public abstract class AbstractScalarDifferentiableOptimizer extends BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction> implements DifferentiableMultivariateOptimizer
evaluations| Modifier | Constructor and Description |
|---|---|
protected |
AbstractScalarDifferentiableOptimizer()
Simple constructor with default settings.
|
protected |
AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) |
| Modifier and Type | Method and Description |
|---|---|
protected double[] |
computeObjectiveGradient(double[] evaluationPoint)
Compute the gradient vector.
|
PointValuePair |
optimize(int maxEval,
DifferentiableMultivariateFunction f,
GoalType goalType,
double[] startPoint)
Optimize an objective function.
|
computeObjectiveValue, doOptimize, getConvergenceChecker, getEvaluations, getGoalType, getMaxEvaluations, getStartPointclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetConvergenceChecker, getEvaluations, getMaxEvaluationsprotected AbstractScalarDifferentiableOptimizer()
SimpleValueChecker.protected AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker)
checker - Convergence checker.protected double[] computeObjectiveGradient(double[] evaluationPoint)
evaluationPoint - Point at which the gradient must be evaluated.TooManyEvaluationsException - if the allowed number of evaluations is exceeded.public PointValuePair optimize(int maxEval, DifferentiableMultivariateFunction f, GoalType goalType, double[] startPoint)
optimize in interface BaseMultivariateOptimizer<DifferentiableMultivariateFunction>optimize in class BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction>maxEval - Maximum number of function evaluations.f - Objective function.goalType - Type of optimization goal: either
GoalType.MAXIMIZE or GoalType.MINIMIZE.startPoint - Start point for optimization.Copyright © 2003-2012 The Apache Software Foundation. All Rights Reserved.