabelRule) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
setRuleOptions(MultiLabelRule) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
setSaveExperimentsPath(String) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setSaveInstanceData(boolean) - Method in class moa.clusterers.CobWeb
Set the value of saveInstances.
setSecond(U) - Method in class moa.recommender.rc.utils.Pair
 
setSeed(byte[]) - Method in class moa.clusterers.streamkm.MTRandom
This method resets the state of this instance using the byte array of seed data provided.
setSeed(int[]) - Method in class moa.clusterers.streamkm.MTRandom
This method resets the state of this instance using the integer array of seed data provided.
setSeed(long) - Method in class moa.clusterers.streamkm.MTRandom
This method resets the state of this instance using the 64 bits of seed data provided.
setSelectedAttributeIndices(int[]) - Method in class moa.gui.featureanalysis.FeatureImportanceGraph
 
setSelectedAttributes(boolean[]) - Method in class moa.gui.featureanalysis.AttributeSelectionPanel
Set the selected attributes in the widget.
setSelectedAttributes(boolean[]) - Method in class moa.gui.featureanalysis.FeatureImportanceDataModelPanel
Set the selected attributes in the widget.
setSelectedPlotInfo(int, String, int, String) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
User set plot related parameters in GUI such as plot type, selected attribute
setSelectedPlotItem(String) - Method in class moa.gui.featureanalysis.LineAndScatterPanel
 
SetShowProgress(boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setShowZeroInstancesAsUnknown(boolean) - Method in class moa.gui.featureanalysis.InstancesSummaryPanel
Set whether to show zero instances as unknown (i.e.
setSize() - Method in class moa.gui.visualization.AbstractGraphCanvas
Sets the canvas size.
setSize() - Method in class moa.gui.visualization.ParamGraphCanvas
 
setSize() - Method in class moa.gui.visualization.ProcessGraphCanvas
 
setSkipIdentical(boolean) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Sets the property to skip identical instances (with distance zero from the target) from the set of neighbours returned.
setSourceClustering(Clustering) - Method in class moa.clusterers.ClusterGenerator
 
setSpecialization(boolean) - Method in class moa.classifiers.rules.featureranking.messages.RuleExpandedMessage
 
setSpeed(int) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setSpeed(int) - Method in class moa.gui.visualization.RunVisualizer
 
setSplit(boolean) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
setSplitCriterion(MultiLabelSplitCriterion) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
setSplitCriterion(MultiLabelSplitCriterion) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
setSplitIndex(int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setSplitMeasure(String) - Method in class moa.classifiers.trees.iadem.IademSplitCriterion
 
setSporadic(boolean) - Method in class moa.clusterers.dstream.CharacteristicVector
 
setStandardDeviationPainted(boolean) - Method in class moa.gui.visualization.AbstractGraphCanvas
Sets the value of the plotPlanel for isStandardDeviationPainted.
setStandardDeviationPainted(boolean) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the value for isStandardDeviationPainted.
setStatisticsBranchSplit(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStatisticsNewRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStatisticsOtherBranchSplit(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStd(Double) - Method in class moa.gui.experimentertab.Measure
Sets the standard deviation
setStreamIndex(int, String) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setStreams(String[]) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setStreamsID(String[]) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setStreamValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setStreamValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setSumPoints(double[]) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Sets the sum of points of the ClusteringFeature.
setSumSquaredLength(double) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Sets the sum of the squared lengths of the ClusteringFeature.
setSymbol(double) - Method in class moa.classifiers.rules.Predicates
 
setTable(AttributeStats, int) - Method in class moa.gui.featureanalysis.AttributeSummaryPanel
Creates a tablemodel for the attribute being displayed
setTail(SEEDChangeDetector.SEEDBlock) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setTargetMean(TargetMean) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
setTask(String) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setTaskString(String) - Method in class moa.gui.active.ALTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.AuxiliarTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.featureanalysis.FeatureImportancePanel
 
setTaskString(String) - Method in class moa.gui.MultiLabelTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.MultiTargetTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.RegressionTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.TaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.active.ALTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.AuxiliarTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.featureanalysis.FeatureImportancePanel
 
setTaskString(String, boolean) - Method in class moa.gui.MultiLabelTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.MultiTargetTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.RegressionTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.TaskManagerPanel
 
setTaskThreadToPreview(ExpTaskThread) - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
setTaskThreadToPreview(ALTaskThread) - Method in class moa.gui.active.ALPreviewPanel
Sets the TaskThread that will be previewed.
setTaskThreadToPreview(TaskThread) - Method in class moa.gui.PreviewPanel
 
setTested(boolean) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Block
 
setText(Object) - Method in class moa.gui.TaskTextViewerPanel
 
setText(String) - Method in class moa.gui.experimentertab.TaskTextViewerPanel
 
setText(String) - Method in class moa.gui.TextViewerPanel
 
setText(Preview) - Method in class moa.gui.active.ALTaskTextViewerPanel
Updates the preview table based on the information given by preview.
setText(Preview) - Method in class moa.gui.TaskTextViewerPanel
Updates the preview table based on the information given by preview.
setText(FailedTaskReport) - Method in class moa.gui.TaskTextViewerPanel
Displays the error message.
setThreads(int) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
setThreshold(double) - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Sets the threshold of the ClusteringFeature.
setThreshold(double) - Method in class moa.clusterers.kmeanspm.ClusteringTreeNode
Gets the threshold of this node.
setTimestamp(long) - Method in class moa.clusterers.denstream.Timestamp
 
setTotal(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
setTotal(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
SetTrace(boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setTree(Iadem2) - Method in class moa.classifiers.trees.iadem.Iadem2.Node
 
setTreeRoot(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem2
 
setType(boolean) - Method in class moa.gui.experimentertab.Measure
Sets the type of measure
setUpdateTime(int) - Method in class moa.clusterers.dstream.CharacteristicVector
 
setUpper(int) - Method in class com.yahoo.labs.samoa.instances.Range
 
setUpperXValue(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the upper value for the x-axis.
setUpperXValue(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the upper value for the x-axis.
setUpperYValue(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the upper value for the y-axis.
setUpperYValue(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the upper value for the y-axis.
SetUserInfo(boolean, boolean, MyBaseOutlierDetector.PrintMsg, int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setValue(boolean) - Method in class com.github.javacliparser.FlagOption
 
setValue(double) - Method in class com.github.javacliparser.FloatOption
 
setValue(double) - Method in class moa.classifiers.rules.Predicates
 
setValue(int) - Method in class com.github.javacliparser.IntOption
 
setValue(int) - Method in class moa.clusterers.meta.IntegerParameter
 
setValue(int, double) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Sets the value.
setValue(int, double) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets the value of an attribute.
setValue(int, double) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Sets the value.
setValue(int, double) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Sets the value.
setValue(int, double) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Sets the value.
setValue(int, double) - Method in class moa.core.DoubleVector
 
setValue(int, float) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
setValue(Attribute, double) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets the value of an attribute.
setValue(Attribute, double) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
setValue(Instance, int, double, boolean) - Method in class com.yahoo.labs.samoa.instances.ArffLoader
 
setValue(Double) - Method in class moa.gui.experimentertab.Measure
Sets the value of measure
setValue(String) - Method in class com.github.javacliparser.StringOption
 
setValues(DoubleVector) - Method in class moa.gui.experimentertab.Measure
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.AbstractClassOption
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.ClassOption
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.FlagOption
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.FloatOption
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.IntOption
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.ListOption
 
setValueViaCLIString(String) - Method in class com.github.javacliparser.MultiChoiceOption
 
setValueViaCLIString(String) - Method in interface com.github.javacliparser.Option
Sets value of this option via the Command Line Interface text
setValueViaCLIString(String) - Method in class com.github.javacliparser.StringOption
 
setValueViaCLIString(String) - Method in class moa.options.AbstractClassOption
 
setValueViaCLIString(String) - Method in class moa.options.ClassOption
 
setValueViaCLIString(String) - Method in class moa.options.ClassOptionWithListenerOption
 
setValueViaCLIString(String) - Method in class moa.options.ClassOptionWithNames
 
setValueViaCLIString(String) - Method in class moa.options.WEKAClassOption
 
setVariance(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDBlock
 
setVariance(double) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setViaCLIString(String) - Method in class com.github.javacliparser.Options
 
setViewport(JViewport) - Method in class moa.gui.visualization.GraphCanvas
 
setVirtualChildren(AutoExpandVector<Iadem2.VirtualNode>) - Method in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
setVisible(boolean) - Method in class moa.gui.experimentertab.PreviewExperiments
 
setVisited() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
setVisited(boolean) - Method in class moa.clusterers.dstream.DensityGrid
 
setVisualizer(RunOutlierVisualizer) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setVote(double[]) - Method in class moa.classifiers.rules.core.voting.Vote
 
setVote(int, int, double) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
setVote(int, int, double) - Method in interface com.yahoo.labs.samoa.instances.Prediction
Sets the vote for class of a given output attribute
setVote(Prediction) - Method in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
setVotes(double[]) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
setVotes(double[]) - Method in interface com.yahoo.labs.samoa.instances.Prediction
Sets the votes for the first output attribute
setVotes(int, double[]) - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
setVotes(int, double[]) - Method in interface com.yahoo.labs.samoa.instances.Prediction
Sets the votes for a given output attribute
setW(int) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setWaitWinFull(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setWeight(double) - Method in interface com.yahoo.labs.samoa.instances.Instance
Sets the weight.
setWeight(double) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Sets the weight.
setWeight(double) - Method in class moa.cluster.SphereCluster
 
setWeight(double) - Method in interface moa.core.Example
 
setWeight(double) - Method in class moa.core.InstanceExample
 
setWeights(double[]) - Method in class moa.classifiers.rules.functions.Perceptron
 
setWeights(double[][]) - Method in class moa.classifiers.functions.Perceptron
 
setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
setWidth(int) - Method in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEEDWindow
 
setWidth(int) - Method in class moa.gui.experimentertab.ImageChart
Set chart width.
setWindowSize(int) - Method in class moa.gui.featureanalysis.FeatureImportancePanel
 
setWindowSize(int) - Method in class moa.tasks.FeatureImportanceConfig
 
setXMaxValue(int) - Method in class moa.gui.visualization.GraphAxes
 
setXResolution(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the x resolution.
setXResolution(double) - Method in class moa.gui.visualization.AbstractGraphPlot
Sets the resolution on the x-axis
setXResolution(double) - Method in class moa.gui.visualization.GraphAxes
 
setYMinMaxValues(double, double) - Method in class moa.gui.visualization.GraphAxes
 
setYMinMaxValues(double, double) - Method in class moa.gui.visualization.GraphCurve
 
setYResolution(double) - Method in class moa.gui.visualization.AbstractGraphAxes
Sets the y resolution
setZoom(int, int, int, JScrollPane) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setZoom(int, int, int, JScrollPane) - Method in class moa.gui.visualization.StreamPanel
 
SGD - Class in moa.classifiers.functions
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
SGD() - Constructor for class moa.classifiers.functions.SGD
 
SGDMultiClass - Class in moa.classifiers.functions
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
SGDMultiClass() - Constructor for class moa.classifiers.functions.SGDMultiClass
 
shafferTest() - Method in class moa.gui.experimentertab.statisticaltests.StatisticalTest
Return the p-values computed by the Shaffer test.
shallowClear() - Method in class moa.clusterers.clustree.Entry
Clear the data and the buffer Custer in this entry.
showEditOptionsDialog(Component, String, OptionHandler) - Static method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
showErrorDialog(Component, String, String) - Static method in class moa.gui.GUIUtils
 
showExceptionDialog(Component, String, Exception) - Static method in class moa.gui.GUIUtils
 
showHelpDialog() - Method in class com.github.javacliparser.gui.OptionsConfigurationPanel
 
ShowProgress(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.ProgressInfo
 
ShowProgress(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ShowProgress(String, boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
showSelectClassDialog(Component, String, Class<?>, String, String) - Static method in class moa.gui.ClassOptionSelectionPanel
 
showSelectClassDialog(Component, String, Class<?>, String, String, String[]) - Static method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
showSummary() - Method in class moa.gui.experimentertab.Summary
The summaries are performed for each measure to be displayed in the user interface
shuffleRandomSeedOption - Variable in class moa.tasks.CacheShuffledStream
 
sigma - Variable in class moa.streams.generators.HyperplaneGenerator
 
sigmaPercentageOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
sigmoidCrossingPointOption - Variable in class moa.classifiers.meta.LearnNSE
 
sigmoidSlopeOption - Variable in class moa.classifiers.meta.LearnNSE
 
SilhouetteCoefficient - Class in moa.evaluation
 
SilhouetteCoefficient() - Constructor for class moa.evaluation.SilhouetteCoefficient
 
silhouetteOption - Variable in class moa.tasks.EvaluateClustering
 
silhouetteOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
similarityBetweenDistributionsOption - Variable in class moa.classifiers.meta.RCD
 
SimpleBudget - Class in moa.clusterers.clustree.util
 
SimpleBudget(int) - Constructor for class moa.clusterers.clustree.util.SimpleBudget
 
SimpleCOD - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCOD() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
SimpleCODBase - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCODBase() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
SimpleCODBase.EventItem - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCODBase.EventQueue - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCSVStream - Class in moa.streams.clustering
Provides a simple input stream for csv files.
SimpleCSVStream() - Constructor for class moa.streams.clustering.SimpleCSVStream
Creates a simple ClusteringStream for csv files.
SimpleEstimator() - Constructor for class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
SimpleEstimator() - Constructor for class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
SineGenerator - Class in moa.streams.generators
1.SINE1.
SineGenerator() - Constructor for class moa.streams.generators.SineGenerator
 
SineGenerator.ClassFunction - Interface in moa.streams.generators
 
SINGLE_THREAD - Static variable in class moa.classifiers.meta.AdaptiveRandomForest
 
SingleClassifierDrift - Class in moa.classifiers.drift
Class for handling concept drift datasets with a wrapper on a classifier.
SingleClassifierDrift() - Constructor for class moa.classifiers.drift.SingleClassifierDrift
 
SingleVector - Class in moa.classifiers.rules.multilabel.attributeclassobservers
Vector of float numbers with some utilities.
SingleVector() - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
SingleVector(double[]) - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
SingleVector(float[]) - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
SingleVector(SingleVector) - Constructor for class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
size - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
size() - Method in class com.yahoo.labs.samoa.instances.Instances
 
size() - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
size() - Method in interface com.yahoo.labs.samoa.instances.Prediction
The size of the prediction, that is the number of output attributes
size() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the size of the heap.
size() - Method in class moa.cluster.Clustering
 
size() - Method in class moa.clusterers.kmeanspm.CuckooHashing
Returns the number of elements in the hash table.
size() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns the size of the set.
size() - Method in class moa.recommender.rc.utils.DenseVector
 
size() - Method in class moa.recommender.rc.utils.SparseVector
 
size() - Method in class moa.recommender.rc.utils.Vector
 
sizeCoresetOption - Variable in class moa.clusterers.streamkm.StreamKM
 
sizeLimitOption - Variable in class moa.classifiers.oneclass.HSTrees
 
sizeOf(Object) - Static method in class moa.core.SizeOf
Returns the size of the object.
SizeOf - Class in moa.core
SizeOf() - Constructor for class moa.core.SizeOf
 
sizeTable - Variable in class moa.streams.generators.TextGenerator
 
SizeWindow - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
SizeWindow - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
SizeWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
SizeWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
skewOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
skip(long) - Method in class moa.core.InputStreamProgressMonitor
 
skipIdenticalTipText() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns the tip text for this property.
skipInLevelCount() - Method in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
skipInLevelCount() - Method in class moa.classifiers.trees.ARFFIMTDD.LeafNode
 
skipInLevelCount() - Method in class moa.classifiers.trees.ARFFIMTDD.Node
 
skipInLevelCount() - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
skipInLevelCount() - Method in class moa.classifiers.trees.FIMTDD.Node
 
skipInLevelCount() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
skipStackingOption - Variable in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
slider - Variable in class com.github.javacliparser.gui.FloatOptionEditComponent
 
slider - Variable in class com.github.javacliparser.gui.IntOptionEditComponent
 
SLIDER_RESOLUTION - Static variable in class com.github.javacliparser.gui.FloatOptionEditComponent
 
SliderPanel() - Constructor for class moa.gui.experimentertab.RankingGraph.SliderPanel
Constructor.
sliderValueToFloatValue(int) - Method in class com.github.javacliparser.gui.FloatOptionEditComponent
 
SlidingMidPointOfWidestSide - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a node into two based on the midpoint value of the dimension in which the node's rectangle is widest.
SlidingMidPointOfWidestSide() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
 
slidingWindowSize - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
slidingWindowSize - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
slidingWindowStep - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
slidingWindowStep - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
slope - Variable in class moa.classifiers.meta.LearnNSE
 
sm(double, double) - Static method in class moa.core.Utils
Tests if a is smaller than b.
SMALL - Static variable in class moa.core.Utils
The small deviation allowed in double comparisons.
smoothingOption - Variable in class moa.classifiers.meta.OCBoost
 
smoothOption - Variable in class moa.tasks.Plot
Determines whether to smooth the plot with bezier curves.
smOrEq(double, double) - Static method in class moa.core.Utils
Tests if a is smaller or equal to b.
sort(double[]) - Static method in class moa.core.Utils
Sorts a given array of doubles in ascending order and returns an array of integers with the positions of the elements of the original array in the sorted array.
sort(int[]) - Static method in class moa.core.Utils
Sorts a given array of integers in ascending order and returns an array of integers with the positions of the elements of the original array in the sorted array.
sortByValue(Map<K, V>) - Static method in class moa.streams.filters.ReplacingMissingValuesFilter.MapUtil
 
sortedScores - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator
 
sortedScores - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
sourceInstanceToTarget(Instance) - Method in class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
sourceInstanceToTarget(Instance) - Method in class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
sourceInstanceToTarget(Instance) - Method in interface moa.classifiers.rules.multilabel.instancetransformers.InstanceTransformer
 
sourceInstanceToTarget(Instance) - Method in class moa.classifiers.rules.multilabel.instancetransformers.NoInstanceTransformation
 
sp - Variable in class moa.gui.visualization.PointPanel
 
SparseInstance - Class in com.yahoo.labs.samoa.instances
The Class SparseInstance.
SparseInstance(double) - Constructor for class com.yahoo.labs.samoa.instances.SparseInstance
Instantiates a new sparse instance.
SparseInstance(double, double[]) - Constructor for class com.yahoo.labs.samoa.instances.SparseInstance
Instantiates a new sparse instance.
SparseInstance(double, double[], int[], int) - Constructor for class com.yahoo.labs.samoa.instances.SparseInstance
Instantiates a new sparse instance.
SparseInstance(InstanceImpl) - Constructor for class com.yahoo.labs.samoa.instances.SparseInstance
Instantiates a new sparse instance.
SparseInstanceData - Class in com.yahoo.labs.samoa.instances
The Class SparseInstanceData.
SparseInstanceData(double[], int[], int) - Constructor for class com.yahoo.labs.samoa.instances.SparseInstanceData
Instantiates a new sparse instance data.
SparseInstanceData(int) - Constructor for class com.yahoo.labs.samoa.instances.SparseInstanceData
Instantiates a new sparse instance data.
SparseVector - Class in moa.recommender.rc.utils
 
SparseVector() - Constructor for class moa.recommender.rc.utils.SparseVector
 
SparseVector(Map<Integer, Double>) - Constructor for class moa.recommender.rc.utils.SparseVector
 
SparseVector.SparseVectorIterator - Class in moa.recommender.rc.utils
 
SparseVectorIterator() - Constructor for class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
speedCentroids - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
 
speedChangeOption - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
 
speedOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
speedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
speedRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
SPegasos - Class in moa.classifiers.functions
Implements the stochastic variant of the Pegasos (Primal Estimated sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et al.
SPegasos() - Constructor for class moa.classifiers.functions.SPegasos
 
SphereCluster - Class in moa.cluster
A simple implementation of the Cluster interface representing spherical clusters.
SphereCluster() - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(double[], double) - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(double[], double, double) - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(int, double, Random) - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(List<? extends Instance>, int) - Constructor for class moa.cluster.SphereCluster
 
spinner - Variable in class com.github.javacliparser.gui.FloatOptionEditComponent
 
spinner - Variable in class com.github.javacliparser.gui.IntOptionEditComponent
 
split - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
split() - Method in class moa.classifiers.rules.core.Rule
 
SPLIT_BY_TIE_BREAKING - Variable in class moa.classifiers.trees.iadem.Iadem3
 
SPLIT_WITH_CONFIDENCE - Variable in class moa.classifiers.trees.iadem.Iadem3
 
splitAttIndex - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
splitAttValue - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
splitCharOption - Variable in class moa.streams.clustering.SimpleCSVStream
 
splitConfidenceOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
splitConfidenceOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
splitConfidenceOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
splitConfidenceOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
splitConfidenceOption - Variable in class moa.classifiers.rules.RuleClassifier
 
splitConfidenceOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
splitConfidenceOption - Variable in class moa.classifiers.trees.EFDT
 
splitConfidenceOption - Variable in class moa.classifiers.trees.FIMTDD
 
splitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
splitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
splitConfidenceOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
splitCount - Variable in class moa.classifiers.trees.EFDT
 
splitCriterion - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
SplitCriterion - Interface in moa.classifiers.core.splitcriteria
Interface for computing splitting criteria.
splitCriterionOption - Variable in class moa.classifiers.rules.AMRulesRegressorOld
 
splitCriterionOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
splitCriterionOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
splitCriterionOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
splitCriterionOption - Variable in class moa.classifiers.trees.DecisionStump
 
splitCriterionOption - Variable in class moa.classifiers.trees.EFDT
 
splitCriterionOption - Variable in class moa.classifiers.trees.FIMTDD
 
splitCriterionOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
splitCriterionOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
splitCriterionOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
splitFunction - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
SplitFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
Defines an object to be used to split a node in an M-Tree.
SplitFunction.SplitResult<DATA> - Class in moa.clusterers.outliers.utils.mtree
An object used as the result for the SplitFunction.process(Set, DistanceFunction) method.
splitIndex - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Splits a node into two.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Splits a node into two such that the overall sum of squared distances of points to their centres on both sides of the (axis-parallel) splitting plane is minimum.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Splits a node into two based on the median value of the dimension in which the points have the widest spread.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
Splits a node into two based on the midpoint value of the dimension in which the points have the widest spread.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
Splits a node into two based on the midpoint value of the dimension in which the node's rectangle is widest.
SplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.EFDT.SplitNode
 
SplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
SplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.SplitNode
 
SplitNode(InstanceConditionalTest, double[], int) - Constructor for class moa.classifiers.trees.EFDT.SplitNode
 
SplitNode(InstanceConditionalTest, double[], int) - Constructor for class moa.classifiers.trees.HoeffdingTree.SplitNode
 
SplitNode(InstanceConditionalTest, ARFFIMTDD) - Constructor for class moa.classifiers.trees.ARFFIMTDD.SplitNode
Create a new SplitNode
SplitNode(InstanceConditionalTest, FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.SplitNode
Create a new SplitNode
SplitNode(Predicate, ISOUPTree) - Constructor for class moa.classifiers.multilabel.trees.ISOUPTree.SplitNode
Create a new SplitNode
SplitNode(Iadem2, Iadem2.Node, Iadem2.Node[], double[], InstanceConditionalTest) - Constructor for class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
splitNodeCount - Variable in class moa.classifiers.trees.ARFFIMTDD
 
splitNodeCount - Variable in class moa.classifiers.trees.FIMTDD
 
splitNodes(KDTreeNode, double[][], int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Recursively splits nodes of a tree starting from the supplied node.
splitOptions(String) - Static method in class moa.core.Utils
Split up a string containing options into an array of strings, one for each option.
splitParameterFromRemainingOptions(String) - Static method in class com.github.javacliparser.Options
Internal method that splits a string into two parts - the parameter for the current option, and the remaining options.
SplitResult(Pair<DATA>, Pair<Set<DATA>>) - Constructor for class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
The constructor for a SplitFunction.SplitResult object.
splitTest - Variable in class moa.classifiers.core.AttributeSplitSuggestion
 
splitTest - Variable in class moa.classifiers.trees.ARFFIMTDD.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.EFDT.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.iadem.Iadem2.SplitNode
 
splitTestsOption - Variable in class moa.classifiers.trees.iadem.Iadem2
 
sqDifference(int, double, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns the squared difference of two values of an attribute.
SQRTH - Static variable in class moa.core.Statistics
 
SQTPI - Static variable in class moa.core.Statistics
 
squared_radius() - Method in class moa.cluster.Miniball
Return the sqaured Radius of the miniball
squaredActualClassStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
squaredAttributeStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
squaredAttributeStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassification
 
SQUAREDLOSS - Static variable in class moa.classifiers.functions.SGD
 
SQUAREDLOSS - Static variable in class moa.classifiers.functions.SGDMultiClass
 
squaredperceptronattributeStatistics - Variable in class moa.classifiers.rules.functions.Perceptron
 
squaredperceptronsumY - Variable in class moa.classifiers.rules.functions.Perceptron
 
squareError - Variable in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
squareError - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
squareError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
squareError - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
squareError - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
squareError - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
squareErrorToTargetMean - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
squareErrorToTargetMean - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
squareTargetError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
SS - Variable in class moa.cluster.CFCluster
Squared sum of all the points added to the cluster.
SSQ - Class in moa.evaluation
 
SSQ() - Constructor for class moa.evaluation.SSQ
 
ssqOption - Variable in class moa.tasks.EvaluateClustering
 
ssqOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
SST - Variable in class moa.clusterers.clustream.ClustreamKernel
 
stabIndexSizeOption - Variable in class moa.classifiers.meta.ADACC
Threshold for the stability index
stableLearner - Variable in class moa.classifiers.meta.PairedLearners
 
stableLearnerOption - Variable in class moa.classifiers.meta.PairedLearners
 
stableSort(double[]) - Static method in class moa.core.Utils
Sorts a given array of doubles in ascending order and returns an array of integers with the positions of the elements of the original array in the sorted array.
stabPeriodOption - Variable in class moa.streams.RecurrentConceptDriftStream
 
