|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.core.matrix.Matrix
public class Matrix
Jama = Java Matrix class.
The Java Matrix Class provides the fundamental operations of numerical linear algebra. Various constructors create Matrices from two dimensional arrays of double precision floating point numbers. Various "gets" and "sets" provide access to submatrices and matrix elements. Several methods implement basic matrix arithmetic, including matrix addition and multiplication, matrix norms, and element-by-element array operations. Methods for reading and printing matrices are also included. All the operations in this version of the Matrix Class involve real matrices. Complex matrices may be handled in a future version.
Five fundamental matrix decompositions, which consist of pairs or triples of matrices, permutation vectors, and the like, produce results in five decomposition classes. These decompositions are accessed by the Matrix class to compute solutions of simultaneous linear equations, determinants, inverses and other matrix functions. The five decompositions are:
double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}}; Matrix A = new Matrix(vals); Matrix b = Matrix.random(3,1); Matrix x = A.solve(b); Matrix r = A.times(x).minus(b); double rnorm = r.normInf();
@author
tag.
Constructor Summary | |
---|---|
Matrix(double[][] A)
Construct a matrix from a 2-D array. |
|
Matrix(double[][] A,
int m,
int n)
Construct a matrix quickly without checking arguments. |
|
Matrix(double[] vals,
int m)
Construct a matrix from a one-dimensional packed array |
|
Matrix(int m,
int n)
Construct an m-by-n matrix of zeros. |
|
Matrix(int m,
int n,
double s)
Construct an m-by-n constant matrix. |
|
Matrix(Reader r)
Reads a matrix from a reader. |
Method Summary | |
---|---|
Matrix |
arrayLeftDivide(Matrix B)
Element-by-element left division, C = A.\B |
Matrix |
arrayLeftDivideEquals(Matrix B)
Element-by-element left division in place, A = A.\B |
Matrix |
arrayRightDivide(Matrix B)
Element-by-element right division, C = A./B |
Matrix |
arrayRightDivideEquals(Matrix B)
Element-by-element right division in place, A = A./B |
Matrix |
arrayTimes(Matrix B)
Element-by-element multiplication, C = A.*B |
Matrix |
arrayTimesEquals(Matrix B)
Element-by-element multiplication in place, A = A.*B |
CholeskyDecomposition |
chol()
Cholesky Decomposition |
Object |
clone()
Clone the Matrix object. |
double |
cond()
Matrix condition (2 norm) |
static Matrix |
constructWithCopy(double[][] A)
Construct a matrix from a copy of a 2-D array. |
Matrix |
copy()
Make a deep copy of a matrix |
double |
det()
Matrix determinant |
EigenvalueDecomposition |
eig()
Eigenvalue Decomposition |
double |
get(int i,
int j)
Get a single element. |
double[][] |
getArray()
Access the internal two-dimensional array. |
double[][] |
getArrayCopy()
Copy the internal two-dimensional array. |
int |
getColumnDimension()
Get column dimension. |
double[] |
getColumnPackedCopy()
Make a one-dimensional column packed copy of the internal array. |
Matrix |
getMatrix(int[] r,
int[] c)
Get a submatrix. |
Matrix |
getMatrix(int[] r,
int j0,
int j1)
Get a submatrix. |
Matrix |
getMatrix(int i0,
int i1,
int[] c)
Get a submatrix. |
Matrix |
getMatrix(int i0,
int i1,
int j0,
int j1)
Get a submatrix. |
String |
getRevision()
Returns the revision string. |
int |
getRowDimension()
Get row dimension. |
double[] |
getRowPackedCopy()
Make a one-dimensional row packed copy of the internal array. |
static Matrix |
identity(int m,
int n)
Generate identity matrix |
Matrix |
inverse()
Matrix inverse or pseudoinverse |
boolean |
isSquare()
returns whether the matrix is a square matrix or not. |
boolean |
isSymmetric()
Returns true if the matrix is symmetric. |
LUDecomposition |
lu()
LU Decomposition |
static void |
main(String[] args)
Main method for testing this class. |
Matrix |
minus(Matrix B)
C = A - B |
Matrix |
minusEquals(Matrix B)
A = A - B |
double |
norm1()
One norm |
double |
norm2()
Two norm |
double |
normF()
Frobenius norm |
double |
normInf()
Infinity norm |
static Matrix |
parseMatlab(String matlab)
creates a matrix from the given Matlab string. |
Matrix |
plus(Matrix B)
C = A + B |
Matrix |
plusEquals(Matrix B)
A = A + B |
void |
print(int w,
int d)
Print the matrix to stdout. |
void |
print(NumberFormat format,
int width)
Print the matrix to stdout. |
