weka.classifiers.trees.lmt
Class LMTNode

java.lang.Object
  extended by weka.classifiers.AbstractClassifier
      extended by weka.classifiers.trees.lmt.LogisticBase
          extended by weka.classifiers.trees.lmt.LMTNode
All Implemented Interfaces:
Serializable, Cloneable, Classifier, CapabilitiesHandler, OptionHandler, RevisionHandler, WeightedInstancesHandler

public class LMTNode
extends LogisticBase

Class for logistic model tree structure.

Version:
$Revision: 8034 $
Author:
Niels Landwehr, Marc Sumner
See Also:
Serialized Form

Field Summary
 double m_alpha
          Alpha-value (for pruning) at the node
 double m_numIncorrectModel
          Weighted number of training examples currently misclassified by the logistic model at the node
 double m_numIncorrectTree
          Weighted number of training examples currently misclassified by the subtree rooted at the node
 
Constructor Summary
LMTNode(ModelSelection modelSelection, int numBoostingIterations, boolean fastRegression, boolean errorOnProbabilities, int minNumInstances, double weightTrimBeta, boolean useAIC)
          Constructor for logistic model tree node.
 
Method Summary
 int assignIDs(int lastID)
          Assigns unique IDs to all nodes in the tree
 int assignLeafModelNumbers(int leafCounter)
          Assigns numbers to the logistic regression models at the leaves of the tree
 void buildClassifier(Instances data)
          Method for building a logistic model tree (only called for the root node).
 void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight, double higherNumParameters)
          Method for building the tree structure.
 void calculateAlphas()
          Updates the alpha field for all nodes.
 void cleanup()
          Cleanup in order to save memory.
 double[] distributionForInstance(Instance instance)
          Returns the class probabilities for an instance given by the logistic model tree.
 String getModelParameters()
          Returns a string describing the number of LogitBoost iterations performed at this node, the total number of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number of training examples at this node.
 Vector getNodes()
          Return a list of all inner nodes in the tree
 void getNodes(Vector nodeList)
          Fills a list with all inner nodes in the tree
 int getNumInnerNodes()
          Method to count the number of inner nodes in the tree
 int getNumLeaves()
          Returns the number of leaves in the tree.
 String getRevision()
          Returns the revision string.
 String graph()
          Returns graph describing the tree.
 boolean hasModels()
          Returns true if the logistic regression model at this node has changed compared to the one at the parent node.
 double[] modelDistributionForInstance(Instance instance)
          Returns the class probabilities for an instance according to the logistic model at the node.
 void modelErrors()
          Updates the numIncorrectModel field for all nodes.
 String modelsToString()
          Returns a string describing the logistic regression function at the node.
 int numLeaves()
          Returns the number of leaves (normal count).
 int numNodes()
          Returns the number of nodes.
 void prune(double alpha)
          Prunes a logistic model tree using the CART pruning scheme, given a cost-complexity parameter alpha.
 int prune(double[] alphas, double[] errors, Instances test)
          Method for performing one fold in the cross-validation of the cost-complexity parameter.
 String toString()
          Returns a description of the logistic model tree (tree structure and logistic models)
 void treeErrors()
          Updates the numIncorrectTree field for all nodes.
 
Methods inherited from class weka.classifiers.trees.lmt.LogisticBase
getMaxIterations, getNumRegressions, getUseAIC, getUsedAttributes, getWeightTrimBeta, percentAttributesUsed, setHeuristicStop, setMaxIterations, setUseAIC, setWeightTrimBeta
 
Methods inherited from class weka.classifiers.AbstractClassifier
classifyInstance, debugTipText, forName, getCapabilities, getDebug, getOptions, listOptions, makeCopies, makeCopy, runClassifier, setDebug, setOptions
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

m_alpha

public double m_alpha
Alpha-value (for pruning) at the node


m_numIncorrectModel

public double m_numIncorrectModel
Weighted number of training examples currently misclassified by the logistic model at the node


m_numIncorrectTree

public double m_numIncorrectTree
Weighted number of training examples currently misclassified by the subtree rooted at the node

Constructor Detail

LMTNode

public LMTNode(ModelSelection modelSelection,
               int numBoostingIterations,
               boolean fastRegression,
               boolean errorOnProbabilities,
               int minNumInstances,
               double weightTrimBeta,
               boolean useAIC)
Constructor for logistic model tree node.

Parameters:
modelSelection - selection method for local splitting model
numBoostingIterations - sets the numBoostingIterations parameter
fastRegression - sets the fastRegression parameter
errorOnProbabilities - Use error on probabilities for stopping criterion of LogitBoost?
minNumInstances - minimum number of instances at which a node is considered for splitting
Method Detail

buildClassifier

public void buildClassifier(Instances data)
                     throws Exception
Method for building a logistic model tree (only called for the root node). Grows an initial logistic model tree and prunes it back using the CART pruning scheme.

Specified by:
buildClassifier in interface Classifier
Overrides:
buildClassifier in class LogisticBase
Parameters:
data - the data to train with
Throws:
Exception - if something goes wrong

buildTree

public void buildTree(Instances data,
                      SimpleLinearRegression[][] higherRegressions,
                      double totalInstanceWeight,
                      double higherNumParameters)
               throws Exception
Method for building the tree structure. Builds a logistic model, splits the node and recursively builds tree for child nodes.

Parameters:
data - the training data passed on to this node
higherRegressions - An array of regression functions produced by LogitBoost at higher levels in the tree. They represent a logistic regression model that is refined locally at this node.
totalInstanceWeight - the total number of training examples
higherNumParameters - effective number of parameters in the logistic regression model built in parent nodes
Throws:
Exception - if something goes wrong

prune

public void prune(double alpha)
           throws Exception
Prunes a logistic model tree using the CART pruning scheme, given a cost-complexity parameter alpha.

Parameters:
alpha - the cost-complexity measure
Throws:
Exception - if something goes wrong

prune

public int prune(double[] alphas,
                 double[] errors,
                 Instances test)
          throws Exception
Method for performing one fold in the cross-validation of the cost-complexity parameter. Generates a sequence of alpha-values with error estimates for the corresponding (partially pruned) trees, given the test set of that fold.

Parameters:
alphas - array to hold the generated alpha-values
errors - array to hold the corresponding error estimates
test - test set of that fold (to obtain error estimates)
Throws:
Exception - if something goes wrong

getNumInnerNodes

public int getNumInnerNodes()
Method to count the number of inner nodes in the tree

Returns:
the number of inner nodes

getNumLeaves

public int getNumLeaves()
Returns the number of leaves in the tree. Leaves are only counted if their logistic model has changed compared to the one of the parent node.

Returns:
the number of leaves

modelErrors

public void modelErrors()
                 throws Exception
Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values.

Throws:
Exception

treeErrors

public void treeErrors()
Updates the numIncorrectTree field for all nodes. This is needed for calculating the alpha-values.


calculateAlphas

public void calculateAlphas()
                     throws Exception
Updates the alpha field for all nodes.

Throws:
Exception

getNodes

public Vector getNodes()
Return a list of all inner nodes in the tree

Returns:
the list of nodes

getNodes

public void getNodes(Vector nodeList)
Fills a list with all inner nodes in the tree

Parameters:
nodeList - the list to be filled

hasModels

public boolean hasModels()
Returns true if the logistic regression model at this node has changed compared to the one at the parent node.

Returns:
whether it has changed

modelDistributionForInstance

public double[] modelDistributionForInstance(Instance instance)
                                      throws Exception
Returns the class probabilities for an instance according to the logistic model at the node.

Parameters:
instance - the instance
Returns:
the array of probabilities
Throws:
Exception

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws Exception
Returns the class probabilities for an instance given by the logistic model tree.

Specified by:
distributionForInstance in interface Classifier
Overrides:
distributionForInstance in class LogisticBase
Parameters:
instance - the instance
Returns:
the array of probabilities
Throws:
Exception - if distribution can't be computed successfully

numLeaves

public int numLeaves()
Returns the number of leaves (normal count).

Returns:
the number of leaves

numNodes

public int numNodes()
Returns the number of nodes.

Returns:
the number of nodes

toString

public String toString()
Returns a description of the logistic model tree (tree structure and logistic models)

Overrides:
toString in class LogisticBase
Returns:
describing string

getModelParameters

public String getModelParameters()
Returns a string describing the number of LogitBoost iterations performed at this node, the total number of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number of training examples at this node.

Returns:
the describing string

assignIDs

public int assignIDs(int lastID)
Assigns unique IDs to all nodes in the tree


assignLeafModelNumbers

public int assignLeafModelNumbers(int leafCounter)
Assigns numbers to the logistic regression models at the leaves of the tree


modelsToString

public String modelsToString()
Returns a string describing the logistic regression function at the node.


graph

public String graph()
             throws Exception
Returns graph describing the tree.

Throws:
Exception - if something goes wrong

cleanup

public void cleanup()
Cleanup in order to save memory.

Overrides:
cleanup in class LogisticBase

getRevision

public String getRevision()
Returns the revision string.

Specified by:
getRevision in interface RevisionHandler
Overrides:
getRevision in class LogisticBase
Returns:
the revision


Copyright © 2013 University of Waikato, Hamilton, NZ. All Rights Reserved.