StackedPredictor - Class in moa.classifiers.rules.multilabel.functions
 
StackedPredictor() - Constructor for class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
STAGGERGenerator - Class in moa.streams.generators
Stream generator for STAGGER Concept functions.
STAGGERGenerator() - Constructor for class moa.streams.generators.STAGGERGenerator
 
STAGGERGenerator.ClassFunction - Interface in moa.streams.generators
 
StandardTaskMonitor - Class in moa.tasks
Class that represents a standard task monitor.
StandardTaskMonitor() - Constructor for class moa.tasks.StandardTaskMonitor
 
startIndexValidation(int) - Method in class moa.gui.featureanalysis.VisualizeFeaturesPanel
 
state - Variable in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
state - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
stateChanged(ChangeEvent) - Method in class moa.options.DependentOptionsUpdater
 
StatisticalCollection - Class in moa.evaluation
 
StatisticalCollection() - Constructor for class moa.evaluation.StatisticalCollection
 
statisticalOption - Variable in class moa.tasks.EvaluateClustering
 
statisticalOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
StatisticalTest - Class in moa.gui.experimentertab.statisticaltests
 
StatisticalTest - Interface in moa.classifiers.core.statisticaltests
This interface represents how to perform multivariate statistical tests.
StatisticalTest(List<Stream>) - Constructor for class moa.gui.experimentertab.statisticaltests.StatisticalTest
Constructor.
statisticalTestOption - Variable in class moa.classifiers.meta.RCD
 
statistics - Variable in class moa.classifiers.rules.AbstractAMRules
 
statistics - Variable in class moa.classifiers.rules.core.Rule.Builder
 
statistics - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
statistics - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
statistics(double[]) - Method in class moa.classifiers.rules.core.Rule.Builder
 
Statistics - Class in moa.core
Class implementing some distributions, tests, etc.
Statistics() - Constructor for class moa.core.Statistics
 
statisticsBranchSplit - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
statisticsByNominalValue - Variable in class moa.classifiers.rules.multilabel.attributeclassobservers.MultiLabelNominalAttributeObserver
 
statisticsNewRuleActiveLearningNode - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
statisticsOtherBranchSplit - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
statisticsOtherBranchSplit() - Method in class moa.classifiers.rules.core.Rule
 
stdDev - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
 
StdDevThreshold - Class in moa.classifiers.rules.multilabel.outputselectors
 
StdDevThreshold() - Constructor for class moa.classifiers.rules.multilabel.outputselectors.StdDevThreshold
 
StdPrintMsg() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
StdPrintMsg(String) - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
STEPD - Class in moa.classifiers.core.driftdetection
 
STEPD() - Constructor for class moa.classifiers.core.driftdetection.STEPD
 
stepOption - Variable in class moa.classifiers.active.ALUncertainty
 
STEPS - moa.gui.experimentertab.PlotTab.PlotStyle
 
STEPS - moa.tasks.Plot.PlotStyle
 
stirlingFormula(double) - Static method in class moa.core.Statistics
Returns the Gamma function computed by Stirling's formula.
stop() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
stop() - Method in class moa.gui.visualization.RunVisualizer
 
stopMemManagementOption - Variable in class moa.classifiers.trees.EFDT
 
stopMemManagementOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
stopRun() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
stopRun() - Method in class moa.gui.outliertab.OutlierSetupTab
 
stopVisualizer() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
stopVisualizer() - Method in class moa.gui.outliertab.OutlierVisualTab
 
storedCountOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Number of classifiers remembered and available for ensemble construction.
storedLearners - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
storedWeights - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
The weights of stored classifiers.
STORMBase - Class in moa.clusterers.outliers.Angiulli
 
STORMBase() - Constructor for class moa.clusterers.outliers.Angiulli.STORMBase
 
stratify(int) - Method in class com.yahoo.labs.samoa.instances.Instances
Stratify.
stratStep(int) - Method in class com.yahoo.labs.samoa.instances.Instances
 
stream - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
stream - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
Stream - Class in moa.gui.experimentertab
This class contains the name of a stream and a list of algorithms.
Stream(String, List<String>, List<String>, List<Measure>) - Constructor for class moa.gui.experimentertab.Stream
Stream Constructor
StreamFilter - Interface in moa.streams.filters
Interface representing a stream filter.
streamHeader - Variable in class com.yahoo.labs.samoa.instances.ArffLoader
 
streamHeader - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
streamHeader - Variable in class moa.streams.ConceptDriftRealStream
 
streamHeader - Variable in class moa.streams.filters.RemoveDiscreteAttributeFilter
 
streamHeader - Variable in class moa.streams.generators.AgrawalGenerator
 
streamHeader - Variable in class moa.streams.generators.AssetNegotiationGenerator
 
streamHeader - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
streamHeader - Variable in class moa.streams.generators.HyperplaneGenerator
 
streamHeader - Variable in class moa.streams.generators.LEDGenerator
 
streamHeader - Variable in class moa.streams.generators.MixedGenerator
 
streamHeader - Variable in class moa.streams.generators.RandomRBFGenerator
 
streamHeader - Variable in class moa.streams.generators.RandomTreeGenerator
 
streamHeader - Variable in class moa.streams.generators.SEAGenerator
 
streamHeader - Variable in class moa.streams.generators.SineGenerator
 
streamHeader - Variable in class moa.streams.generators.STAGGERGenerator
 
streamHeader - Variable in class moa.streams.generators.TextGenerator
 
streamHeader - Variable in class moa.streams.generators.WaveformGenerator
 
StreamingRandomPatches - Class in moa.classifiers.meta
Streaming Random Patches
StreamingRandomPatches() - Constructor for class moa.classifiers.meta.StreamingRandomPatches
 
StreamingRandomPatches.StreamingRandomPatchesClassifier - Class in moa.classifiers.meta
 
StreamingRandomPatchesClassifier(int, Classifier, BasicClassificationPerformanceEvaluator, long, boolean, boolean, ClassOption, ClassOption, boolean) - Constructor for class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
StreamingRandomPatchesClassifier(int, Classifier, BasicClassificationPerformanceEvaluator, long, boolean, boolean, ClassOption, ClassOption, ArrayList<Integer>, Instance, boolean) - Constructor for class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
StreamKM - Class in moa.clusterers.streamkm
 
StreamKM() - Constructor for class moa.clusterers.streamkm.StreamKM
 
streamModel - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
StreamObj - Class in moa.clusterers.outliers.AbstractC
 
StreamObj - Class in moa.clusterers.outliers.Angiulli
 
StreamObj - Class in moa.clusterers.outliers.MCOD
 
StreamObj - Class in moa.clusterers.outliers.SimpleCOD
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.AbstractC.StreamObj
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.Angiulli.StreamObj
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.MCOD.StreamObj
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.SimpleCOD.StreamObj
 
streamOption - Variable in class moa.streams.BootstrappedStream
 
streamOption - Variable in class moa.streams.ConceptDriftRealStream
 
streamOption - Variable in class moa.streams.ConceptDriftStream
 
streamOption - Variable in class moa.streams.FilteredStream
 
streamOption - Variable in class moa.streams.ImbalancedStream
 
streamOption - Variable in class moa.streams.IrrelevantFeatureAppenderStream
 
streamOption - Variable in class moa.streams.MultiFilteredStream
 
streamOption - Variable in class moa.streams.MultiLabelFilteredStream
 
streamOption - Variable in class moa.streams.PartitioningStream
 
streamOption - Variable in class moa.tasks.CacheShuffledStream
 
streamOption - Variable in class moa.tasks.EvaluateClustering
 
streamOption - Variable in class moa.tasks.EvaluateConceptDrift
 
streamOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to select the stream the classifier will learn.
streamOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
streamOption - Variable in class moa.tasks.EvaluateModel
 
streamOption - Variable in class moa.tasks.EvaluateModelMultiLabel
 
streamOption - Variable in class moa.tasks.EvaluateModelMultiTarget
 
streamOption - Variable in class moa.tasks.EvaluateModelRegression
 
streamOption - Variable in class moa.tasks.EvaluateMultipleClusterings
 
streamOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
streamOption - Variable in class moa.tasks.EvaluatePrequential
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
streamOption - Variable in class moa.tasks.LearnModel
 
streamOption - Variable in class moa.tasks.LearnModelMultiLabel
 
streamOption - Variable in class moa.tasks.LearnModelMultiTarget
 
streamOption - Variable in class moa.tasks.LearnModelRegression
 
streamOption - Variable in class moa.tasks.MeasureStreamSpeed
 
streamOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
streamOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
streamOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
StreamOutlierPanel - Class in moa.gui.visualization
 
StreamOutlierPanel(Color) - Constructor for class moa.gui.visualization.StreamOutlierPanel
 
streamPanel - Variable in class moa.gui.visualization.ClusterPanel
 
streamPanel - Variable in class moa.gui.visualization.OutlierPanel
 
StreamPanel - Class in moa.gui.visualization
 
StreamPanel() - Constructor for class moa.gui.visualization.StreamPanel
Creates new form StreamPanel
streamParameterOption - Variable in class moa.tasks.RunStreamTasks
 
streamPos - Variable in class moa.streams.CachedInstancesStream
 
streams - Variable in class moa.gui.experimentertab.statisticaltests.StatisticalTest
 
streams - Variable in class moa.gui.experimentertab.Summary
The list of the streams
streamTokenizer - Variable in class com.yahoo.labs.samoa.instances.ArffLoader
The stream tokenizer.
StringOption - Class in com.github.javacliparser
String option.
StringOption(String, char, String, String) - Constructor for class com.github.javacliparser.StringOption
 
StringOptionEditComponent - Class in com.github.javacliparser.gui
An OptionEditComponent that lets the user edit a string option.
StringOptionEditComponent(Option) - Constructor for class com.github.javacliparser.gui.StringOptionEditComponent
 
StringUtils - Class in com.github.javacliparser
Class implementing some string utility methods.
StringUtils - Class in moa.core
Class implementing some string utility methods.
StringUtils() - Constructor for class com.github.javacliparser.StringUtils
 
StringUtils() - Constructor for class moa.core.StringUtils
 
stringValue(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of a discrete attribute as a string.
stringValue(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
String value.
stringValues() - Static method in enum moa.capabilities.Capability
Creates an array of the string representation of each value.
stringWithoutHeader() - Method in class com.yahoo.labs.samoa.instances.Instances
Returns the instances in the dataset as a string in ARFF format.
stripPackagePrefix(String, Class<?>) - Static method in class com.github.javacliparser.AbstractClassOption
Gets the class name without its package name prefix.
stripPackagePrefix(String, Class<?>) - Static method in class moa.options.AbstractClassOption
Gets the class name without its package name prefix.
structureChanged() - Method in class moa.gui.PreviewTableModel
 
subset - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
subspaceModeOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
subspaces - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
subspaceSize - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
subspaceSize - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
subspaceSizeOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
subspaceSizeOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
subspaceSizeOption - Variable in class moa.classifiers.trees.ARFHoeffdingTree
 
subtractValues(double[]) - Method in class moa.core.DoubleVector
 
subtractValues(float[]) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
subtractValues(SingleVector) - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
subtractValues(DoubleVector) - Method in class moa.core.DoubleVector
 
subtreeDepth() - Method in class moa.classifiers.trees.EFDT.Node
 
subtreeDepth() - Method in class moa.classifiers.trees.EFDT.SplitNode
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
subtreeList - Variable in class moa.classifiers.trees.iadem.Iadem3
 
sum - Variable in class moa.classifiers.rules.functions.TargetMean
 
sum - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
sum - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator.BasicEstimator
 
sum - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
sum - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
sum - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.SimpleEstimator
 
sum - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
sum - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
sum - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
sum(double[]) - Static method in class moa.core.Utils
Computes the sum of the elements of an array of doubles.
sum(int[]) - Static method in class moa.core.Utils
Computes the sum of the elements of an array of integers.
sum(long[]) - Method in class moa.classifiers.trees.iadem.IademGaussianNumericAttributeClassObserver
 
sum(long[]) - Method in class moa.classifiers.trees.iadem.IademGreenwaldKhannaNumericAttributeClassObserver
 
sumAbsolutError - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
sumError - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
sumError - Variable in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
sumError - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
sumErrorToTargetMean - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
sumFreqTwitterGenerator - Variable in class moa.streams.generators.TextGenerator
 
summary - Variable in class moa.core.GreenwaldKhannaQuantileSummary
 
summary - Variable in class moa.gui.experimentertab.Summary
 
summary - Variable in class moa.gui.experimentertab.SummaryViewer
 
summary - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
Summary - Class in moa.gui.experimentertab
This class performs the different summaries.
Summary(List<Stream>, String) - Constructor for class moa.gui.experimentertab.Summary
Summary Constructor
summary1CMD(String[]) - Method in class moa.gui.experimentertab.ExperimeterCLI
 
summaryCMD(String[], String[]) - Method in class moa.gui.experimentertab.SummaryTab
 
SummaryTab - Class in moa.gui.experimentertab
Summarize the performance measurements of different learning algorithms over time in LaTeX and HTML formats.
SummaryTab() - Constructor for class moa.gui.experimentertab.SummaryTab
SummaryTab Constructor
summaryTable - Variable in class moa.gui.experimentertab.SummaryViewer
 
SummaryTable - Class in moa.gui.experimentertab
Class to create the fields needed to display the summaries in the gui.
SummaryTable() - Constructor for class moa.gui.experimentertab.SummaryTable
 
summaryType - Variable in class moa.gui.experimentertab.SummaryViewer
 
SummaryViewer - Class in moa.gui.experimentertab
Class to display summaries in the gui.
SummaryViewer(SummaryTable[], Summary, String) - Constructor for class moa.gui.experimentertab.SummaryViewer
Constructor.
sumOfAbsErrors - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.InnerNode
 
sumOfAbsErrors - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
sumOfAbsErrors - Variable in class moa.classifiers.trees.FIMTDD.Node
 
sumOfAbsoluteValues() - Method in class moa.core.DoubleVector
 
sumOfAttrSquares - Variable in class moa.classifiers.trees.ARFFIMTDD
 
sumOfAttrSquares - Variable in class moa.classifiers.trees.FIMTDD
 
sumOfAttrValues - Variable in class moa.classifiers.trees.ARFFIMTDD
 
sumOfAttrValues - Variable in class moa.classifiers.trees.FIMTDD
 
sumOfSquares - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
sumOfSquares - Variable in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
sumOfSquares - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
sumOfSquares - Variable in class moa.classifiers.trees.ARFFIMTDD
 
sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD.Node
 
sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD
 
sumOfValues - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
sumOfValues - Variable in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
sumOfValues - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
sumOfValues - Variable in class moa.classifiers.trees.ARFFIMTDD
 
sumOfValues - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
sumOfValues - Variable in class moa.classifiers.trees.FIMTDD.Node
 
sumOfValues - Variable in class moa.classifiers.trees.FIMTDD
 
sumOfValues() - Method in class moa.classifiers.rules.multilabel.attributeclassobservers.SingleVector
 
sumOfValues() - Method in class moa.core.DoubleVector
 
sumRatings - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
sumSquaredError - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
sumSquaredErrorToTargetMean - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
sumTarget - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
sumVoteDistrib() - Method in class moa.classifiers.rules.core.voting.Vote
 
sumVoteDistrib() - Method in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
sumY - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
sumY - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
sumY - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
sumY - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
Supervised - Variable in class moa.classifiers.rules.RuleClassifier
 
supportsCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
Returns true because we do support a custom editor.
suppressHeaderOption - Variable in class moa.tasks.WriteMultipleStreamsToARFF
 
suppressHeaderOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
suppressIrrelevantAttributesOption - Variable in class moa.streams.generators.LEDGenerator
 
suppressIrrelevantAttributesOption - Variable in class moa.streams.generators.SineGenerator
 
SVG - moa.gui.experimentertab.PlotTab.Terminal
 
SVG - moa.tasks.Plot.Terminal
 
swap(int, int) - Method in class com.yahoo.labs.samoa.instances.Instances
Swap.
switchedAlternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
swms - Variable in class moa.classifiers.meta.ADOB
 
swms - Variable in class moa.classifiers.meta.BOLE
 
swms - Variable in class moa.classifiers.meta.OzaBoost
 
swms - Variable in class moa.classifiers.meta.OzaBoostAdwin
 

T

t - Variable in class moa.classifiers.meta.PairedLearners
 
tableSummary - Variable in class moa.gui.experimentertab.SummaryViewer
 
tabs - Variable in class moa.gui.experimentertab.ExperimenterTabPanel
 
tabs - Variable in class moa.gui.featureanalysis.FeatureAnalysisTabPanel
 
targetFunctionValue(int, int, Point[], Point[]) - Method in class moa.clusterers.streamkm.StreamKM
computes the target function for the given pointarray points[] (of size n) with the given array of centres centres[] (of size k)
targetInputIndices - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
targetInstances - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
targetInstances - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
targetMean - Variable in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
TargetMean - Class in moa.classifiers.rules.functions
 
TargetMean() - Constructor for class moa.classifiers.rules.functions.TargetMean
 
TargetMean(TargetMean) - Constructor for class moa.classifiers.rules.functions.TargetMean
 
targetOutputIndices - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceAttributesSelector
 
targetOutputIndices - Variable in class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
targetPredictionToSource(Prediction) - Method in class moa.classifiers.rules.multilabel.instancetransformers.InstanceOutputAttributesSelector
 
targetPredictionToSource(Prediction) - Method in interface moa.classifiers.rules.multilabel.instancetransformers.InstanceTransformer
 
targetPredictionToSource(Prediction) - Method in class moa.classifiers.rules.multilabel.instancetransformers.NoInstanceTransformation
 
task - Variable in class moa.tasks.EvaluateMultipleClusterings
 
task - Variable in class moa.tasks.RunStreamTasks
 
task - Variable in class moa.tasks.RunTasks
 
task - Variable in class moa.tasks.WriteConfigurationToJupyterNotebook
 
Task - Interface in moa.tasks
Interface representing a task.
TaskColorCodingCellRenderer() - Constructor for class moa.gui.active.ALTaskManagerPanel.TaskColorCodingCellRenderer
 
taskCompleted(TaskThread) - Method in interface moa.tasks.TaskCompletionListener
The method to perform when the task finishes.
TaskCompletionListener - Interface in moa.tasks
Interface representing a listener for the task in TaskThread to be completed.
taskDescField - Variable in class moa.gui.active.ALTaskManagerPanel
 
taskDescField - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
taskDescField - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskDescField - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
 
taskDescField - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
taskDescField - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
taskDescField - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskDescField - Variable in class moa.gui.TaskManagerPanel
 
taskEndTime - Variable in class moa.gui.experimentertab.ExpTaskThread
 
taskEndTime - Variable in class moa.tasks.TaskThread
 
TaskLauncher - Class in moa.gui
The old main class for the MOA gui, now the main class is GUI.
TaskLauncher() - Constructor for class moa.gui.TaskLauncher
 
taskList - Variable in class moa.gui.active.ALTaskManagerPanel
 
taskList - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
taskList - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskList - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
taskList - Variable in class moa.gui.featureanalysis.FeatureImportancePanel
Tasks are encapsulated in task thread to execute.
taskList - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
taskList - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
taskList - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskList - Variable in class moa.gui.TaskManagerPanel
 
TaskManagerForm - Class in moa.gui.experimentertab
 
TaskManagerForm() - Constructor for class moa.gui.experimentertab.TaskManagerForm
Creates new form TaskManagerForm
taskManagerPanel - Variable in class moa.gui.ALTabPanel
 
taskManagerPanel - Variable in class moa.gui.AuxiliarTabPanel
 
taskManagerPanel - Variable in class moa.gui.ClassificationTabPanel
 
taskManagerPanel - Variable in class moa.gui.ConceptDriftTabPanel
 
taskManagerPanel - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
taskManagerPanel - Variable in class moa.gui.MultiLabelTabPanel
 
taskManagerPanel - Variable in class moa.gui.MultiTargetTabPanel
 
taskManagerPanel - Variable in class moa.gui.RegressionTabPanel
 
taskManagerPanel - Variable in class moa.gui.TaskLauncher
 
taskManagerPanel - Variable in class moa.gui.TaskTextViewerPanel
 
TaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
TaskManagerPanel() - Constructor for class moa.gui.TaskManagerPanel
 
TaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
TaskManagerPanel.TaskTableModel - Class in moa.gui
 
TaskManagerTabPanel - Class in moa.gui.experimentertab
Run online learning algorithms over multiple datasets and save the corresponding experiment results over time: measurements of time, memory, and predictive accuracy.
TaskManagerTabPanel() - Constructor for class moa.gui.experimentertab.TaskManagerTabPanel
TaskManagerTabPanel Constructor
TaskManagerTabPanel.ProgressCellRenderer - Class in moa.gui.experimentertab
Class ProgressCellRenderer
TaskManagerTabPanel.TaskTableModel - Class in moa.gui.experimentertab
Class TaskTableModel
taskMonitor - Variable in class moa.gui.experimentertab.ExpTaskThread
 
taskMonitor - Variable in class moa.tasks.TaskThread
 
TaskMonitor - Interface in moa.tasks
Interface representing a task monitor.
taskOption - Variable in class moa.tasks.RunStreamTasks
 
taskOption - Variable in class moa.tasks.RunTasks
 
taskOption - Variable in class moa.tasks.WriteConfigurationToJupyterNotebook
 
taskSelectionChanged() - Method in class moa.gui.active.ALTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.AuxiliarTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.experimentertab.TaskManagerTabPanel
 
taskSelectionChanged() - Method in class moa.gui.MultiLabelTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.MultiTargetTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.RegressionTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.TaskManagerPanel
 
taskShouldAbort() - Method in class moa.tasks.NullMonitor
 
taskShouldAbort() - Method in class moa.tasks.StandardTaskMonitor
 
taskShouldAbort() - Method in interface moa.tasks.TaskMonitor
Gets whether the task should abort.
taskStartTime - Variable in class moa.gui.experimentertab.ExpTaskThread
 
taskStartTime - Variable in class moa.tasks.TaskThread
 
taskTable - Variable in class moa.gui.active.ALTaskManagerPanel
 
taskTable - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
taskTable - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskTable - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
taskTable - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
taskTable - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
taskTable - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskTable - Variable in class moa.gui.TaskManagerPanel
 
taskTableModel - Variable in class moa.gui.active.ALTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.AuxiliarTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.experimentertab.TaskManagerTabPanel
 
taskTableModel - Variable in class moa.gui.MultiLabelTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.MultiTargetTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.TaskManagerPanel
 
TaskTableModel() - Constructor for class moa.gui.active.ALTaskManagerPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.AuxiliarTaskManagerPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.experimentertab.TaskManagerTabPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.MultiLabelTaskManagerPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.MultiTargetTaskManagerPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
TaskTableModel() - Constructor for class moa.gui.TaskManagerPanel.TaskTableModel
 
taskTabManagerPanel - Variable in class moa.gui.experimentertab.ExperimenterTabPanel
 
TaskTextViewerPanel - Class in moa.gui.experimentertab
This panel displays text.
TaskTextViewerPanel - Class in moa.gui
This panel displays text.
TaskTextViewerPanel() - Constructor for class moa.gui.experimentertab.TaskTextViewerPanel
 
TaskTextViewerPanel() - Constructor for class moa.gui.TaskTextViewerPanel
 
TaskTextViewerPanel(ExpPreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.experimentertab.TaskTextViewerPanel
 
TaskTextViewerPanel(PreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.TaskTextViewerPanel
 
TaskThread - Class in moa.tasks
Task Thread.
TaskThread(Task) - Constructor for class moa.tasks.TaskThread
 
TaskThread(Task, ObjectRepository) - Constructor for class moa.tasks.TaskThread
 
TaskThread.Status - Enum in moa.tasks
 
tau_size - Variable in class moa.classifiers.meta.ADACC
Size of the evaluation window to compute the stability index
tauSizeOption - Variable in class moa.classifiers.meta.ADACC
Evaluation window for the stability index computation
TemporallyAugmentedClassifier - Class in moa.classifiers.meta
Include labels of previous instances into the training data
TemporallyAugmentedClassifier() - Constructor for class moa.classifiers.meta.TemporallyAugmentedClassifier
 
test(List<Instance>, List<Instance>) - Method in class moa.classifiers.core.statisticaltests.Cramer
 
test(List<Instance>, List<Instance>) - Method in class moa.classifiers.core.statisticaltests.KNN
 
test(List<Instance>, List<Instance>) - Method in interface moa.classifiers.core.statisticaltests.StatisticalTest
This method performs a test and returns the correspoding p-value.
Test - Class in moa.clusterers.outliers.AbstractC
 
Test - Class in moa.clusterers.outliers.Angiulli
 
Test - Class in moa.clusterers.outliers.MCOD
 
Test - Class in moa.clusterers.outliers.SimpleCOD
 
Test() - Constructor for class moa.clusterers.outliers.AbstractC.Test
 
Test() - Constructor for class moa.clusterers.outliers.Angiulli.Test
 
Test() - Constructor for class moa.clusterers.outliers.MCOD.Test
 
Test() - Constructor for class moa.clusterers.outliers.SimpleCOD.Test
 
testChunk - Variable in class moa.classifiers.meta.RCD
 
testCV(int, int) - Method in class com.yahoo.labs.samoa.instances.Instances
Test cv.
testFrequencyOption - Variable in class moa.classifiers.meta.RCD
 
testSizeOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
testSizeOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
TestSpeed - Class in moa.clusterers.outliers
 
