weka.classifiers
Class AggregateableEvaluation

java.lang.Object
  extended by weka.classifiers.Evaluation
      extended by weka.classifiers.AggregateableEvaluation
All Implemented Interfaces:
java.io.Serializable, RevisionHandler, Summarizable

public class AggregateableEvaluation
extends Evaluation

Subclass of Evaluation that provides a method for aggregating the results stored in another Evaluation object.

Version:
$Revision: 7613 $
Author:
Mark Hall (mhall{[at]}pentaho{[dot]}com)
See Also:
Serialized Form

Constructor Summary
AggregateableEvaluation(Evaluation eval)
          Constructs a new AggregateableEvaluation object based on an Evaluation object
AggregateableEvaluation(Instances data)
          Constructs a new AggregateableEvaluation object
AggregateableEvaluation(Instances data, CostMatrix costMatrix)
          Constructs a new AggregateableEvaluation object
 
Method Summary
 void aggregate(Evaluation evaluation)
          Adds the statistics encapsulated in the supplied Evaluation object into this one.
 
Methods inherited from class weka.classifiers.Evaluation
areaUnderROC, avgCost, confusionMatrix, correct, correlationCoefficient, coverageOfTestCasesByPredictedRegions, crossValidateModel, crossValidateModel, equals, errorRate, evaluateModel, evaluateModel, evaluateModel, evaluateModelOnce, evaluateModelOnce, evaluateModelOnce, evaluateModelOnceAndRecordPrediction, evaluateModelOnceAndRecordPrediction, evaluationForSingleInstance, falseNegativeRate, falsePositiveRate, fMeasure, getClassPriors, getDiscardPredictions, getHeader, getRevision, incorrect, kappa, KBInformation, KBMeanInformation, KBRelativeInformation, main, meanAbsoluteError, meanPriorAbsoluteError, numFalseNegatives, numFalsePositives, numInstances, numTrueNegatives, numTruePositives, pctCorrect, pctIncorrect, pctUnclassified, precision, predictions, priorEntropy, recall, relativeAbsoluteError, rootMeanPriorSquaredError, rootMeanSquaredError, rootRelativeSquaredError, setDiscardPredictions, setPriors, SFEntropyGain, SFMeanEntropyGain, SFMeanPriorEntropy, SFMeanSchemeEntropy, SFPriorEntropy, SFSchemeEntropy, sizeOfPredictedRegions, toClassDetailsString, toClassDetailsString, toCumulativeMarginDistributionString, toMatrixString, toMatrixString, toSummaryString, toSummaryString, toSummaryString, totalCost, trueNegativeRate, truePositiveRate, unclassified, unweightedMacroFmeasure, unweightedMicroFmeasure, updatePriors, useNoPriors, weightedAreaUnderROC, weightedFalseNegativeRate, weightedFalsePositiveRate, weightedFMeasure, weightedPrecision, weightedRecall, weightedTrueNegativeRate, weightedTruePositiveRate, wekaStaticWrapper
 
Methods inherited from class java.lang.Object
getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

AggregateableEvaluation

public AggregateableEvaluation(Instances data)
                        throws java.lang.Exception
Constructs a new AggregateableEvaluation object

Parameters:
data - the Instances to use
Throws:
java.lang.Exception - if a problem occurs

AggregateableEvaluation

public AggregateableEvaluation(Instances data,
                               CostMatrix costMatrix)
                        throws java.lang.Exception
Constructs a new AggregateableEvaluation object

Parameters:
data - the Instances to use
costMatrix - the cost matrix to use
Throws:
java.lang.Exception - if a problem occurs

AggregateableEvaluation

public AggregateableEvaluation(Evaluation eval)
                        throws java.lang.Exception
Constructs a new AggregateableEvaluation object based on an Evaluation object

Parameters:
evaluation - the Evaluation object to use
Throws:
java.lang.Exception
Method Detail

aggregate

public void aggregate(Evaluation evaluation)
Adds the statistics encapsulated in the supplied Evaluation object into this one. Does not perform any checks for compatibility between the supplied Evaluation object and this one.

Parameters:
evaluation - the evaluation object to aggregate