void |
print(PrintWriter output,
int w,
int d)
Print the matrix to the output stream. |
void |
print(PrintWriter output,
NumberFormat format,
int width)
Print the matrix to the output stream. |
QRDecomposition |
qr()
QR Decomposition |
static Matrix |
random(int m,
int n)
Generate matrix with random elements |
int |
rank()
Matrix rank |
static Matrix |
read(BufferedReader input)
Read a matrix from a stream. |
LinearRegression |
regression(Matrix y,
double ridge)
Performs a (ridged) linear regression. |
LinearRegression |
regression(Matrix y,
double[] w,
double ridge)
Performs a weighted (ridged) linear regression. |
void |
set(int i,
int j,
double s)
Set a single element. |
void |
setMatrix(int[] r,
int[] c,
Matrix X)
Set a submatrix. |
void |
setMatrix(int[] r,
int j0,
int j1,
Matrix X)
Set a submatrix. |
void |
setMatrix(int i0,
int i1,
int[] c,
Matrix X)
Set a submatrix. |
void |
setMatrix(int i0,
int i1,
int j0,
int j1,
Matrix X)
Set a submatrix. |
Matrix |
solve(Matrix B)
Solve A*X = B |
Matrix |
solveTranspose(Matrix B)
Solve X*A = B, which is also A'*X' = B' |
Matrix |
sqrt()
returns the square root of the matrix, i.e., X from the equation X*X = A. Steps in the Calculation (see sqrtm in Matlab):perform eigenvalue decomposition [V,D]=eig(A) take the square root of all elements in D (only the ones with positive sign are considered for further computation) S=sqrt(D) calculate the root X=V*S/V, which can be also written as X=(V'\(V*S)')' Note: since this method uses other high-level methods, it generates several instances of matrices. |
SingularValueDecomposition |
svd()
Singular Value Decomposition |
Matrix |
times(double s)
Multiply a matrix by a scalar, C = s*A |
Matrix |
times(Matrix B)
Linear algebraic matrix multiplication, A * B |
Matrix |
timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A |
String |
toMatlab()
converts the Matrix into a single line Matlab string: matrix is enclosed by parentheses, rows are separated by semicolon and single cells by blanks, e.g., [1 2; 3 4]. |
String |
toString()
Converts a matrix to a string. |
double |
trace()
Matrix trace. |
Matrix |
transpose()
Matrix transpose. |
Matrix |
uminus()
Unary minus |
void |
write(Writer w)
Writes out a matrix. |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public Matrix(int m, int n)
m
- Number of rows.n
- Number of colums.public Matrix(int m, int n, double s)
m
- Number of rows.n
- Number of colums.s
- Fill the matrix with this scalar value.public Matrix(double[][] A)
A
- Two-dimensional array of doubles.
IllegalArgumentException
- All rows must have the same lengthconstructWithCopy(double[][])
public Matrix(double[][] A, int m, int n)
A
- Two-dimensional array of doubles.m
- Number of rows.n
- Number of colums.public Matrix(double[] vals, int m)
vals
- One-dimensional array of doubles, packed by columns (ala
Fortran).m
- Number of rows.
IllegalArgumentException
- Array length must be a multiple of m.public Matrix(Reader r) throws Exception
r
- the reader containing the matrix
Exception
- if an error occurswrite(Writer)
Method Detail |
---|
public static Matrix constructWithCopy(double[][] A)
A
- Two-dimensional array of doubles.
IllegalArgumentException
- All rows must have the same lengthpublic Matrix copy()
public Object clone()
clone
in class Object
public double[][] getArray()
public double[][] getArrayCopy()
public double[] getColumnPackedCopy()
public double[] getRowPackedCopy()
public int getRowDimension()
public int getColumnDimension()
public double get(int i, int j)
i
- Row index.j
- Column index.
ArrayIndexOutOfBoundsException
public Matrix getMatrix(int i0, int i1, int j0, int j1)
i0
- Initial row indexi1
- Final row indexj0
- Initial column indexj1
- Final column index
ArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix getMatrix(int[] r, int[] c)
r
- Array of row indices.c
- Array of column indices.
ArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix getMatrix(int i0, int i1, int[] c)
i0
- Initial row indexi1
- Final row indexc
- Array of column indices.
ArrayIndexOutOfBoundsException
- Submatrix indicespublic Matrix getMatrix(int[] r, int j0, int j1)
r
- Array of row indices.j0
- Initial column indexj1
- Final column index
ArrayIndexOutOfBoundsException
- Submatrix indicespublic void set(int i, int j, double s)
i
- Row index.j
- Column index.s
- A(i,j).