TestSpeed() - Constructor for class moa.clusterers.outliers.TestSpeed
 
textArea - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
textArea - Variable in class moa.gui.TextViewerPanel
 
textField - Variable in class com.github.javacliparser.gui.ClassOptionEditComponent
 
textField - Variable in class com.github.javacliparser.gui.ClassOptionWithNamesEditComponent
 
textField - Variable in class com.github.javacliparser.gui.FileOptionEditComponent
 
textField - Variable in class moa.gui.WEKAClassOptionEditComponent
 
TextGenerator - Class in moa.streams.generators
Text generator that simulates sentiment analysis on tweets.
TextGenerator() - Constructor for class moa.streams.generators.TextGenerator
 
textViewerPanel - Variable in class moa.gui.active.ALPreviewPanel
 
textViewerPanel - Variable in class moa.gui.experimentertab.ExpPreviewPanel
 
textViewerPanel - Variable in class moa.gui.PreviewPanel
 
TextViewerPanel - Class in moa.gui
This panel displays text.
TextViewerPanel() - Constructor for class moa.gui.TextViewerPanel
 
theBestAttributes(Instance, AutoExpandVector<AttributeClassObserver>) - Method in class moa.classifiers.rules.RuleClassifier
 
theta - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
theta - Variable in class moa.classifiers.meta.PairedLearners
 
theta_diff - Variable in class moa.classifiers.meta.ADACC
Threshold values for the stability index and concept equivalence
theta_stab - Variable in class moa.classifiers.meta.ADACC
Threshold values for the stability index and concept equivalence
thetaOption - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
threadSizeOption - Variable in class moa.classifiers.meta.RCD
 
threshholdOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
threshold - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
threshold - Variable in class moa.classifiers.rules.core.Rule.Builder
 
threshold - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
threshold(double) - Method in class moa.classifiers.rules.core.Rule.Builder
 
thresholdOption - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
thresholdOption - Variable in class moa.classifiers.meta.PairedLearners
 
thresholdOption - Variable in class moa.classifiers.oneclass.Autoencoder
 
thresholdOption - Variable in class moa.classifiers.oneclass.NearestNeighbourDescription
 
thresholdOption - Variable in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
thresholdOption - Variable in class moa.classifiers.rules.multilabel.outputselectors.EntropyThreshold
 
thresholdOption - Variable in class moa.classifiers.rules.multilabel.outputselectors.StdDevThreshold
 
thresholdOption - Variable in class moa.classifiers.rules.multilabel.outputselectors.VarianceThreshold
 
tieThresholdOption - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
tieThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
tieThresholdOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
tieThresholdOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
tieThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
tieThresholdOption - Variable in class moa.classifiers.trees.ARFFIMTDD
 
tieThresholdOption - Variable in class moa.classifiers.trees.EFDT
 
tieThresholdOption - Variable in class moa.classifiers.trees.FIMTDD
 
tieThresholdOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
tieThresholdOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
time - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
timeLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluateConceptDrift
 
timeLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedChunks
Allows to define the maximum number of seconds to test/train for (-1 = no limit).
timeLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluateInterleavedTestThenTrain
 
timeLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
timeLimitOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
timeLimitOption - Variable in class moa.tasks.EvaluateConceptDrift
 
timeLimitOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the maximum number of seconds to test/train for (-1 = no limit).
timeLimitOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequential
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
timeLimitOption - Variable in class moa.tasks.meta.ALPrequentialEvaluationTask
 
timestamp - Variable in class moa.gui.visualization.DataPoint
 
timeStamp - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
timeStamp - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
timeStamp - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
Timestamp - Class in moa.clusterers.denstream
 
Timestamp() - Constructor for class moa.clusterers.denstream.Timestamp
 
Timestamp(long) - Constructor for class moa.clusterers.denstream.Timestamp
 
timeWindowOption - Variable in class moa.clusterers.ClusterGenerator
 
timeWindowOption - Variable in class moa.clusterers.clustream.Clustream
 
timeWindowOption - Variable in class moa.clusterers.clustream.WithKmeans
 
TimingUtils - Class in moa.core
Class implementing some time utility methods.
TimingUtils() - Constructor for class moa.core.TimingUtils
 
tm - Variable in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
toCluster() - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Creates a Cluster of the ClusteringFeature.
toCluster(double) - Method in class moa.clusterers.streamkm.Point
 
toClusterCenter() - Method in class moa.clusterers.kmeanspm.ClusteringFeature
Creates the cluster center of the ClusteringFeature.
toCommandLine(MOAObject) - Static method in class weka.core.MOAUtils
Returs the commandline for the given object.
toDoubleArray() - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
To double array.
toDoubleArray() - Method in interface com.yahoo.labs.samoa.instances.Instance
To double array.
toDoubleArray() - Method in interface com.yahoo.labs.samoa.instances.InstanceData
To double array.
toDoubleArray() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
To double array.
toDoubleArray() - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
To double array.
toggleRunMode() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
toggleRunMode() - Method in class moa.gui.outliertab.OutlierSetupTab
 
toggleVisualizer(boolean) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
toggleVisualizer(boolean) - Method in class moa.gui.outliertab.OutlierVisualTab
 
TOP_CENTER_INSIDE - moa.tasks.Plot.LegendLocation
 
TOP_CENTER_OUTSIDE - moa.tasks.Plot.LegendLocation
 
TOP_LEFT_INSIDE - moa.tasks.Plot.LegendLocation
 
TOP_LEFT_OUTSIDE - moa.tasks.Plot.LegendLocation
 
TOP_RIGHT_INSIDE - moa.tasks.Plot.LegendLocation
 
TOP_RIGHT_OUTSIDE - moa.tasks.Plot.LegendLocation
 
topK(double[], int) - Static method in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
toStream - Variable in class moa.streams.CachedInstancesStream
 
toString() - Method in class com.yahoo.labs.samoa.instances.Attribute
Returns a description of this attribute in ARFF format.
toString() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Text representation of a InstanceImpl.
toString() - Method in class com.yahoo.labs.samoa.instances.Instances
Returns the dataset as a string in ARFF format.
toString() - Method in class com.yahoo.labs.samoa.instances.MultiLabelPrediction
 
toString() - Method in interface com.yahoo.labs.samoa.instances.Prediction
The text of the prediction, that is the description of the values of the prediction
toString() - Method in class moa.AbstractMOAObject
Returns a description of the object.
toString() - Method in enum moa.capabilities.Capability
 
toString() - Method in class moa.classifiers.functions.SGD
Prints out the classifier.
toString() - Method in class moa.classifiers.functions.SGDMultiClass
Prints out the classifier.
toString() - Method in class moa.classifiers.functions.SPegasos
Prints out the classifier.
toString() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns an empty string.
toString() - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
toString() - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
toString() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
toString() - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
toString() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
toString() - Method in class moa.classifiers.rules.core.NominalRulePredicate
 
toString() - Method in class moa.classifiers.rules.core.NumericRulePredicate
 
toString() - Method in class moa.classifiers.rules.multilabel.core.Literal
 
toString() - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
toString() - Method in class moa.clusterers.dstream.CharacteristicVector
Overrides Object's toString method.
toString() - Method in class moa.clusterers.dstream.DensityGrid
 
toString() - Method in class moa.clusterers.dstream.GridCluster
 
toString() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns a String representation of the point.
toString() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns a String representation of all the DataObjects in the code as a list of the representation implemented for these.
toString() - Method in class moa.core.InstanceExample
 
toString() - Method in class moa.evaluation.MembershipMatrix
 
toString() - Method in class moa.evaluation.preview.PreviewCollection
 
toString() - Method in class moa.gui.experimentertab.ImageChart
 
toString() - Method in class moa.gui.experimentertab.statisticaltests.Relation
 
toString() - Method in class moa.gui.PreviewTableModel
 
toString() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
toString() - Method in class moa.recommender.dataset.impl.JesterDataset
 
toString() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
toString() - Method in class weka.classifiers.meta.MOA
Returns a string representation of the model.
total - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.Block
 
total() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
total() - Method in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
total() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
TOTAL_ATTRIBUTES_INCLUDING_NOISE - Static variable in class moa.streams.generators.WaveformGenerator
 
total_c - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
total_n - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
totalDelay - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
totalObservedInstances - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator
 
totalObservedInstances - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
totalSize() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the total size.
totalSize(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
totalWeightObserved - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
TotalweightObserved - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
TotalweightObserved - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
TotalweightObserved - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
totalWeightOfClassObservations() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
totalWeightOfClassObservations() - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
train() - Method in class moa.recommender.predictor.BaselinePredictor
 
train() - Method in class moa.recommender.predictor.BRISMFPredictor
 
train() - Method in interface moa.recommender.predictor.RatingPredictor
 
train() - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
train() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
train() - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
train(DataSet) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
TRAIN_RANDOM_PATCHES - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
TRAIN_RANDOM_SUBSPACES - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
TRAIN_RESAMPLING - Static variable in class moa.classifiers.meta.StreamingRandomPatches
 
trainAndClassify(Instance) - Method in class moa.classifiers.meta.DACC
Receives a training instance from the stream and updates the adaptive classifiers accordingly
trainCV(int, int) - Method in class com.yahoo.labs.samoa.instances.Instances
 
trainCV(int, int, Random) - Method in class com.yahoo.labs.samoa.instances.Instances
Train cv.
trainInBatches - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
trainingHasStarted() - Method in class moa.classifiers.AbstractClassifier
 
trainingHasStarted() - Method in class moa.clusterers.AbstractClusterer
 
trainingHasStarted() - Method in interface moa.clusterers.Clusterer
 
trainingHasStarted() - Method in interface moa.learners.Learner
Gets whether training has started.
trainingMethodOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
TrainingRunnable(AdaptiveRandomForest.ARFBaseLearner, Instance, double, long) - Constructor for class moa.classifiers.meta.AdaptiveRandomForest.TrainingRunnable
 
trainingSetSizeOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
trainingWeightSeenByModel - Variable in class moa.classifiers.AbstractClassifier
Sum of the weights of the instances trained by this model
trainingWeightSeenByModel - Variable in class moa.clusterers.AbstractClusterer
 
trainingWeightSeenByModel() - Method in class moa.classifiers.AbstractClassifier
 
trainingWeightSeenByModel() - Method in class moa.clusterers.AbstractClusterer
 
trainingWeightSeenByModel() - Method in interface moa.clusterers.Clusterer
 
trainingWeightSeenByModel() - Method in interface moa.learners.Learner
Gets the sum of the weights of the instances that have been used by this learner during the training in trainOnInstance
trainInstances - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
trainInstances - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
trainItem(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItem(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItem(int, List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItemFeats(int, List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainOnInitialWindowOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
trainOnInstance(Instance) - Method in class moa.classifiers.AbstractClassifier
 
trainOnInstance(Instance) - Method in interface moa.classifiers.Classifier
Trains this learner incrementally using the given example.
trainOnInstance(Instance) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
trainOnInstance(Instance) - Method in class moa.clusterers.AbstractClusterer
 
trainOnInstance(Instance) - Method in interface moa.clusterers.Clusterer
 
trainOnInstance(Instance, double, long) - Method in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
trainOnInstance(Instance, double, long) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
trainOnInstance(Instance, double, long, Random) - Method in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
trainOnInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
trainOnInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
trainOnInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
trainOnInstance(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
trainOnInstance(E) - Method in interface moa.learners.Learner
Trains this learner incrementally using the given example.
trainOnInstance(Example<Instance>) - Method in class moa.classifiers.AbstractClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.AbstractClassifier
Trains this classifier incrementally using the given instance.

