|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.trees.REPTree
public class REPTree
Fast decision tree learner. Builds a decision/regression tree using information gain/variance and prunes it using reduced-error pruning (with backfitting). Only sorts values for numeric attributes once. Missing values are dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5).
Valid options are:-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)
Field Summary |
---|
Fields inherited from interface weka.core.Drawable |
---|
BayesNet, Newick, NOT_DRAWABLE, TREE |
Constructor Summary | |
---|---|
REPTree()
|
Method Summary | |
---|---|
void |
buildClassifier(Instances data)
Builds classifier. |
double[] |
distributionForInstance(Instance instance)
Computes class distribution of an instance using the tree. |
Enumeration |
enumerateMeasures()
Returns an enumeration of the additional measure names. |
Capabilities |
getCapabilities()
Returns default capabilities of the classifier. |
int |
getMaxDepth()
Get the value of MaxDepth. |
double |
getMeasure(String additionalMeasureName)
Returns the value of the named measure. |
double |
getMinNum()
Get the value of MinNum. |
double |
getMinVarianceProp()
Get the value of MinVarianceProp. |
boolean |
getNoPruning()
Get the value of NoPruning. |
int |
getNumFolds()
Get the value of NumFolds. |
String[] |
getOptions()
Gets options from this classifier. |
String |
getRevision()
Returns the revision string. |
int |
getSeed()
Get the value of Seed. |
String |
globalInfo()
Returns a string describing classifier |
String |
graph()
Outputs the decision tree as a graph |
int |
graphType()
Returns the type of graph this classifier represents. |
Enumeration |
listOptions()
Lists the command-line options for this classifier. |
static void |
main(String[] argv)
Main method for this class. |
String |
maxDepthTipText()
Returns the tip text for this property |
String |
minNumTipText()
Returns the tip text for this property |
String |
minVariancePropTipText()
Returns the tip text for this property |
String |
noPruningTipText()
Returns the tip text for this property |
String |
numFoldsTipText()
Returns the tip text for this property |
int |
numNodes()
Computes size of the tree. |
String |
seedTipText()
Returns the tip text for this property |
void |
setMaxDepth(int newMaxDepth)
Set the value of MaxDepth. |
void |
setMinNum(double newMinNum)
Set the value of MinNum. |
void |
setMinVarianceProp(double newMinVarianceProp)
Set the value of MinVarianceProp. |
void |
setNoPruning(boolean newNoPruning)
Set the value of NoPruning. |
void |
setNumFolds(int newNumFolds)
Set the value of NumFolds. |
void |
setOptions(String[] options)
Parses a given list of options. |
void |
setSeed(int newSeed)
Set the value of Seed. |
String |
toSource(String className)
Returns the tree as if-then statements. |
String |
toString()
Outputs the decision tree. |
Methods inherited from class weka.classifiers.Classifier |
---|
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebug |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public REPTree()
Method Detail |
---|
public String globalInfo()
public String noPruningTipText()
public boolean getNoPruning()
public void setNoPruning(boolean newNoPruning)
newNoPruning
- Value to assign to NoPruning.public String minNumTipText()
public double getMinNum()
public void setMinNum(double newMinNum)
newMinNum
- Value to assign to MinNum.public String minVariancePropTipText()
public double getMinVarianceProp()
public void setMinVarianceProp(double newMinVarianceProp)
newMinVarianceProp
- Value to assign to MinVarianceProp.public String seedTipText()
public int getSeed()
public void setSeed(int newSeed)
newSeed
- Value to assign to Seed.public String numFoldsTipText()
public int getNumFolds()
public void setNumFolds(int newNumFolds)
newNumFolds
- Value to assign to NumFolds.public String maxDepthTipText()
public int getMaxDepth()
public void setMaxDepth(int newMaxDepth)
newMaxDepth
- Value to assign to MaxDepth.public Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class Classifier
public String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class Classifier
public void setOptions(String[] options) throws Exception
-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)
setOptions
in interface OptionHandler
setOptions
in class Classifier
options
- the list of options as an array of strings
Exception
- if an option is not supportedpublic int numNodes()
public Enumeration enumerateMeasures()
enumerateMeasures
in interface AdditionalMeasureProducer
public double getMeasure(String additionalMeasureName)
getMeasure
in interface AdditionalMeasureProducer
additionalMeasureName
- the name of the measure to query for its value
IllegalArgumentException
- if the named measure is not supportedpublic Capabilities getCapabilities()
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class Classifier
Capabilities
public void buildClassifier(Instances data) throws Exception
buildClassifier
in class Classifier
data
- the data to train with
Exception
- if building failspublic double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance
in class Classifier
instance
- the instance to compute the distribution for
Exception
- if computation failspublic String toSource(String className) throws Exception
toSource
in interface Sourcable
className
- the name for the generated class
Exception
- if something goes wrongpublic int graphType()
graphType
in interface Drawable
public String graph() throws Exception
graph
in interface Drawable
Exception
- if generation failspublic String toString()
toString
in class Object
public String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class Classifier
public static void main(String[] argv)
argv
- the commandline options
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |