weka.classifiers.meta
Class AttributeSelectedClassifier

java.lang.Object
  extended by weka.classifiers.AbstractClassifier
      extended by weka.classifiers.SingleClassifierEnhancer
          extended by weka.classifiers.meta.AttributeSelectedClassifier
All Implemented Interfaces:
Serializable, Cloneable, Classifier, AdditionalMeasureProducer, CapabilitiesHandler, Drawable, OptionHandler, RevisionHandler, WeightedInstancesHandler

public class AttributeSelectedClassifier
extends SingleClassifierEnhancer
implements OptionHandler, Drawable, AdditionalMeasureProducer, WeightedInstancesHandler

Dimensionality of training and test data is reduced by attribute selection before being passed on to a classifier.

Valid options are:

 -E <attribute evaluator specification>
  Full class name of attribute evaluator, followed
  by its options.
  eg: "weka.attributeSelection.CfsSubsetEval -L"
  (default weka.attributeSelection.CfsSubsetEval)
 -S <search method specification>
  Full class name of search method, followed
  by its options.
  eg: "weka.attributeSelection.BestFirst -D 1"
  (default weka.attributeSelection.BestFirst)
 -D
  If set, classifier is run in debug mode and
  may output additional info to the console
 -W
  Full name of base classifier.
  (default: weka.classifiers.trees.J48)
 
 Options specific to classifier weka.classifiers.trees.J48:
 
 -U
  Use unpruned tree.
 -C <pruning confidence>
  Set confidence threshold for pruning.
  (default 0.25)
 -M <minimum number of instances>
  Set minimum number of instances per leaf.
  (default 2)
 -R
  Use reduced error pruning.
 -N <number of folds>
  Set number of folds for reduced error
  pruning. One fold is used as pruning set.
  (default 3)
 -B
  Use binary splits only.
 -S
  Don't perform subtree raising.
 -L
  Do not clean up after the tree has been built.
 -A
  Laplace smoothing for predicted probabilities.
 -Q <seed>
  Seed for random data shuffling (default 1).

Version:
$Revision: 9186 $
Author:
Mark Hall ([email protected])
See Also:
Serialized Form

Field Summary
 
Fields inherited from interface weka.core.Drawable
BayesNet, Newick, NOT_DRAWABLE, TREE
 
Constructor Summary
AttributeSelectedClassifier()
          Default constructor.
 
Method Summary
 void buildClassifier(Instances data)
          Build the classifier on the dimensionally reduced data.
 double[] distributionForInstance(Instance instance)
          Classifies a given instance after attribute selection
 Enumeration enumerateMeasures()
          Returns an enumeration of the additional measure names
 String evaluatorTipText()
          Returns the tip text for this property
 Capabilities getCapabilities()
          Returns default capabilities of the classifier.
 ASEvaluation getEvaluator()
          Gets the attribute evaluator used
 double getMeasure(String additionalMeasureName)
          Returns the value of the named measure
 String[] getOptions()
          Gets the current settings of the Classifier.
 String getRevision()
          Returns the revision string.
 ASSearch getSearch()
          Gets the search method used
 String globalInfo()
          Returns a string describing this search method
 String graph()
          Returns graph describing the classifier (if possible).
 int graphType()
          Returns the type of graph this classifier represents.
 Enumeration listOptions()
          Returns an enumeration describing the available options.
static void main(String[] argv)
          Main method for testing this class.
 double measureNumAttributesSelected()
          Additional measure --- number of attributes selected
 double measureSelectionTime()
          Additional measure --- time taken (milliseconds) to select the attributes
 double measureTime()
          Additional measure --- time taken (milliseconds) to select attributes and build the classifier
 String searchTipText()
          Returns the tip text for this property
 void setEvaluator(ASEvaluation evaluator)
          Sets the attribute evaluator
 void setOptions(String[] options)
          Parses a given list of options.
 void setSearch(ASSearch search)
          Sets the search method
 String toString()
          Output a representation of this classifier
 
Methods inherited from class weka.classifiers.SingleClassifierEnhancer
classifierTipText, getClassifier, setClassifier
 
Methods inherited from class weka.classifiers.AbstractClassifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

AttributeSelectedClassifier

public AttributeSelectedClassifier()
Default constructor.

Method Detail

globalInfo

public String globalInfo()
Returns a string describing this search method

Returns:
a description of the search method suitable for displaying in the explorer/experimenter gui

listOptions

public Enumeration listOptions()
Returns an enumeration describing the available options.

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class SingleClassifierEnhancer
Returns:
an enumeration of all the available options.

setOptions

public void setOptions(String[] options)
                throws Exception
Parses a given list of options.