The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.AbstractMultiLabelLearner
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.active.ALRandom
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.active.ALUncertainty
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.bayes.NaiveBayes
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.AdaGrad
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.MajorityClass
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.NoChange
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.Perceptron
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.SGD
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.SGDMultiClass
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.SPegasos
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.kNN
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.kNNwithPAW
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.SAMkNN
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.ADACC
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForest
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.ADOB
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.BOLE
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.DACC
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.DynamicWeightedMajority
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.HeterogeneousEnsembleBlast
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.HeterogeneousEnsembleBlastFadingFactors
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.CSMOTE
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineRUSBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineSMOTEBagging
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.OnlineUnderOverBagging
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.imbalanced.RebalanceStream
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.LearnNSE
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.LeveragingBag
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.LimAttClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OCBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBag
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBagAdwin
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBagASHT
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.PairedLearners
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.RandomRules
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.RCD
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.StreamingRandomPatches
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.WEKAClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.multilabel.meta.OzaBagAdwinML
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.oneclass.Autoencoder
Uses backpropagation to update the weights in the autoencoder.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.oneclass.HSTrees
Update the forest with the argument instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.oneclass.NearestNeighbourDescription
The classifier adds the argument instance to its neighbourhood.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.BinaryClassifierFromRegressor
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.AdaptiveNodePredictor
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.FadingTargetMean
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.LowPassFilteredLearner
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
Update the model using the provided instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.meta.RandomAMRulesOld
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD
Method for updating (training) the model using a new instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.DecisionStump
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.EFDT
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.FIMTDD
Method for updating (training) the model using a new instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.HoeffdingTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.AbstractClusterer
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.ClusterGenerator
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.clustream.Clustream
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.clustream.WithKmeans
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.clustree.ClusTree
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.CobWeb
Adds an instance to the clusterer.
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.denstream.WithDBSCAN
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.dstream.Dstream
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.kmeanspm.BICO
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.streamkm.StreamKM
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
trainOnInstanceImpl(Instance) - Method in class moa.learners.ChangeDetectorLearner
 
trainOnInstanceImpl(Instance) - Method in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
trainOnInstanceImpl(Instance) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
trainOnInstanceImpl(Instance) - Method in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble
 
trainOnInstanceImpl(Instance, int) - Method in class moa.classifiers.functions.SGDMultiClass
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.AbstractMultiLabelLearner
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multilabel.meta.OzaBagAdwinML
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multilabel.meta.OzaBagML
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree
Method for updating (training) the model using a new instance
trainOnInstanceImpl(MultiLabelInstance) - Method in interface moa.classifiers.MultiLabelLearner
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.multitarget.functions.MultiTargetNoChange
 
trainOnInstanceImpl(MultiLabelInstance) - Method in interface moa.classifiers.MultiTargetLearnerSemiSupervised
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.AdaptiveMultiTargetRegressor
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.DominantLabelsClassifier
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.functions.StackedPredictor
 
trainOnInstanceImpl(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
trainOnInstanceImplPerceptron(int, int, double[][]) - Method in class moa.classifiers.meta.LimAttClassifier
 
trainRegressor(Algorithm, double) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
trainSizeOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
trainSizeOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
trainTimeOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePeriodicHeldOutTest
 
trainTimeOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
trainUser(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUser(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUser(int, List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUserFeats(List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
transformInstance(Instance, int) - Method in class moa.classifiers.meta.RandomRules
 
transformInstance(MultiLabelInstance, int) - Method in class moa.classifiers.multitarget.BasicMultiLabelLearner
 
transformInstance(MultiLabelInstance, int) - Method in class moa.classifiers.multitarget.BasicMultiTargetRegressor
 
tree - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
tree - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
tree - Variable in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
tree - Variable in class moa.classifiers.trees.ARFFIMTDD.Node
 
tree - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
tree - Variable in class moa.classifiers.trees.FIMTDD.Node
 
tree - Variable in class moa.classifiers.trees.iadem.Iadem2.Node
 
treeCoreset - Variable in class moa.clusterers.streamkm.BucketManager
 
TreeCoreset - Class in moa.clusterers.streamkm
 
TreeCoreset() - Constructor for class moa.clusterers.streamkm.TreeCoreset
 
TreeCoreset.treeNode - Class in moa.clusterers.streamkm
datastructure representing a node within a tree
treeLearner - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
treeLearnerOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
treeLearnerOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
treeLearnerOption - Variable in class moa.learners.featureanalysis.FeatureImportanceHoeffdingTree
 
treeLevel - Variable in class moa.classifiers.trees.iadem.Iadem3
 
treeNode(int, Point[], Point, TreeCoreset.treeNode) - Constructor for class moa.clusterers.streamkm.TreeCoreset.treeNode
 
treeNode(Point[], Point[], int, int, Point, int) - Constructor for class moa.clusterers.streamkm.TreeCoreset.treeNode
initalizes root as a treenode with the union of setA and setB as pointset and centre as centre
treeRandomSeedOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
treeRoot - Variable in class moa.classifiers.multilabel.trees.ISOUPTree
 
treeRoot - Variable in class moa.classifiers.trees.ARFFIMTDD
 
treeRoot - Variable in class moa.classifiers.trees.EFDT
 
treeRoot - Variable in class moa.classifiers.trees.FIMTDD
 
treeRoot - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
treeRoot - Variable in class moa.classifiers.trees.HoeffdingTree
 
treeRoot - Variable in class moa.classifiers.trees.iadem.Iadem2
 
treeRoot - Variable in class moa.streams.generators.RandomTreeGenerator
 
triggerWarning(Instance, long, Random) - Method in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
trueClass - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
true class label
TruncatedNormal - Class in moa.clusterers.meta
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.core.Rule
Try to Expand method.
tryToExpand(double, double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralClassification
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteralRegression
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
Tuple(double) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
Tuple(double, long, long) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
type - Variable in class moa.gui.visualization.PointPanel
 
TYPE_CLUSTERED - Variable in class moa.gui.visualization.PointPanel
 
TYPE_PLAIN - Variable in class moa.gui.visualization.PointPanel
 
typePanel - Variable in class moa.gui.experimentertab.TaskTextViewerPanel
 
typePanel - Variable in class moa.gui.TaskTextViewerPanel
 
types - Variable in class moa.gui.experimentertab.ExperimeterCLI
 

U

unbackQuoteChars(String) - Static method in class moa.core.Utils
The inverse operation of backQuoteChars().
UNDO_DIR - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
UNDO_DIR_KEY - Static variable in class moa.gui.featureanalysis.VisualizeFeaturesPanel.PreprocessDefaults
 
UniformWeightedVote - Class in moa.classifiers.rules.core.voting
UniformWeightedVote class for weighted votes based on estimates of errors.
UniformWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.UniformWeightedVote
 
UniformWeightedVoteMultiLabel - Class in moa.classifiers.rules.multilabel.core.voting
UniformWeightedVote class for weighted votes based on estimates of errors.
UniformWeightedVoteMultiLabel() - Constructor for class moa.classifiers.rules.multilabel.core.voting.UniformWeightedVoteMultiLabel
 
univariateAnomalyprobabilityThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
univariateAnomalyprobabilityThresholdOption - Variable in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
unlabeledPercentage - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
unorderedRulesOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
unorderedRulesOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
unorderedRulesOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
unquote(String) - Static method in class moa.core.Utils
unquotes are previously quoted string (but only if necessary), i.e., it removes the single quotes around it.
unset() - Method in class com.github.javacliparser.FlagOption
 
Unsupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
Updatable - Interface in moa.recommender.rc.utils
 
updatables - Variable in class moa.recommender.rc.data.AbstractRecommenderData
 
update() - Method in class moa.gui.active.MeasureOverview
Updates the measure overview.
update() - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
 
update() - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
 
update(double) - Method in class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
update(double) - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
update(double[], boolean[], double) - Method in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking.RuleInformation
 
update(Instance) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Update the distance function (if necessary) for the newly added instance.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Adds one instance to the KDTree.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Updates the LinearNNSearch to cater for the new added instance.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Updates the NearNeighbourSearch algorithm for the new added instance.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Update the distance function (if necessary) for the newly added instance.
update(ObservableMOAObject, Object) - Method in class moa.classifiers.rules.featureranking.AbstractFeatureRanking
 
update(ObservableMOAObject, Object) - Method in class moa.classifiers.rules.featureranking.BasicFeatureRanking
 
update(ObservableMOAObject, Object) - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking
 
update(ObservableMOAObject, Object) - Method in class moa.classifiers.rules.featureranking.NoFeatureRanking
 
update(ObservableMOAObject, Object) - Method in class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking
 
update(ObservableMOAObject, Object) - Method in interface moa.classifiers.rules.multilabel.core.ObserverMOAObject
 
update(MeasureCollection[], String, double[]) - Method in class moa.gui.active.MeasureOverview
Updates the measure overview by assigning new measure collections and varied parameter properties.
updateAccumulatedError(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
 
updateAndCheckAnomalyDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.core.anomalydetection.AbstractAnomalyDetector
 
updateAndCheckAnomalyDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.core.anomalydetection.AnomalinessRatioScore
 
updateAndCheckAnomalyDetection(MultiLabelInstance) - Method in interface moa.classifiers.rules.core.anomalydetection.AnomalyDetector
Adding an instance to the anomaly detector

updateAndCheckAnomalyDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.core.anomalydetection.NoAnomalyDetection
 
updateAndCheckAnomalyDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.core.anomalydetection.OddsRatioScore
 
updateAndCheckAnomalyDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
updateAndCheckChange(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
updateAnomalyDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
updateAutoRefreshTimer() - Method in class moa.gui.experimentertab.ExpPreviewPanel
 
updateAutoRefreshTimer() - Method in class moa.gui.PreviewPanel
 
updateCanvas() - Method in class moa.gui.visualization.GraphCanvas
 
updateCanvas(boolean) - Method in class moa.gui.visualization.AbstractGraphCanvas
Updates the canvas: if values have changed or it is forced, the canvas and preferred sizes are updated and the canvas is repainted.
updateCanvas(boolean) - Method in class moa.gui.visualization.GraphCanvas
 
updateChangeDetection(double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
updateChangeDetection(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.core.MultiLabelRule
 
updateClassifier(Instance) - Method in class weka.classifiers.meta.MOA
Updates a classifier using the given instance.
updateConfiguration() - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
updateCurrent(DoubleVector) - Method in class moa.classifiers.rules.featureranking.MeritFeatureRanking.RuleInformation
 
updateDistance(double, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Updates the current distance calculated so far with the new difference between two attributes.
updateDistance(double, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Updates the current distance calculated so far with the new difference between two attributes.
updateEstimations() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
updateEvaluationWindow(int, int) - Method in class moa.classifiers.meta.DACC
Updates the evaluation window of a classifier and returns the updated weight value.
updateGridDensity(int, double, double, double) - Method in class moa.clusterers.dstream.CharacteristicVector
Implements the update the density of all grids step given at line 2 of both Fig 3 and Fig 4 of Chen and Tu 2007.
updateHeuristicMeasure(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
updateHeuristicMeasure(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NumericVirtualNode
 
updateHeuristicMeasure(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
updateHeuristicMeasureBinaryTest(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
updateHeuristicMeasureMultiwayTest(Instance) - Method in class moa.classifiers.trees.iadem.Iadem2.NominalVirtualNode
 
updateInfo(String) - Method in class moa.gui.visualization.InfoPanel
 
updateLocation() - Method in class moa.gui.visualization.ClusterPanel
 
updateLocation() - Method in class moa.gui.visualization.OutlierPanel
 
updateLocation() - Method in class moa.gui.visualization.PointPanel
 
updateMass(Instance, boolean) - Method in class moa.classifiers.oneclass.HSTreeNode
Update the mass profile of this node.
UpdateMaxMemUsage() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
updateMeasures(String[], String) - Method in class moa.gui.experimentertab.ReadFile
 
updateModel() - Method in class moa.classifiers.oneclass.HSTreeNode
Update the node's model by setting the latest window's mass profile as the reference window's mass profile, resetting the latest window's mass profile to zero and updating any subordinates nodes' models.
updateNewItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateNewItem(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.utils.Updatable
 
updateNewUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateNewUser(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.utils.Updatable
 
updateNumberOfLeaves(int) - Method in class moa.classifiers.trees.iadem.Iadem3
 
updateNumberOfLeaves(int) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
updateNumberOfNodes(int) - Method in class moa.classifiers.trees.iadem.Iadem3
 
updateNumberOfNodes(int) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
updateNumberOfNodesSplitByTieBreaking(int) - Method in class moa.classifiers.trees.iadem.Iadem3
 
updateNumberOfNodesSplitByTieBreaking(int) - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
updateOptionCount(HoeffdingOptionTree.SplitNode, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
updateOptionCountBelow(int, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
updatePageHinckleyTest(double) - Method in class moa.classifiers.rules.core.Rule
 
updatePageHinckleyTest(double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
updatePerceptron(Instance) - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
Update the model using the provided instance
updatePerceptron(Instance) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
Update the model using the provided instance
updatePerceptron(MultiLabelInstance) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
Update the model using the provided instance
updateRanges(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Update the ranges if a new instance comes.
updateRanges(Instance, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Updates the ranges given a new instance.
updateRanges(Instance, int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Updates the minimum and maximum and width values for all the attributes based on a new instance.
updateRangesFirst(Instance, int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Used to initialize the ranges.
updateRemovalFlags(HashMap<String, Double>, HashMap<String, Integer>, HashMap<String, Integer>) - Method in class moa.clusterers.meta.EnsembleClustererAbstract
 
updateRemoveItem(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateRemoveItem(int) - Method in interface moa.recommender.rc.utils.Updatable
 
updateRemoveRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateRemoveRating(int, int) - Method in interface moa.recommender.rc.utils.Updatable
 
updateRemoveUser(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateRemoveUser(int) - Method in interface moa.recommender.rc.utils.Updatable
 
updateRuleAttribStatistics(Instance, RuleClassification, int) - Method in class moa.classifiers.rules.RuleClassifier
 
updateSetRating(int, int, double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateSetRating(int, int, double) - Method in interface moa.recommender.rc.utils.Updatable
 
updateStatistics(Instance) - Method in class moa.classifiers.rules.core.Rule
 
updateStatistics(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
updateStatistics(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
UpdateStatistics(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.STORMBase
 
updateSubtreeLevel(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
updateSubtreeLevelAux(Iadem2.Node) - Method in class moa.classifiers.trees.iadem.Iadem3.AdaptiveSplitNode
 
updateTooltip() - Method in class moa.gui.visualization.ClusterPanel
 
updateTooltip() - Method in class moa.gui.visualization.OutlierPanel
 
updateWeight(int, double) - Method in class moa.gui.visualization.DataPoint
 
updateWeights(Instance, double) - Method in class moa.classifiers.rules.functions.Perceptron
 
updateWeights(Instance, double) - Method in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
updateWeights(Instance, double) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
updateWeights(MultiLabelInstance, double) - Method in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
upheap() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
performs upheap operation for the heap to maintian its properties.
upper_x_value - Variable in class moa.gui.visualization.AbstractGraphAxes
 
upper_x_value - Variable in class moa.gui.visualization.AbstractGraphPlot
 
upper_y_value - Variable in class moa.gui.visualization.AbstractGraphAxes
 
upper_y_value - Variable in class moa.gui.visualization.AbstractGraphPlot
 
upperBound - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
upperBound - Variable in class moa.classifiers.trees.iadem.IademVFMLNumericAttributeClassObserver.Bin
 
useBaggingOption - Variable in class moa.classifiers.meta.RandomRules
 
useBaggingOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
useBaggingOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
useBkgLearner - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
useBkgLearner - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
usedNominalAttributes - Variable in class moa.classifiers.trees.EFDT.Node
 
useDriftDetector - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
useDriftDetector - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
UseMeanScoreOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
useMicroGT - Variable in class moa.gui.BatchCmd
 
usePerceptron - Variable in class moa.classifiers.rules.core.Rule.Builder
 
userExists(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
userExists(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
userFeature - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
userID - Variable in class moa.recommender.rc.utils.Rating
 
usersStats - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
useWeightOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
Utils - Class in moa.classifiers.rules.core
Class that contains several utilities Variance Standard deviation Vector operations(copy, etc) Entropy Complementary set
Utils - Class in moa.clusterers.outliers.utils.mtree.utils
Some utilities.
Utils - Class in moa.core
Class implementing some simple utility methods.
Utils() - Constructor for class moa.classifiers.rules.core.Utils
 
Utils() - Constructor for class moa.core.Utils
 

V

v - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
validate() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
performs the initializations if necessary.
validate() - Method in class moa.gui.active.ALTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.AuxiliarTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.experimentertab.TaskManagerTabPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.MultiLabelTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.MultiTargetTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
validationMethodologyOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequentialCV
 
validationMethodologyOption - Variable in class moa.tasks.EvaluatePrequentialCV
 
validationMethodologyOption - Variable in class moa.tasks.EvaluatePrequentialDelayedCV
 
valor - Variable in class moa.gui.experimentertab.statisticaltests.Pareja
 
ValorTargetRule - Variable in class moa.classifiers.rules.RuleClassification
 
value - Variable in class moa.core.Measurement
 
value - Variable in class moa.evaluation.BasicAUCImbalancedPerformanceEvaluator.Estimator.Score
Predicted score of the example
value - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator.Score
Predicted score of the example
value - Variable in class moa.gui.experimentertab.SummaryTable
 
value(int) - Method in class com.yahoo.labs.samoa.instances.Attribute
Value.
value(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Value.
value(int) - Method in class com.yahoo.labs.samoa.instances.FilteredSparseInstanceData
Value of the attribute in the indexAttribute position.
value(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of an attribute.
value(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Value.
value(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Value.
value(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Value.
value(Attribute) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of an attribute, given the attribute.
value(Attribute) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Value.
VALUE_CROSSPLATFORM - Static variable in class moa.gui.LookAndFeel
for using the cross-platform LnF (= metal).
VALUE_SYSTEM - Static variable in class moa.gui.LookAndFeel
for using the system's default LnF.
valueChanged(TreeSelectionEvent) - Method in class moa.gui.experimentertab.ImageTreePanel
 
valueInputAttribute(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of an input attribute.
valueInputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
valueIsSmallerEqual(Instance, int, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns true if the value of the given dimension is smaller or equal the value to be compared with.
valueOf(String) - Static method in enum moa.capabilities.Capability
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.experimentertab.ExpPreviewPanel.TypePanel
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.experimentertab.ExpTaskThread.Status
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.experimentertab.PlotTab.LegendType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.experimentertab.PlotTab.PlotStyle
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.experimentertab.PlotTab.Terminal
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.PreviewPanel.TypePanel
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.LegendLocation
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.LegendType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.PlotStyle
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.Terminal
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.TaskThread.Status
Returns the enum constant of this type with the specified name.
valueOutputAttribute(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of an output attribute.
valueOutputAttribute(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
 
values() - Static method in enum moa.capabilities.Capability
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.experimentertab.ExpPreviewPanel.TypePanel
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.experimentertab.ExpTaskThread.Status
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.experimentertab.PlotTab.LegendType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.experimentertab.PlotTab.PlotStyle
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.experimentertab.PlotTab.Terminal
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.PreviewPanel.TypePanel
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.LegendLocation
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.LegendType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.PlotStyle
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.Terminal
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.TaskThread.Status
Returns an array containing the constants of this enum type, in the order they are declared.
valueSparse(int) - Method in class com.yahoo.labs.samoa.instances.DenseInstanceData
Value sparse.
valueSparse(int) - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the value of an attribute in a sparse representation of the instance.
valueSparse(int) - Method in interface com.yahoo.labs.samoa.instances.InstanceData
Value sparse.
valueSparse(int) - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Value sparse.
valueSparse(int) - Method in class com.yahoo.labs.samoa.instances.SparseInstanceData
Value sparse.
variance(double[]) - Static method in class moa.core.Utils
Computes the variance for an array of doubles.
VarianceRatioSplitCriterion - Class in moa.classifiers.rules.core.splitcriteria
 
VarianceRatioSplitCriterion() - Constructor for class moa.classifiers.rules.core.splitcriteria.VarianceRatioSplitCriterion
 
VarianceReductionSplitCriterion - Class in moa.classifiers.core.splitcriteria
 
VarianceReductionSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
varianceSum - Variable in class moa.core.GaussianEstimator
 
VarianceThreshold - Class in moa.classifiers.rules.multilabel.outputselectors
 
VarianceThreshold() - Constructor for class moa.classifiers.rules.multilabel.outputselectors.VarianceThreshold
 
variedParamNameOption - Variable in class moa.options.DependentOptionsUpdater
 
variedParamNameOption - Variable in class moa.tasks.meta.ALMultiParamTask
 
variedParamValuesOption - Variable in class moa.tasks.meta.ALMultiParamTask
 
vdmMap - Variable in class moa.classifiers.meta.imbalanced.RebalanceStream
 
Vector - Class in moa.recommender.rc.utils
 
Vector() - Constructor for class moa.recommender.rc.utils.Vector
 
verboseOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines whether additional information should be sent to the output.
VerboseToConsole(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
 
VerboseToConsole(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
VerboseToConsole(MultiLabelInstance) - Method in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
VerbosityOption - Variable in class moa.classifiers.meta.RandomRules
 
VerbosityOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
VerbosityOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
VerbosityOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
VerbosityOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
VerbosityOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
versionString - Static variable in class moa.core.Globals
 
VFMLNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute as in VFML.
VFMLNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
VFMLNumericAttributeClassObserver.Bin - Class in moa.classifiers.core.attributeclassobservers
 
VIEW_EXPERIMENTAL - moa.capabilities.Capability
 
VIEW_LITE - moa.capabilities.Capability
 
VIEW_STANDARD - moa.capabilities.Capability
 
viewModeList - Variable in class moa.gui.TaskManagerPanel
 
virtualChildren - Variable in class moa.classifiers.trees.iadem.Iadem2.LeafNode
 
VirtualNode(Iadem2, Iadem2.Node, int) - Constructor for class moa.classifiers.trees.iadem.Iadem2.VirtualNode
 
visualizeAll() - Method in class moa.gui.featureanalysis.LineAndScatterPanel
1.
visualizeFeaturesPanel - Variable in class moa.gui.featureanalysis.FeatureAnalysisTabPanel
 
VisualizeFeaturesPanel - Class in moa.gui.featureanalysis
This is VisualizeFeatures tab main panel which loads data stream and shows other sub panels.
VisualizeFeaturesPanel() - Constructor for class moa.gui.featureanalysis.VisualizeFeaturesPanel
Creates the instances panel with no initial instances.
VisualizeFeaturesPanel.PreprocessDefaults - Class in moa.gui.featureanalysis
 
vote - Variable in class moa.classifiers.rules.multilabel.core.voting.MultiLabelVote
 
Vote - Class in moa.classifiers.rules.core.voting
Vote class for weighted votes based on estimates of errors.
Vote(double[], double) - Constructor for class moa.classifiers.rules.core.voting.Vote
 
votes - Variable in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
votes - Variable in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
votingFunctionOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
votingFunctionOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
votingTypeOption - Variable in class moa.classifiers.rules.AMRulesRegressorOld
 
votingTypeOption - Variable in class moa.classifiers.rules.meta.RandomAMRulesOld
 
votingTypeOption - Variable in class moa.classifiers.rules.multilabel.meta.MultiLabelRandomAMRules
 
VRSplitCriterion - Class in moa.classifiers.rules.core.splitcriteria
 
VRSplitCriterion() - Constructor for class moa.classifiers.rules.core.splitcriteria.VRSplitCriterion
 

W

w - Variable in class moa.classifiers.meta.PairedLearners
 
W - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
W - Variable in class moa.streams.filters.ReLUFilter
 
wAcc - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
waitingToSend - Variable in class moa.streams.BootstrappedStream
 
waitWinFullOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
 
waitWinFullOption - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
WARNING - Static variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector.SeqDrift1
 
warningConfidence - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
warningConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
warningConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
warningDetected - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
warningDetectionMethod - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
warningDetectionMethod - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
warningDetectionMethod - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
warningDetectionMethodOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest
 
warningDetectionMethodOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor
 
warningDetectionMethodOption - Variable in class moa.classifiers.meta.StreamingRandomPatches
 
warningLevelOption - Variable in class moa.classifiers.core.driftdetection.DDM
 
warningLevelOption - Variable in class moa.classifiers.core.driftdetection.RDDM
 
warningOption - Variable in class moa.classifiers.meta.AdaptiveRandomForest.ARFBaseLearner
 
warningOption - Variable in class moa.classifiers.meta.AdaptiveRandomForestRegressor.ARFFIMTDDBaseLearner
 
warningOption - Variable in class moa.classifiers.meta.StreamingRandomPatches.StreamingRandomPatchesClassifier
 
warnLimitOption - Variable in class moa.classifiers.core.driftdetection.RDDM
 
WaveformGenerator - Class in moa.streams.generators
Stream generator for the problem of predicting one of three waveform types.
WaveformGenerator() - Constructor for class moa.streams.generators.WaveformGenerator
 
WaveformGeneratorDrift - Class in moa.streams.generators
Stream generator for the problem of predicting one of three waveform types with drift.
WaveformGeneratorDrift() - Constructor for class moa.streams.generators.WaveformGeneratorDrift
 
webAddress - Static variable in class moa.core.Globals
 
weight - Variable in class com.yahoo.labs.samoa.instances.InstanceImpl
The weight.
weight() - Method in interface com.yahoo.labs.samoa.instances.Instance
Gets the weight of the instance.
weight() - Method in class com.yahoo.labs.samoa.instances.InstanceImpl
Weight.
weight() - Method in interface moa.core.Example
 
weight() - Method in class moa.core.InstanceExample
 
weightAttribute - Variable in class moa.classifiers.functions.Perceptron
 
weightAttribute - Variable in class moa.classifiers.meta.LimAttClassifier
 
weightAttribute - Variable in class moa.classifiers.rules.functions.Perceptron
 
weightAttribute - Variable in class moa.classifiers.rules.RuleClassification
 
weightAttribute - Variable in class moa.classifiers.trees.ARFFIMTDD.FIMTDDPerceptron
 
weightAttribute - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
weightClassifiersOption - Variable in class moa.classifiers.meta.HeterogeneousEnsembleAbstract
 
weightComparator - Static variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Simple weight comparator.
weightCorrect - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
weightCorrect - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
WeightedMajorityAlgorithm - Class in moa.classifiers.meta
Weighted majority algorithm for data streams.
WeightedMajorityAlgorithm() - Constructor for class moa.classifiers.meta.WeightedMajorityAlgorithm
 
WeightedMajorityFeatureRanking - Class in moa.classifiers.rules.featureranking
Weighted Majority Feature Ranking method João Duarte, João Gama,Feature ranking in hoeffding algorithms for regression.
WeightedMajorityFeatureRanking() - Constructor for class moa.classifiers.rules.featureranking.WeightedMajorityFeatureRanking
 
WeightedMajorityFeatureRanking.RuleInformation - Class in moa.classifiers.rules.featureranking
Rule information class
weightedMax(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
weightedMaxNB(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
weightedSum(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
weightedSumNB(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
weightedVote - Variable in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
weightedVoteOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearner
 
weightedVoteOption - Variable in class moa.classifiers.rules.multilabel.AMRulesMultiLabelLearnerSemiSuper
 
weightObserved - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.BasicMultiTargetPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.BasicMultiTargetPerformanceRelativeMeasuresEvaluator
 
weightObserved - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
weightObserved - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
weightOfObservedMissingValues() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
weightOfObservedMissingValues() - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
weights - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
The weights of stored classifiers.
weights - Variable in class moa.classifiers.meta.DynamicWeightedMajority
 
weights - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
The weights of stored classifiers.
weights - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.MultitargetPerceptron
 
weights - Variable in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
weights - Variable in class moa.classifiers.rules.multilabel.core.voting.AbstractErrorWeightedVoteMultiLabel
 
weights - Variable in class moa.streams.generators.HyperplaneGenerator
 
weightSeen - Variable in class moa.classifiers.rules.multilabel.core.LearningLiteral
 
weightSeen - Variable in class moa.classifiers.rules.multilabel.errormeasurers.MeanAbsoluteDeviationMT
 
weightSeen - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT
 
weightSeen - Variable in class moa.classifiers.rules.multilabel.errormeasurers.RelativeRootMeanSquaredErrorMT
 
weightSeenAtLastSplit - Variable in class moa.classifiers.trees.DecisionStump
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.multilabel.trees.ISOUPTree.Node
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.EFDT.ActiveLearningNode
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
weightShiftOption - Variable in class moa.classifiers.meta.BOLE
 
weightShrinkOption - Variable in class moa.classifiers.meta.LeveragingBag
 
weightShrinkOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
weightSum - Variable in class moa.core.GaussianEstimator
 
weka() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
weka() - Method in class moa.gui.visualization.RunVisualizer
 
weka.classifiers.meta - package weka.classifiers.meta
 
weka.core - package weka.core
 
weka.datagenerators.classifiers.classification - package weka.datagenerators.classifiers.classification
 
weka.gui - package weka.gui
 
wekaAlgorithmOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
wekaAttribute(int, Attribute) - Method in class com.yahoo.labs.samoa.instances.SamoaToWekaInstanceConverter
Weka attribute.
WEKAClassifier - Class in moa.classifiers.meta
Class for using a classifier from WEKA.
WEKAClassifier() - Constructor for class moa.classifiers.meta.WEKAClassifier
 
WEKAClassOption - Class in moa.options
WEKA class option.
WEKAClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.WEKAClassOption
 
WEKAClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.WEKAClassOption
 
WEKAClassOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a WEKA class option.
WEKAClassOptionEditComponent(Option) - Constructor for class moa.gui.WEKAClassOptionEditComponent
 
WekaClusteringAlgorithm - Class in moa.clusterers
 
WekaClusteringAlgorithm() - Constructor for class moa.clusterers.WekaClusteringAlgorithm
 
WekaExplorer - Class in moa.gui.visualization
 
WekaExplorer(Instances) - Constructor for class moa.gui.visualization.WekaExplorer
 
wekaInstance(Instance) - Method in class com.yahoo.labs.samoa.instances.SamoaToWekaInstanceConverter
Weka instance.
wekaInstanceInformation - Variable in class com.yahoo.labs.samoa.instances.SamoaToWekaInstanceConverter
The weka instance information.
wekaInstances(Instances) - Method in class com.yahoo.labs.samoa.instances.SamoaToWekaInstanceConverter
Weka instances.
wekaInstancesInformation(Instances) - Method in class com.yahoo.labs.samoa.instances.SamoaToWekaInstanceConverter
Weka instances information.
wekaToSamoa - Variable in class moa.classifiers.meta.imbalanced.CSMOTE
 
WekaToSamoaInstanceConverter - Class in com.yahoo.labs.samoa.instances
The Class WekaToSamoaInstanceConverter.
WekaToSamoaInstanceConverter() - Constructor for class com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter
 
WekaUtils - Class in moa.core
Class implementing some Weka utility methods.
WekaUtils() - Constructor for class moa.core.WekaUtils
 
wErr - Variable in class moa.classifiers.meta.imbalanced.OnlineAdaC2
 
wErr - Variable in class moa.classifiers.meta.imbalanced.OnlineCSB2
 
widestDim(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the widest dimension/attribute in a KDTreeNode (widest after normalizing).
widestDim(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Returns the widest dimension.
width - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
width - Variable in class moa.gui.visualization.AbstractGraphAxes
 
WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
The index of WIDTH (MAX-MIN) value in attributes' range array.
WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Index of width value (max-min) in an array of attributes' range.
widthInitOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
widthOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
widthOption - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator
 
widthOption - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator
 
widthOption - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
widthOption - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
widthOption - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
widthOption - Variable in class moa.gui.experimentertab.tasks.EvaluatePrequential
 
widthOption - Variable in class moa.streams.ConceptDriftRealStream
 
widthOption - Variable in class moa.streams.ConceptDriftStream
 
widthOption - Variable in class moa.tasks.EvaluatePrequential
 
widthOption - Variable in class moa.tasks.EvaluatePrequentialDelayed
 
widthOption - Variable in class moa.tasks.EvaluatePrequentialMultiLabel
 
widthOption - Variable in class moa.tasks.EvaluatePrequentialMultiTarget
 
widthOption - Variable in class moa.tasks.EvaluatePrequentialMultiTargetSemiSuper
 
widthOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
widthRecurrenceOption - Variable in class moa.streams.RecurrentConceptDriftStream
 
window - Variable in class moa.classifiers.core.driftdetection.SEEDChangeDetector.SEED
 
window - Variable in class moa.classifiers.lazy.kNN
 
window - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator.Estimator
 
window - Variable in class moa.evaluation.MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.Estimator
 
window - Variable in class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator.Estimator
 
window - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
window - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
window_size - Variable in class moa.gui.visualization.ClusterPanel
 
window_size - Variable in class moa.gui.visualization.OutlierPanel
 
window_size - Variable in class moa.gui.visualization.PointPanel
 
WindowAUCImbalancedPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using a sliding window.
WindowAUCImbalancedPerformanceEvaluator() - Constructor for class moa.evaluation.WindowAUCImbalancedPerformanceEvaluator
 
WindowAUCImbalancedPerformanceEvaluator.Estimator - Class in moa.evaluation
 
WindowAUCImbalancedPerformanceEvaluator.Estimator.Score - Class in moa.evaluation
 
WindowAUCImbalancedPerformanceEvaluator.SimpleEstimator - Class in moa.evaluation
 
WindowClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using a sliding window.
WindowClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.WindowClassificationPerformanceEvaluator
 
WindowClassificationPerformanceEvaluator.WindowEstimator - Class in moa.evaluation
 
WindowEstimator(int) - Constructor for class moa.evaluation.WindowClassificationPerformanceEvaluator.WindowEstimator
 
windowNodes - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
windowNodes - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
windowNodes - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
windowNodes - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
windowPoints - Variable in class moa.clusterers.meta.EnsembleClustererAbstract
 
WindowRegressionPerformanceEvaluator - Class in moa.evaluation
Regression evaluator that updates evaluation results using a sliding window.
WindowRegressionPerformanceEvaluator() - Constructor for class moa.evaluation.WindowRegressionPerformanceEvaluator
 
WindowRegressionPerformanceEvaluator.Estimator - Class in moa.evaluation
 
WINDOWS_LNF - Static variable in class moa.gui.LookAndFeel
the Windows LnF classname.
windowSize - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Window size.
windowSizeOption - Variable in class moa.classifiers.core.driftdetection.STEPD
 
windowSizeOption - Variable in class moa.classifiers.meta.HeterogeneousEnsembleBlast
 
windowSizeOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Chunk size.
windowSizeOption - Variable in class moa.classifiers.meta.PairedLearners
 
windowSizeOption - Variable in class moa.classifiers.oneclass.HSTrees
 
windowSizeOption - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
windowSizeOption - Variable in class moa.learners.featureanalysis.ClassifierWithFeatureImportance
 
windowWidth() - Method in class moa.classifiers.trees.iadem.Iadem3Subtree
 
WithDBSCAN - Class in moa.clusterers.denstream
 
WithDBSCAN() - Constructor for class moa.clusterers.denstream.WithDBSCAN
 
WithKmeans - Class in moa.clusterers.clustream
 
WithKmeans() - Constructor for class moa.clusterers.clustream.WithKmeans
 
wkts - Variable in class moa.classifiers.meta.LearnNSE
 
wneg - Variable in class moa.classifiers.meta.OCBoost
 
wordTwitterGenerator - Variable in class moa.streams.generators.TextGenerator
 
workbenchTitle - Static variable in class moa.core.Globals
 
workclass() - Method in class moa.evaluation.CMM_GTAnalysis.CMMPoint
Retruns the current working label of the cluster the point belongs to.
wpos - Variable in class moa.classifiers.meta.OCBoost
 
write(byte[]) - Method in class com.github.javacliparser.SerializeUtils.ByteCountingOutputStream
 
write(byte[]) - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
write(byte[], int, int) - Method in class com.github.javacliparser.SerializeUtils.ByteCountingOutputStream
 
write(byte[], int, int) - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
write(int) - Method in class com.github.javacliparser.SerializeUtils.ByteCountingOutputStream
 
write(int) - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
WriteConfigurationToJupyterNotebook - Class in moa.tasks
Export the configuration of an training method form MOA to a IPYNB file
WriteConfigurationToJupyterNotebook() - Constructor for class moa.tasks.WriteConfigurationToJupyterNotebook
Initialises the first state of flags
WriteMultipleStreamsToARFF - Class in moa.tasks
Task to output multiple streams to a ARFF files using different random seeds
WriteMultipleStreamsToARFF() - Constructor for class moa.tasks.WriteMultipleStreamsToARFF
 
WriteStreamToARFFFile - Class in moa.tasks
Task to output a stream to an ARFF file
WriteStreamToARFFFile() - Constructor for class moa.tasks.WriteStreamToARFFFile
 
writeToFile(File, Serializable) - Static method in class com.github.javacliparser.SerializeUtils
 
writeToFile(File, Serializable) - Static method in class moa.core.SerializeUtils
 

X

x_dim - Variable in class moa.gui.visualization.ClusterPanel
 
x_dim - Variable in class moa.gui.visualization.OutlierPanel
 
x_dim - Variable in class moa.gui.visualization.PointPanel
 
X_OFFSET_LEFT - Static variable in class moa.gui.visualization.AbstractGraphAxes
 
X_OFFSET_LEFT - Static variable in class moa.gui.visualization.AbstractGraphCanvas
 
X_OFFSET_RIGHT - Static variable in class moa.gui.visualization.AbstractGraphAxes
 
X_OFFSET_RIGHT - Static variable in class moa.gui.visualization.AbstractGraphCanvas
 
x_resolution - Variable in class moa.gui.visualization.AbstractGraphAxes
 
x_resolution - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
x_resolution - Variable in class moa.gui.visualization.AbstractGraphPlot
 
xAxis(Graphics) - Method in class moa.gui.visualization.AbstractGraphAxes
Draws the x axis, containing of the axis line and the labels.
xAxisIndex - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
xColumnOption - Variable in class moa.tasks.Plot
Index of the csv column from which values for the x-axis should be taken.
XiSum - Variable in class moa.classifiers.rules.RuleClassification
 
xlogx(int) - Static method in class moa.core.Utils
Returns c*log2(c) for a given integer value c.
xMax - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
xMin - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
xnormi(double) - Static method in class moa.gui.experimentertab.statisticaltests.CDF_Normal
This method calculates the normal cdf inverse function.
xTitleOption - Variable in class moa.tasks.Plot
Title of the plots' x-axis.
xUnitOption - Variable in class moa.tasks.Plot
Units displayed next to x-axis values.

Y

y_dim - Variable in class moa.gui.visualization.ClusterPanel
 
y_dim - Variable in class moa.gui.visualization.OutlierPanel
 
y_dim - Variable in class moa.gui.visualization.PointPanel
 
Y_OFFSET_BOTTOM - Static variable in class moa.gui.visualization.AbstractGraphAxes
 
Y_OFFSET_BOTTOM - Static variable in class moa.gui.visualization.AbstractGraphCanvas
 
Y_OFFSET_TOP - Static variable in class moa.gui.visualization.AbstractGraphAxes
 
Y_OFFSET_TOP - Static variable in class moa.gui.visualization.AbstractGraphCanvas
 
y_resolution - Variable in class moa.gui.visualization.AbstractGraphAxes
 
y_resolution - Variable in class moa.gui.visualization.AbstractGraphCanvas
 
yAxisIndex - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
yColumnOption - Variable in class moa.tasks.Plot
Index of the csv column from which values for the y-axis should be taken.
yMax - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
yMin - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
yTitleOption - Variable in class moa.tasks.Plot
Title of the plots' y-axis.
yUnitOption - Variable in class moa.tasks.Plot
Units displayed next to y-axis values.

Z

zipfExponent - Variable in class moa.streams.generators.TextGenerator
 

_

_check() - Method in class moa.clusterers.outliers.utils.mtree.MTree
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 
Skip navigation links

Copyright © 2020 University of Waikato, Hamilton, NZ. All Rights Reserved.