public class RandomSubSpace extends RandomizableParallelIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, TechnicalInformationHandler
@article{Ho1998, author = {Tin Kam Ho}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, number = {8}, pages = {832-844}, title = {The Random Subspace Method for Constructing Decision Forests}, volume = {20}, year = {1998}, ISSN = {0162-8828}, URL = {http://citeseer.ist.psu.edu/ho98random.html} }Valid options are:
-P Size of each subspace: < 1: percentage of the number of attributes >=1: absolute number of attributes
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.REPTree)
Options specific to classifier weka.classifiers.trees.REPTree:
-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)Options after -- are passed to the designated classifier.
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
Constructor and Description |
---|
RandomSubSpace()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
builds the classifier.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
String[] |
getOptions()
Gets the current settings of the Classifier.
|
String |
getRevision()
Returns the revision string.
|
double |
getSubSpaceSize()
Gets the size of each subSpace, as a percentage of the training set size.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
String |
globalInfo()
Returns a string describing classifier
|
Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(String[] args)
Main method for testing this class.
|
void |
setOptions(String[] options)
Parses a given list of options.
|
void |
setSubSpaceSize(double value)
Sets the size of each subSpace, as a percentage of the training set size.
|
String |
subSpaceSizeTipText()
Returns the tip text for this property
|
String |
toString()
Returns description of the bagged classifier.
|
getSeed, seedTipText, setSeed
getNumExecutionSlots, numExecutionSlotsTipText, setNumExecutionSlots
getNumIterations, numIterationsTipText, setNumIterations
classifierTipText, getCapabilities, getClassifier, postExecution, preExecution, setClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public Enumeration<Option> listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableParallelIteratedSingleClassifierEnhancer
public void setOptions(String[] options) throws Exception
-P Size of each subspace: < 1: percentage of the number of attributes >=1: absolute number of attributes
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.REPTree)
Options specific to classifier weka.classifiers.trees.REPTree:
-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)Options after -- are passed to the designated classifier.
setOptions
in interface OptionHandler
setOptions
in class RandomizableParallelIteratedSingleClassifierEnhancer
options
- the list of options as an array of stringsException
- if an option is not supportedpublic String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableParallelIteratedSingleClassifierEnhancer
public String subSpaceSizeTipText()
public double getSubSpaceSize()
public void setSubSpaceSize(double value)
value
- the subSpace size, as a percentage.public void buildClassifier(Instances data) throws Exception
buildClassifier
in interface Classifier
buildClassifier
in class ParallelIteratedSingleClassifierEnhancer
data
- the training data to be used for generating the
classifier.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws Exception
distributionForInstance
in interface Classifier
distributionForInstance
in class AbstractClassifier
instance
- the instance to be classifiedException
- if distribution can't be computed successfullypublic String toString()
public String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class AbstractClassifier
public static void main(String[] args)
args
- the optionsCopyright © 2017 University of Waikato, Hamilton, NZ. All Rights Reserved.