Valid options are:

 -E <attribute evaluator specification>
  Full class name of attribute evaluator, followed
  by its options.
  eg: "weka.attributeSelection.CfsSubsetEval -L"
  (default weka.attributeSelection.CfsSubsetEval)
 -S <search method specification>
  Full class name of search method, followed
  by its options.
  eg: "weka.attributeSelection.BestFirst -D 1"
  (default weka.attributeSelection.BestFirst)
 -D
  If set, classifier is run in debug mode and
  may output additional info to the console
 -W
  Full name of base classifier.
  (default: weka.classifiers.trees.J48)
 
 Options specific to classifier weka.classifiers.trees.J48:
 
 -U
  Use unpruned tree.
 -C <pruning confidence>
  Set confidence threshold for pruning.
  (default 0.25)
 -M <minimum number of instances>
  Set minimum number of instances per leaf.
  (default 2)
 -R
  Use reduced error pruning.
 -N <number of folds>
  Set number of folds for reduced error
  pruning. One fold is used as pruning set.
  (default 3)
 -B
  Use binary splits only.
 -S
  Don't perform subtree raising.
 -L
  Do not clean up after the tree has been built.
 -A
  Laplace smoothing for predicted probabilities.
 -Q <seed>
  Seed for random data shuffling (default 1).

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class SingleClassifierEnhancer
Parameters:
options - the list of options as an array of strings
Throws:
Exception - if an option is not supported

getOptions

public String[] getOptions()
Gets the current settings of the Classifier.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class SingleClassifierEnhancer
Returns:
an array of strings suitable for passing to setOptions

evaluatorTipText

public String evaluatorTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setEvaluator

public void setEvaluator(ASEvaluation evaluator)
Sets the attribute evaluator

Parameters:
evaluator - the evaluator with all options set.

getEvaluator

public ASEvaluation getEvaluator()
Gets the attribute evaluator used

Returns:
the attribute evaluator

searchTipText

public String searchTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setSearch

public void setSearch(ASSearch search)
Sets the search method

Parameters:
search - the search method with all options set.

getSearch

public ASSearch getSearch()
Gets the search method used

Returns:
the search method

getCapabilities

public Capabilities getCapabilities()
Returns default capabilities of the classifier.

Specified by:
getCapabilities in interface Classifier
Specified by:
getCapabilities in interface CapabilitiesHandler
Overrides:
getCapabilities in class SingleClassifierEnhancer
Returns:
the capabilities of this classifier
See Also:
Capabilities

buildClassifier

public void buildClassifier(Instances data)
                     throws Exception
Build the classifier on the dimensionally reduced data.

Specified by:
buildClassifier in interface Classifier
Parameters:
data - the training data
Throws:
Exception - if the classifier could not be built successfully

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws Exception
Classifies a given instance after attribute selection

Specified by:
distributionForInstance in interface Classifier
Overrides:
distributionForInstance in class AbstractClassifier
Parameters:
instance - the instance to be classified
Returns:
the class distribution
Throws:
Exception - if instance could not be classified successfully

graphType

public int graphType()
Returns the type of graph this classifier represents.

Specified by:
graphType in interface Drawable
Returns:
the type of graph

graph

public String graph()
             throws Exception
Returns graph describing the classifier (if possible).

Specified by:
graph in interface Drawable
Returns:
the graph of the classifier in dotty format
Throws:
Exception - if the classifier cannot be graphed

toString

public String toString()
Output a representation of this classifier

Overrides:
toString in class Object
Returns:
a representation of this classifier

measureNumAttributesSelected

public double measureNumAttributesSelected()
Additional measure --- number of attributes selected

Returns:
the number of attributes selected

measureSelectionTime

public double measureSelectionTime()
Additional measure --- time taken (milliseconds) to select the attributes

Returns:
the time taken to select attributes

measureTime

public double measureTime()
Additional measure --- time taken (milliseconds) to select attributes and build the classifier

Returns:
the total time (select attributes + build classifier)

enumerateMeasures

public Enumeration enumerateMeasures()
Returns an enumeration of the additional measure names

Specified by:
enumerateMeasures in interface AdditionalMeasureProducer
Returns:
an enumeration of the measure names

getMeasure

public double getMeasure(String additionalMeasureName)
Returns the value of the named measure

Specified by:
getMeasure in interface AdditionalMeasureProducer
Parameters:
additionalMeasureName - the name of the measure to query for its value
Returns:
the value of the named measure
Throws:
IllegalArgumentException - if the named measure is not supported

getRevision

public String getRevision()
Returns the revision string.

Specified by:
getRevision in interface RevisionHandler
Overrides:
getRevision in class AbstractClassifier
Returns:
the revision

main

public static void main(String[] argv)
Main method for testing this class.

Parameters:
argv - should contain the following arguments: -t training file [-T test file] [-c class index]


Copyright © 2013 University of Waikato, Hamilton, NZ. All Rights Reserved.