ArrayIndexOutOfBoundsException
public void setMatrix(int i0, int i1, int j0, int j1, Matrix X)
i0
- Initial row indexi1
- Final row indexj0
- Initial column indexj1
- Final column indexX
- A(i0:i1,j0:j1)
ArrayIndexOutOfBoundsException
- Submatrix indicespublic void setMatrix(int[] r, int[] c, Matrix X)
r
- Array of row indices.c
- Array of column indices.X
- A(r(:),c(:))
ArrayIndexOutOfBoundsException
- Submatrix indicespublic void setMatrix(int[] r, int j0, int j1, Matrix X)
r
- Array of row indices.j0
- Initial column indexj1
- Final column indexX
- A(r(:),j0:j1)
ArrayIndexOutOfBoundsException
- Submatrix indicespublic void setMatrix(int i0, int i1, int[] c, Matrix X)
i0
- Initial row indexi1
- Final row indexc
- Array of column indices.X
- A(i0:i1,c(:))
ArrayIndexOutOfBoundsException
- Submatrix indicespublic boolean isSymmetric()
public boolean isSquare()
public Matrix transpose()
public double norm1()
public double norm2()
public double normInf()
public double normF()
public Matrix uminus()
public Matrix plus(Matrix B)
B
- another matrix
public Matrix plusEquals(Matrix B)
B
- another matrix
public Matrix minus(Matrix B)
B
- another matrix
public Matrix minusEquals(Matrix B)
B
- another matrix
public Matrix arrayTimes(Matrix B)
B
- another matrix
public Matrix arrayTimesEquals(Matrix B)
B
- another matrix
public Matrix arrayRightDivide(Matrix B)
B
- another matrix
public Matrix arrayRightDivideEquals(Matrix B)
B
- another matrix
public Matrix arrayLeftDivide(Matrix B)
B
- another matrix
public Matrix arrayLeftDivideEquals(Matrix B)
B
- another matrix
public Matrix times(double s)
s
- scalar
public Matrix timesEquals(double s)
s
- scalar
public Matrix times(Matrix B)
B
- another matrix
IllegalArgumentException
- Matrix inner dimensions must agree.public LUDecomposition lu()
LUDecomposition
public QRDecomposition qr()
QRDecomposition
public CholeskyDecomposition chol()
CholeskyDecomposition
public SingularValueDecomposition svd()
SingularValueDecomposition
public EigenvalueDecomposition eig()
EigenvalueDecomposition
public Matrix solve(Matrix B)
B
- right hand side
public Matrix solveTranspose(Matrix B)
B
- right hand side
public Matrix inverse()
public Matrix sqrt()
sqrtm
in Matlab):X = 5 -4 1 0 0 -4 6 -4 1 0 1 -4 6 -4 1 0 1 -4 6 -4 0 0 1 -4 5 sqrt(X) = 2 -1 -0 -0 -0 -1 2 -1 0 -0 0 -1 2 -1 0 -0 0 -1 2 -1 -0 -0 -0 -1 2 Matrix m = new Matrix(new double[][]{{5,-4,1,0,0},{-4,6,-4,1,0},{1,-4,6,-4,1},{0,1,-4,6,-4},{0,0,1,-4,5}});
X = 7 10 15 22 sqrt(X) = 1.5667 1.7408 2.6112 4.1779 Matrix m = new Matrix(new double[][]{{7, 10},{15, 22}});
public LinearRegression regression(Matrix y, double ridge)
y
- the dependent variable vectorridge
- the ridge parameter
IllegalArgumentException
- if not successfulpublic final LinearRegression regression(Matrix y, double[] w, double ridge)
y
- the dependent variable vectorw
- the array of data point weightsridge
- the ridge parameter
IllegalArgumentException
- if the wrong number of weights were
provided.public double det()
public int rank()
public double cond()
public double trace()
public static Matrix random(int m, int n)
m
- Number of rows.n
- Number of colums.
public static Matrix identity(int m, int n)
m
- Number of rows.n
- Number of colums.
public void print(int w, int d)
w
- Column width.d
- Number of digits after the decimal.public void print(PrintWriter output, int w, int d)
output
- Output stream.w
- Column width.d
- Number of digits after the decimal.public void print(NumberFormat format, int width)
format
- A Formatting object for individual elements.width
- Field width for each column.DecimalFormat.setDecimalFormatSymbols(java.text.DecimalFormatSymbols)
public void print(PrintWriter output, NumberFormat format, int width)
output
- the output stream.format
- A formatting object to format the matrix elementswidth
- Column width.DecimalFormat.setDecimalFormatSymbols(java.text.DecimalFormatSymbols)
public static Matrix read(BufferedReader input) throws IOException
input
- the input stream.
IOException
Matrix(Reader)
,
write(Writer)
public void write(Writer w) throws Exception
w
- the output Writer
Exception
- if an error occursMatrix(Reader)
public String toString()
toString
in class Object
public String toMatlab()
public static Matrix parseMatlab(String matlab) throws Exception
matlab
- the matrix in matlab format
Exception
toMatlab()
public String getRevision()
getRevision
in interface RevisionHandler
public static void main(String[] args)
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |