Package | Description |
---|---|
weka.attributeSelection | |
weka.classifiers.meta | |
weka.clusterers | |
weka.filters.unsupervised.attribute | |
weka.gui.beans |
Modifier and Type | Method and Description |
---|---|
abstract Clusterer |
UnsupervisedSubsetEvaluator.getClusterer()
Get the clusterer
|
Modifier and Type | Method and Description |
---|---|
abstract void |
UnsupervisedSubsetEvaluator.setClusterer(Clusterer d)
Set the clusterer to use
|
Modifier and Type | Method and Description |
---|---|
Clusterer |
ClassificationViaClustering.getClusterer()
Get the clusterer used as the base learner.
|
Modifier and Type | Method and Description |
---|---|
void |
ClassificationViaClustering.setClusterer(Clusterer value)
Set the base clusterer.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DensityBasedClusterer
Interface for clusterers that can estimate the density for a given instance.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterer
Abstract clusterer.
|
class |
AbstractDensityBasedClusterer
Abstract clustering model that produces (for each test instance)
an estimate of the membership in each cluster
(ie.
|
class |
CLOPE
Yiling Yang, Xudong Guan, Jinyuan You: CLOPE: a fast and effective clustering algorithm for transactional data.
|
class |
Cobweb
Class implementing the Cobweb and Classit clustering algorithms.
Note: the application of node operators (merging, splitting etc.) in terms of ordering and priority differs (and is somewhat ambiguous) between the original Cobweb and Classit papers. |
class |
DBSCAN
Basic implementation of DBSCAN clustering algorithm that should *not* be used as a reference for runtime benchmarks: more sophisticated implementations exist! Clustering of new instances is not supported.
|
class |
EM
Simple EM (expectation maximisation) class.
EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters. |
class |
FarthestFirst
Cluster data using the FarthestFirst algorithm.
For more information see: Hochbaum, Shmoys (1985). |
class |
FilteredClusterer
Class for running an arbitrary clusterer on data that has been passed through an arbitrary filter.
|
class |
HierarchicalClusterer
Hierarchical clustering class.
|
class |
MakeDensityBasedClusterer
Class for wrapping a Clusterer to make it return a distribution and density.
|
class |
OPTICS
Basic implementation of OPTICS clustering algorithm that should *not* be used as a reference for runtime benchmarks: more sophisticated implementations exist! Clustering of new instances is not supported.
|
class |
RandomizableClusterer
Abstract utility class for handling settings common to randomizable
clusterers.
|
class |
RandomizableDensityBasedClusterer
Abstract utility class for handling settings common to randomizable
clusterers.
|
class |
RandomizableSingleClustererEnhancer
Abstract utility class for handling settings common to randomizable
clusterers.
|
class |
sIB
Cluster data using the sequential information bottleneck algorithm.
Note: only hard clustering scheme is supported. |
class |
SimpleKMeans
Cluster data using the k means algorithm
Valid options are:
|
class |
SingleClustererEnhancer
Meta-clusterer for enhancing a base clusterer.
|
class |
XMeans
Cluster data using the X-means algorithm.
X-Means is K-Means extended by an Improve-Structure part In this part of the algorithm the centers are attempted to be split in its region. |
Modifier and Type | Method and Description |
---|---|
static Clusterer |
AbstractClusterer.forName(String clustererName,
String[] options)
Creates a new instance of a clusterer given it's class name and
(optional) arguments to pass to it's setOptions method.
|
Clusterer |
SingleClustererEnhancer.getClusterer()
Get the clusterer used as the base clusterer.
|
Clusterer |
MakeDensityBasedClusterer.getClusterer()
Gets the clusterer being wrapped.
|
Clusterer |
CheckClusterer.getClusterer()
Get the clusterer used as the clusterer
|
static Clusterer[] |
AbstractClusterer.makeCopies(Clusterer model,
int num)
Creates copies of the current clusterer.
|
static Clusterer |
AbstractClusterer.makeCopy(Clusterer model)
Creates a deep copy of the given clusterer using serialization.
|
Modifier and Type | Method and Description |
---|---|
static String |
ClusterEvaluation.evaluateClusterer(Clusterer clusterer,
String[] options)
Evaluates a clusterer with the options given in an array of
strings.
|
static Clusterer[] |
AbstractClusterer.makeCopies(Clusterer model,
int num)
Creates copies of the current clusterer.
|
static Clusterer |
AbstractClusterer.makeCopy(Clusterer model)
Creates a deep copy of the given clusterer using serialization.
|
void |
SingleClustererEnhancer.setClusterer(Clusterer value)
Set the base clusterer.
|
void |
MakeDensityBasedClusterer.setClusterer(Clusterer toWrap)
Sets the clusterer to wrap.
|
void |
ClusterEvaluation.setClusterer(Clusterer clusterer)
set the clusterer
|
void |
CheckClusterer.setClusterer(Clusterer newClusterer)
Set the clusterer for testing.
|
Constructor and Description |
---|
MakeDensityBasedClusterer(Clusterer toWrap)
Contructs a MakeDensityBasedClusterer wrapping a given Clusterer.
|
Modifier and Type | Method and Description |
---|---|
Clusterer |
AddCluster.getClusterer()
Gets the clusterer used by the filter.
|
Modifier and Type | Method and Description |
---|---|
void |
AddCluster.setClusterer(Clusterer clusterer)
Sets the clusterer to assign clusters with.
|
Modifier and Type | Method and Description |
---|---|
Clusterer |
Clusterer.getClusterer()
Get the clusterer currently set for this wrapper
|
Clusterer |
BatchClustererEvent.getClusterer()
Get the clusterer
|
Modifier and Type | Method and Description |
---|---|
void |
Clusterer.setClusterer(Clusterer c)
Set the clusterer for this wrapper
|
Constructor and Description |
---|
BatchClustererEvent(Object source,
Clusterer scheme,
DataSetEvent tstI,
int setNum,
int maxSetNum,
int testOrTrain)
Creates a new
BatchClustererEvent instance. |
Copyright © 2016 University of Waikato, Hamilton, NZ. All Rights Reserved.